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Hello and welcome back to this 26th lecture and bio micro chemical systems. Today lets us

first quickly look into brief review of the previous lecture. We started with the understanding

the basic voltametry mechanism, linear sweep and cyclic voltametry. Again voltametry is the

technique of measurement of a reduction or oxidation potential is a various electrochemical

species with rapid voltage is can the measurements made are between current and voltage,

and basically get a peak which shows whether the electronics have been least or certainly

absorbed or certain potential corresponding to the oxidation and reduction potential of the

species, and there comparison to standards the kind of ((Refer Time: 00:56)) what the species

are or in work concentration their present.

We also talked briefly about chronoamperometry where a we discussed the application of a

square way if and a going to a certain peak potential which would oxidize or leaves these

species and then try to understand the kinetics of d k of the current as we go temporarily. So

various species is would have a different rate of oxidation or reduction or in another words

various species would have a different rate of release of electrons or absorption of electrons,

we should make a chronoamperometry measurements comparable, and would let us draw

((Refer Time: 01:42)) from the current versus time plot in such situations.
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So we also talk about conductivity sensors, conductivity essentially means the inverse of

resistivity. And the increase or decrease ions of one kind of particular species definitely lead

to the increase or decrease in the conductivity. And you can use this measurement technique

by assembling together what do know as Wheatstone bridge. Then we started a new area of

some basics in fluid mechanics, it is very important to mention for me to mention here that

because  we  will  be  studying  some fundamental  problems  in  micro  fluidics,  we  need  to

understand these basics. So essentially we covered about what really a fluid is by definition.

We talked about how it would deform on a shear force being applied to the system and how it

compares with the solid in a similar kind of situation.

We try to understand what really a continuum amaze when it breaks down particularly at a

level when in the dimensions spatial dimensions of the control volume, kind of rime with in

the mean free path of the different molecules. Then we get difference is in properties like

velocity, density etcetera with the time and that is where the continuum breaks down. We

described in details about velocity fields; we talked about one dimensional, one, two and

three dimensional flows respectively. And then we also try to categorize this very important

ways of means of geometrically representing flows by mean of time lines, path lines, streak

lines and stream lines. So we will kind of start from here and then go to the next agenda today

which is stress filed.
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(Refer Slide Time: 03:41)

So essentially you know if you look at really what a stress, we all know that stresses a force

per unit area for basic definition. So typically in a continuum fluid mechanics, we have a

surface, volume body forces encounter at different points of the fluid. So if you consider

control  volume somewhere  in  the  fluid  because  of  the  flow motion  and  because  of  the

viscosity forces between the different layers, there is a tendency of these forces to effect the

surface or the volume as such a that volume element or control volume element.

So the surface forces act on a boundaries of a medium through direct contact which means

that let  say consider the fluid is a ball  can it is flow throw a pipe, so in the border line

between the pipe and the fluid is where the surface forces are directly acting and there is an

impact  of these a  forces through into bulk of the fluid.  And also forces develop without

physical contact and the distributed over the whole volume of the fluids as termed as the body

force, so essentially it is a volume force that we refer to. So like for example, gravitational

force acting on a fluid element is essentially fluid volume element this essentially body force,

so what that is essentially rho times of v; v is the control volume times of g, rho is the density,

v is the volume so that is making it equal to the mass of a certain control volume. And then

you have a gravity factor g acting, so this is a body force, so this is a uniformly felt over the

volume the whole volume of the control element that we are kind of figuring out. So here

right here is you can see the body force acting on a on in the element of volume δ  v is also

given by rho  δ  v g, and essentially this is nothing but differential mass here rho  δ v

times of acceleration into gravity, it is felt within the volume.
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(Refer Slide Time: 06:01)

So let us actually figure out what stress really is in terms of such a control element, it is

important of pertinent in fluid mechanics to understand fluid as an assembly a control volume

by control volume and so on. So, therefore, if there is one represented a control volume such

situations, it kind of generically represents the properties related to the flow and general like

you know a velocity, acceleration, density and so on and so forth. So the stress in a medium

results from forces acting on some portion of the medium, so definitely there has to be a

relative force between this element in concentration and the medium which this element is for

us to understand the essence of stress, there is a relative force between the control volumes an

it is a surrounding medium.

