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Module - 2 Lecture - 2 

The topic of today’s lecture is number synthesis. During this stage of kinematic synthesis 

called number synthesis, we determine the type and number of different types of links 

and the number of simple pairs like revolute or prismatic pairs that needed to yield a 

single degree of freedom planar linkage. It is needless to say that all the single degree of 

freedom planar linkages will satisfy the Grubler’s criterions which are discussed earlier. 

However, before we get into the discussion or details of number synthesis we shall first 

prove certain basic results, which are of vital important for number synthesis. The first of 

these two questions is what is the minimum number of binary links that such a linkage 

must posses? 
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So, we determine the minimum number of binary links in a single degree of a freedom 

planar linkage. Let n be the total number of links in the linkage, n2 be the number of 

binary links, n3 be the number of ternary links and n4 be the number of quaternary links 

and so on. Thus, we have the total number of links in is equal to n2 plus n3 plus n4 upto ni 

where i denotes the highest order link that is present in this linkage. Our first task is to 

determine the minimum value of n2. Towards this goal let us consider this figure. 

(Refer Slide Time: 02:21)  

 

In this figure, we see there is one link which is connected to two other links through the 

revolute pairs here and here. To note that at each of these revolute pairs we have two 

elements say 1 minus which is the spin which goes into the hole which is denoted by one 

plus. So this 1 plus and 1 minus we shall call elements, thus at each revolute pair we have 

two elements. Similarly the two elements at these revolute pairs are these 2 plus and 2 

minus. 

In this way, if we count the total number of elements that I can write e should be equal to 

twice the number of joints or pairs say that is e equal to 2j. We can also count this 

number of elements from this links. This is a binary link which has two elements because 
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it is connected to two other links, two revolute pairs. Similarly, a ternary link, we will 

have three elements because it is connected to three other links and a quaternary link we 

will have four such elements. So if we count the total number of elements from the view 

point of links then I can write e equal to 2n2 plus 3n3 plus 4n4 plus in, where n2 is the 

number of binary links, n3 is the number of ternary links, n4 is the number of quaternary 

links and ni is the number of ith order link. We have just now seen that the total number 

of elements can be counted from two view points. 

(Refer Slide Time: 04:36)  

 

If we count it from the view point of number of pairs then I can write the total number of 

elements e equal to 2j. But, if we count the number of elements from the view point of 

different links or of different orders then we can write the total number of elements e 

equal to 2n2 plus 3n3 plus 4n4 plus ini. We can equate these two numbers of elements 

counted from the view points the kinematic pairs and from the view point of different 

order links we can write 2j equal to 2n2 