The concept of stress provides a convenient means to describe to the manner in which forces

acting on boundaries of the medium of the transmitted like let say for instance let us consider

a control volume here as in this example, I can see this is a control volume and this control

volume is essentially close to let say some points c in space. And we consider as small area

delta  A, which is  adjacent  to  this  point  c inside this  control  volume is  a regular  control

volume.  Now any area  as  we know from vector  geometry  can  also  be  represented  by  a

direction perpendicular to the area and quotient. And if you are considering this small area

element as illustrated here and let say the value of this area is delta a so we can represent this

area by a normal vector a unit normal vector pointing away from this area and perpendicular

to the area, and we call it delta A vector as in this particular case.

Now let suppose that there is a force delta F vector which is acting on this area vector delta A,

so it is a certain angle in respect to  δA delta A, but then there is a force  δ F  vector
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acting on this area vector delta a. So if we imagine any surface within the flowing fluid, this

surface let say is a part of this whole control volume as has been illustrated here. And we also

assume that this δ F  which is at a certain angle with the area vector can be resolved into a

normal component, which is a in the direction of this normal vector. Let say this is the normal

component  δ F n -  direction  of  the  normal  vector  again,  and  one  which  is  a  kind  of

tangential to the area of interest here close to this point c and we call this F tangential δ F

tangential. So essentially we are kind of resolving this delta a vector into δ F  n that means

δ F  into  the  normal  direction  to  the  area,  and  another  component  δ F  t  delta  F

tangential to the direction of the area. The value here for this normal vector is also δ A ,

and  this  is  the  tangential  direction  represented  as  t  cap,  this  is  the  normal  direction

represented as n cap.

(Refer Slide Time: 09:51)

Now if you want to really see the kind of stresses, because of these two components on this

area vector  a,  it  would  be  represented as  a  normal  stress  and stress  which is  tangential,

because there are only two components of the forces, the normal force and the tangential

force. So based on this, we can define in the two different stresses as one in the direction of

the normal vector, which is also represented as sigma m or the normal stress of the principles

stress,  and it  can be  defined is  the  limit  of  the area  limit  delta  a  and approaching zero,

σn= lim
δ An→ 0

δ Fn

δ An
 and shear force, so this is known as this is called the principles stress or

the normal stress. So this is the normal stress. And the other component which is parallel to
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the  area  can  be  represented  as  τn= lim
δ An→ 0

δ F t

δ An
,  so  the  area  vectors  still  does  not  is

unmodified it still remains the same. So we have a stress due to the normal force parallel to

the area vector and the stress due to the tangential force perpendicular to the area vector

passing the normal stress and the shear stresses.  So this  is essentially is  how you define

normal and shear in certain you know the situation.

So normally it is kind of you know customary into consider the vectors are the where the

component of these force vectors in orthogonal coordinates system which essentially means

so in a rectangular coordinates, we may consider the stresses acting on planes as outward

normal are in the x y and z direction. So essentially if this is a plane that we are talking about

in the rectangular coordinate system x, y, z, we consider this stresses acting on planes which

was outwardly draw normal are in the x, y, z direction. So one of the planes is essentially was

outwardly normal here is drawn in the x direction, and represented in by this red line here, so

let us call this as some area vector delta a x. Another would be similarly in the y direction,

which is probably an element like this, which is orthogonal to this A x element, which is

called delta y and similarly delta a z.

Now if you want to represent this stress vectors here, let say only on this particular plane here

on this a x vector here. So let suppose this which is the plane which is draw it separately here.

And so you have again a components of the force in a rectangular coordinate system, well

resolved to all the three v coordinates x, y, z. And let suppose the force along the x is Fx delta

along the y is a δ y along the z is δ  z, so here as you are seeing, there is one principle

component let say sigma xx and two shear stresses based on the resolution of the force in the

y and the z direction respectively. So delta so the principles stress here  σ xx= lim
δ A x →0

δ Fx

δ Ax

and other two components who represent this as tau x y, which means the shear due to the

force in the y direction the second term here applied to area vector A x . So the second term

of this is the force direction; and the first term is the area direction. So tau is the shear applied

due to a force the y direction by an area vector in the x direction also represented as delta f y

by delta a x; delta a x tends to zero, this is the limit of delta x.

And similarly this again is a representation where you considering τ xz meaning the shear

stress you to a force is the z direction on in area pointing towards the x direction the second

term is the direction of the force in this subscript here and the first term is the direction of the
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area vector this is just purely the notational and it is needed for kind of understanding the

different components the principles of the here stress when this plane change is between let

say plane point into the x direction applying point to the y direction and the plane pointing to

a z direction in a rectangular coordinate system.

(Refer Slide Time: 15:10)

So really if we look at all this together as I pointed out the four illustrated the force there are

three such planes in the orthogonal coordinates as you can see here there is the plane ion the x

direction right plane pointing towards the x if I really maker a control as a as I describe here

all fluid mechanics is really about constructing a control volume let say we make a cube as an

element which represents represented volume so in this cube you have a phase phasing this

direction phasing the minus x direction and similarly a phase phasing the y and minus y and z

and minus z directions respectively so along all this phases you will have shear stress and at

least two components per phase and you will also have principles stresses one component.

And therefore, if you look at all the in totality number of stresses which exist so here let say

in the positive x direction if the plane the normal vector of the plane points to the positive x

direction you have a σ xx  which is essentially the Fx; that means, the delta Fx are the force

in x direction divided by the area who's vector points towards the x direction that is delta a x

similarly you have τ xy has i define earlier and τ xz  if you are looking at the y phase; that

means, the phase where the area vector points to the positive y direction you have again

sigma y in this direction and then you have the shear stress because of the force in the z

direction apply to an area vector delta a y pointing in that positive y direction and the shear

because of  a  force  in  the  x direction  component  of  force  of  which  is  you have  kind of
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resolved in the x direction divided by the area which is again of the area of the phase which is

having a vector point towards the y direction so that is what y x is.

And similarly you have  a  similar  combination on the  third phase here  pointing in  the z

direction the area vector points towards the positive z direction where you have  σ zz and

two other shear stress components  τ zx  and τ zy is a very, very a clearly illustrated then

and how you can notational express different process in such a fluid element mind you all this

phases are acting together on the fluid element as fluids go all way round in pasted and there

are stresses which can be shear force, there are stresses which can be in the normal direction

of principles shear principle stresses, and this whole combination is what we have to evaluate

dynamically to consider the behavior of such an element with time and then that also. Let us

to  define  certain  equations  of  motion  of  this  fluid  element  goes  along  considering  the

kinematic and dynamics, which we also known as the Navier Stokes equation.

[
σ xx τxy τ xz

τ yx σ yy τ yz

τ zx τ zy σ zz
]

So in probably the next lecture I would also the trying to derive some of this equations there

are principle three such equation, equation of a conservation of mass because conservation of

a mentor and conservation of energy. So here if you really put all these stresses together in a

matrix form you can really define in a matrix which is also known as the stress matrix where

you have the diagonal elements which are principle stresses sigma in the in the x y and z

directions respectively,  σ xx , σ yy , σ zz  and the non-diagonal elements here really represent

the different shear stresses as has been illustrated before. How this just this combine with the

certain notation incase of this is τ zy this is τ yz and so on and so forth. So the straight of

stress can really within described by specifying in the stresses acting on the three mutually

perpendicular planes of a rectangular coordinate system in the a orthogonal system at any

particular point by this is stress matrix this stress matrix is also known as the stress of this

particular fluid element. So, now, I would like to kind of a go ahead and evaluate the very

first and very important property of a fluid before this viscosity so what really is viscosity so

let see how we can understand this concept of viscosity.

(Refer Slide Time: 19:40)

So, let say we consider the behavior of a fluid between two infinite plates. let suppose we

have a an infinite this plates are essentially infinite in the z direction there in the towards into
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this particular dream in so there is plate here and then there is a fixed supported the bottom

and if  you recall  we have done this  back in  lectures related to finding out the parabolic

velocity profile how you know moving plate influence a fluid column by shearing as with the

respect to a fixed boundary so here let say a time instants e we have a fluid which was static

and having a boundary like this and let say we have apply a force on this particular upper

plate to an extend Fx because which the plate moves with the velocity delta u so I will just

delta u illustrate here.

And let us actually see that if we try to move this with the force of x at rate tell you what

happens of t plus delta t. So of course, this plate here would move forward right and let say

the new position of this plate is formulated somewhere here because of that moving so that it

moves in total are in totality by some finite distance here. So what will you expect would

happen to the fluid column a fluid column would actually try to get shear like this so if as if

know that is how fluid is define that if you apply a force in this kind of is situation the fluid

will just simply go a deform plastically and not come back as it happens in solids normally.

So in fluid it would just go plastically and still there and if you apply a little more force of

again force it will again bend and keep on shearing as you proceed along.

So here essentially a let us assume that we have able to successfully move this fluid layer by

a total amount of distance delta l. So here one of the elements here is we can see let us mark it

as M N O P and this moves to new position M’ M OPdash so as you maybe already a where

this particular layer here of the bottom is a static cause the lower plate is fixed in nature. So

there is a zone of step which is formulated and as you go ahead in the y direction you have a

velocity gradient which comes because of this there are is layers which are kind of shearing
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of are sliding over each other as the fluid e forms from the position M N O P, m dash n o p

dash m n o p here this is m n o p m dash m o p p dash.

So let us assume that the distance between the two plates they are parallel in the distance

between the plates is delta y and essentially the total amount of length that this fluid element

processes at the very outside is delta x so that is an change much although the shape changes

from rectangular in little more like parallel, because of the shear that the fluid layer would

have respect to the zone of no slip close to the surface n o so during the time delta t the

amount of distance has been moved delta l can also presented as delta u times delta t right and

essentially the shear stress here t at y x; that means, the stress due to the force along the x

direction on the area vector pointing towards the positive y direction. Let suppose we have a

right hand rectangular coordinate system x, y, z are the different direction. So the area vector

pointing to the y direction is really in this particular direction here and the forces in the x

direction  so that  is  what  would  come along this  particular  plane  m p or  m dash p dash

whatever  you  may  call  so  therefore,  τ y x  is  defined  as   τ yx= lim
δ A y →0

δ F x

δ A y

=
d F x

d A y

whatever you may call and essentially as we know that form the young’s law from the loops

law τ xy is also the portion to the rate of a angular the formation.

So let assume that this angle change here because of the component moving from of the fluid

element moving from MNOP m dash n o p dash is δ α and this delta alpha happens in delta

t time so τ yx∝
δα
δt

 so the rate of change of angle that is what huge law defines expressed.

So  if  you  consider  all  these  factors  together  we  are  left  with  another  very  interesting

observation that δ l  which is actually this particular element change in the length are this

is the displacement by this the layer n p moves to the new position n dash p dash as the plate

use ahead is also given by δl=δ α δ y , because this s essentially can be consider in very,

very small situation is same as the length of the r that this radius δ y  would execute as it

moves position m to m dash.

So essentially what we are talking about here is the length of the r delta l by virtual the fluid

element moving from position m p m dash p dash the elements moves by an angle delta alpha

so delta alpha times radius delta y here you define what  this  delta  l is  so let  called this

equation  one  this  equation  two  and  this  equation  three  if  you  if  you  actually  correlate

equation one and two you have a situation where δ α δ y  becomes equal to δ uδ t  why
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and therefore, 
δα
δt

=
δ u
δy

 . So, now, as we know that the sheer force τ xy really τ yx  is

really  proportional  to  delta  for  the  delta  t  so  we can  easily  say  that  τ yx∝
δα
δt

 also  is

proportional to  
δu
δy

y taking limits here we can get a situations where 
dα
d t

 is equal to

du
d y

, and this is what the velocity gradient is. So thus the fluid element when subjected to

a shear stress τ yx experiences rate of deformation given by really 
du
dy

 as can be seen in

this illustration here.

(Refer Slide Time: 29:19)

So, at least fluids in which this proportionality between shear stress and rate of deformation

exists are known as Newtonian fluids as we all know. So let us define this again here that in

Newtonian fluids and we will in just about minutes see what happens in the nonNewtonian

case how that is different this and this particular illustration. So Newtonian fluids the shear

stress is also directly proportional to the rate of deformation. As we have illustrated here

before, I just what mention that this proportionality only holds valid for Newtonian fluids that

is how the fluids are defined. So, therefore, in such a situation, we have τ yx is proportional

to  
du
dy

, and the constant of proportionality in this case is also known as viscosity of the

medium mu. So what really viscosity physically means is that let say if you consider two
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different fluids glycerin and water, so we consider two fluids glycerin and water. So definitely

glycerin is going to resist as we all know by natural experience, the glycerin is going to resist

any deformation much more in comparison to water. So this definitely because glycerin is

much more viscous or in other words the mu for glycerin is much, much higher than mu for

water, which means that amount of here which is needed for a certain velocity gradient to be

crated that means, you talking about movement of inter layers there are two layers which are

moving with respect to each other. So is gradient du by dy for a certain finite gradient to be

created, we need much more shear stress or much more force or effort in glycerin because mu

value is a higher in comparison to water, so that is the essence is what viscosity is all about.

So  dimensionally  again  if  you  investigate  what  viscosity  is  really  you  know  that  stress

essentially  is  force  per  unit  area,  so  we  can  represent  that  as  
MLT −2

L2  so  that  is

M L− 1T −2 . And du/dy, if you look at really has LT minus 1 by L which has dimensions of

T minus 1 and. So, therefore, mu would have unit ML minus 1 T minus 2 by T minus 1 or

ML minus 1 T minus 1, so ML minus 1 T minus 1. So, therefore, the unit of viscosity is kg

per meter second that is what viscosity is defined as. So in fluid mechanics seldom use these

units of viscosity we rather express viscosity as a ratio between the absolute value of the

viscosity the density we also know that better kinematic viscosity.

So, therefore, we can also write here that kinematic viscosity the new term, which is normally

used very often in fluid mechanics, and it is very obvious because you know there may be

substances where density is higher, and same is the viscosity. So what really matters and if

there is  a  substance which is  very, very diluted  in  nature,  it  would  normally  I  mean by

intuition we can say that it  would have a lower viscosity value.  So what is  important to

consider in a physical sense really the ratio between the viscosity and the density that gives

you a better prospective of the full medium that you are investigating. So kinematic viscosity

here,  therefore  is  equal  to  the  absolute  value  of  the  viscosity  divided  by  density  of  the

medium, so I would like to go ahead and do an example problem.

As you can illustrate here that there is an infinite plate is I will just showed and moved over a

second plate, which is fixed and one layer of liquid. So this is essentially is the plate, this

semi finite that it means semi finite in the z direction plate and it is moved over this fixed

plate here. And for a small gap of width t, which is equal to 0.3 mm as you can see here, we

assume a linear velocity distribution. So, therefore, the velocity varies from zero here point of
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no slip to all the way up to about v equal to zero point three meters second the maximum

velocity of the plate. The fluid here adjacent to this plate would move at the same velocity

because there is another zone of no slip here, and so that is the relative velocity between the

point at the top here and the point at the fixed plate surface of the bottom here.

So the liquid viscosity  which is  used here is  in  this  case is  0.65×10− 3  kg per  meter

second, and the specific gravity is a 0.88. So specific gravity as we all know basically how

many times density of water is the density of a particular fluid, so it is the comparison, the

ratio comparison between the density of fluid to density of water at standard conditions. So

you have to calculate, this case the kinematic viscosity of the liquid, you also find out what is

the shear stress, which is generated in this process, give me a minute here. So we had to find

out the shear stress particularly on the lower plate and you have to indicate the direction of

each of these shear stresses. So let us solve this problem to understand about the viscosity.

(Refer Slide Time: 36:15)

So the first question is what really is the kinematic viscosity here, as you know kinematic

viscosity we call it or we represented by the symbol nu. This is really the absolute value of

viscosity per unit density. Density, in this case, we know it is a 0.88 times of thousand kg per

meter cube which is the specific it density of water at standard condition, so this 880 kg per

meter cube. And viscosity from our earlier these things question is given to be 0.65×10− 3

kg  per  meter  second.  So  nu  here  therefore,  would  be  0.65×10−3

880
 which  is  equal  to

7.39×10−7 and the units in this case is 10 to the power of minus 7. Let me just write this
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little more properly here, give me a minute, so 7.39×10−7 and the units in this case as you

can see this unit here as kg per meter second, this unit being kg per meter cube, we are left

with meter square per second that is what the units of kinematic viscosity is.

So second part of the equations says what is a shear stress in lower plate, so shear stress here

can be represented as tau again on the lower is mu viscosity times of U by d; u is essentially

0.3 meter per second and d has dimensions 0.3 mm, so here the total stress would be the

viscosity  0.65×10− 3×0.3×0.3×10− 3 ,  so  it  essentially  comes  out  to  be  0.650  Pa  or

Newton per meters square that is how you define the shear force on the lower plate. About the

direction of this shear force, if you look at really the plate combination, you have this is upper

plate, this is the moving fluid, and this is the fixed plate in the bottom site, you have this

velocity  vector  here going from some finite  value u to  all  the  way to zero.  So you can

consider that if this element is moving along with the upper plate, it would exert of force

which is in the reverse direction, it is a reaction force that it would exert on the on this plate.

As if it tries to get the plate back into it is normal position so that is what the upper direction

would be. Simultaneously, you are trying to deform the fluid element, so it  is giving the

pressure to this fluid in the other direction here I mean more towards in movement direction

here on the lower plate, because it would have been better this plate would have been able to

carry this through along with it, but since it is not carrying it, therefore, the force that is being

felt  on this  due to  this  resistant  layer  at  the  at  the  junction  here  is  actually  towards  the

direction motion of the upper plate.

14



(Refer Slide Time: 40:12)

So,  now, once  we  have  done  Newtonian  fluid  let  us  actually  look  in  to  the  next  very

interesting topic of what really non Newtonian fluids are. So essentially it is again based on

the relationship between shear stress and the velocity gradient. In a non Newtonian fluids just

contrary toward the Newtonian fluids would the show, the shear stress is really not directly

proportional to the deformation rate. So essentially for such fluids, you know there numerous

empirical equations which have been proposed model, one of them being the of the power

law model for describing such fluids. And here if you see the shear stress  τ yx=k ( dudy )
n

,

where n can be either more than one or less than one. You know and depending on what it the

fluid would very inert property or you know physical properties etcetera. So there different

aspects like this different cases for different values of n, for which this equation with signify

at the different property all together for such a fluid. So let us look them look at them case by

case.
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(Refer Slide Time: 41:35)

So essentially what term your k here in this particular equation is also this is also known as

the  consistency  index  and  it  can  re  modify  this  equations  slightly  to  make  it

τ yx=k|dudy |
n−1

du
dy

; this ensures that the tau has the same sign as du/dx. And essentially this

k|dudy|
n−1

,  this  can  be  represented  as  the  viscosity  η whatever  you  may  call,  so

essentially in this  case,  τ yx=η
du
dy

.  So the eta here in this  particular expression is  also

known as the apparent viscosity, this is really not the real viscosity.

So if you are n is one really in that case the eta comes out to be constant in which is the case

of Newtonian fluids with time. And if it is a more or less than one, there would be different

properties associated with that fluids. So just look at the case where in this rate is of this n

value is less than one, so such fluids also known as pseudo plastic material. Here the apparent

viscosity, because n is less than would be decrease with increasing the deformation. Look at

this  particular  equation here,  n  being less than one means that  this  |dudy|
n−1

 would be

essentially negative quantity, the exponential here would be or the power here would be or

the  index  here  would  be  negative  in  nature.  Therefore,  the  increase  du  by  dy  would

essentially mean at decrease in this viscosity value.
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(Refer Slide Time: 43:55)

So similarly n is more than one in that case that the fluids would be categorized dilatants.

Essentially what definitionally that means is that the apparent viscosity with increase with

increasing deformation rate. So if n is more than one then the coefficient n minus one of du

by dy mod which we just saw in this slide back would be positive, and because of that index

being positive within the increasing du/ dx or du/dt the shear stress  τ yx  would increase

because of that. So viscosity mu would increase because of that; viscosity being k|dudy|
n−1

,

so such a fluids are known as dilatants. Some example so in case of, the first earlier case of

pseudo plastics can be polymer solution, which means that with an increase in the velocity

gradient that means, two make or stir the polymer more and more, the viscosity value kind of

decreases because of this stirring action.

Some other suspensions could be colloidal suspensions or paper pulp actually mixed in water;

where if you move it more and stir it more, the viscosity decreases because of that stirring

action.  On  the  other  hand,  there  may  be  the  dilatants  fluid  like  starch  solution  or  sand

probably where more and more stirring action would ensure that there is a greater of packing

between the different grains, which would cause the viscosity to go up, so the du/dx is more

in this case, and n being greater than one, then the viscosity mu would go up because of

increase du/dy, so that is what a dilation would be.

There is another case however who is related to really the way that shear stress would vary

and how or where up to where which point it would be a solid and then change state. So it is

essentially kind of material where there is up till certain shear stress, the property is more like
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the solid that above cut of shear stress, the fluid will behave in an Newtonian manner, so such

fluids are also known as Bingham plastic. Here the basic equation to represent tau x y be in

terms of some you know some kind of intercept value tau y up to which the fluid behaves as a

just normal solid; beyond which, it would also have this new p du by dy component, which is

a related how to of fluid looks like. This fluid behaves as a solid and tells a minimum yield

stress attained let say tau y; and then after it is exceeded, it is starts subsequently executing a

linear relationship between stress and rate of deformation which is same as the Newtonian

fluid. So this is referred to as an ideal or Bingham plastic.

(Refer Slide Time: 47:00)

So, let us actually c what these some of these would look like on a scale of shear stress versus

viscosity or shear stress versus and deformation rate du/dy. So if you really try to draw you

know pseudo plastic dilatants Newtonian kind of fluid on a scale of apparent viscosity versus

deformation rate du/dy this can be seen here apparently. The Newtonian fluid is one where

this  would  be  a  constant  parallel  to  the  x  axis,  which  indicates  that  there  is  a  constant

apparent viscosity irrespective of whatever the du/dy is or whatever the velocity gradient is.

And the case of  pseudo plastic  as you know it  is  material  where if  the du/dy increases,

because n being the less than one, the apparent viscosity come down because of that index

being negative if you may remember. So this is essentially whatever pseudo plastic would

behave like.

So if deformation increases, apparent viscosity comes down. And for a dilatants, it  is the

opposite behavior, so as the deformation increases in that case, the apparent viscosity goes up

so  that  is  what  dilatants  essentially  would  mean.  So  this  is  the  pseudo  plastic  with  the
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viscosity apparent viscosity falls down, the deformation rate; dilatants where it goes up with

the deformation rate, and Newtonian fluid with the viscosity actually is constant with the

increase in deformation rate. So if you have similar kind of materials or element plotted on a

scale  of  shear  stress  tau  y  versus  deformation  rate,  the  Bingham  plastic  thing  can  be

accommodated here.  As you see here the Bingham plastic really definitionally something

which would be acting like a solid up to a certain yield stress tau y, so this is the yield stress

intercept tau y; after which it would start behaving as if Newtonian fluid. So here in this

range the deformation rate is really proportional to this shear stress, after this intercept stress

the yield stress has been crossed over.

So pseudo plastic material with increase in the deformation rate of course, because as you see

here of the apparent viscosity kind of goes down, you know with increase in deformation rate

initially there is an increase in the shear stress up to a point, after which it kind of you know

again starts becoming you know kind of asymptotic to a certain value. For a dilatants as you

see the behavior is this stop is that way; that means, you know it kind of increasingly goes on

adding up the shear  stress,  and one of  the reasons why this  pseudo plastic  and dilatants

behave in this manner that if you may remember, for a pseudo plastic, the mu viscosity is

really equal to the consistency index times of  k|dudy|
n−1

, times of du and so, where the

pseudo plastic as you know n is less than one; and for dilatants, it is more than one.

So in one case as you have seen viscosity is going up, and continuously, another case the

operand is called viscosity is coming down, but as you plot the shear stress tau x y really

would be proportional or it would be equal to this k|dudy|
n−1

du
dy

, which means that if there

is an increasing shear stress τ xy  because of an increasing du by dx in both the cases, but as

the du by dx increases in case one that means in case of pseudo plastic, the viscosity comes

down with time. So, therefore, and there is instance, or there is a cut off of deformation rate

beyond which the viscosity factor starts outweighing really, so the viscosity it is kind of out

ways the increase in the du/dx. And so therefore, it kind of stabilizes to the certain value and

these falls down beyond it.

And in the case of a dilatants, it is opposite effects that there is add on and so therefore, the

du by dy to the power n minus one component kind of starts dominating after awhile and it

further increases the shear stress value. In case of Newtonian fluid though as the viscosity is
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constant would expect linear behavior between the shear stress tau y and deformation rate du

by dy. So in non-Newtonian fluid situation is further complicated by the fact that the apparent

viscosity may the time dependent. Some of these fluids are all also known as thixotropic

fluids, where we showed typically a decrease in the viscosity value with time under constant

applied shear stress. So essentially thixotropic fluids may pose a situation where with the

time you may feel that just temporally the viscosity changes I mean decreases after some

maybe  with  or  without  formation.  Sometimes  if  it  is  with  deformation,  the  viscosity  is

changing it may be classified as a rather a pseudo plastic fluid. But if suppose you just keeps

something like let say glass and beyond certain things you see beyond certain time you see it

kind of deforms and shears out and you know slowly the viscosity decreases with time so that

can be categorized as the thixotropic fluid.

(Refer Slide Time: 52:35)

So, basically in a nutshell you know you can describe a fluid flow to be either viscous or

inviscid these concepts are very, very important at this stage as I again would like to reiterate

that because in case of micro scale flows typically all fluids. So basically the whole idea is

that you know fluid flow can be really divided into viscous and inviscid domains. Again I

would like to reiterate that these concepts are very, very important for particularly micro scale

flows,  because  essentially  all  micro  scale  flows  have  very  prominent  viscous  forces  and

effects, which makes this flow behave flows we have totally differently than the macro scale

counter parts.

So intuitively whatever you think about would normally have to be set of fluids in macro

scale  cannot  be  really  translated  to  the  micron  size  scale  or  micron  scale  transport.  So
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effectively you can categorize viscous and inviscid flows essentially as flows in which effects

the viscosity or either felt or negative once is which is neglected is known as inviscid. So

viscosity is assumed to be typically zero, this is really not a real world situation, but as I

illustrate  just  in  little  bit  how the  viscosity  can  be  taken  zero  specially  in  macro  scale,

whenever there is let say a fluid layer which is approaching a fixed plate you might have a

zone or domain where we can treat the viscosity safely as you know zero. So it is more in

approximation then an ideal situation, more in an approximation ideal situation. So normally

although that  would not  exist  in  nature,  I  mean with zero  viscous particularly;  however,

certain engineering application the viscosity can be small enough to make neglected.

(Refer Slide Time: 54:34)

One such application is flow over in an infinite plane, as you can look at in this particular

situation so let us suppose you have this fixed plane here which is represented by this surface

ox,  and  this  is  also  in  the  x  direction  of  ox.  So  here  as  you  see  you  know  the  flow

approaching the plate is of uniform velocity let say u infinity, so there is a certain flow which

is approaching which has velocity U infinity. So the flow when it approaches, we are first

probably interested in getting a two picture qualitative picture of what would happen to the

flow, when it is starts just about entering the zone where that is fixed plated the bottom. So let

say we have two locations along this plate x 1 and x 2 at points a and a dash respectively,

where we are trying to investigate what kind of behavior will be expected, so we have x 1, x

2. 

We start let say at point x one here by enabling the y quarantines at the velocity these known

and then ultimately plotting the velocity as a function of or in the y direction, your plotting
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the x velocity magnetite as it moves from x one all the way to let say the point b here. So as

we know that  very  close  to  the  plate,  we have  no  slip  condition  or  no slip  zone where

typically the velocity is zero as indicated in this particular region; whereas the case of no or

zero velocity or no slip in this particular region. And what really would be the effect of fluids

which are close to this particular point, so there the effect that the plate should have on fluid

adjacent to it just that of a retarding the fluid in the never would of the plate so it has viscous

forces.

Now, at a location b which is sufficiently away for away from the plate, the flow will never

been influenced by this  particular no slip layer because the velocity is  already attained a

certain  value  U  infinity  beyond  that.  So  this  particular  region,  we  can  actually  kind  of

approximation as an inviscid region, where the viscous effects are some not fell. So velocity

here respect of the fact that plate is close by already has attained the u infinity magnitude in

all say so that is what inviscid flow would typically look like in a physical situation. So I

would like to continue little more of discussion in probably the next lecture, you have kind of

closing onto the time here. So next topic that I would illustrate would define these things in a

little  better  manner,  and  try  to  understand  a  physical  understanding  as  to  how the  flow

develops  or  what  is  the  layer  which  separates  from  the  fully  develop  flow  from  the

developing flow. So I will do that analysis in the next lecture.

Thank you.
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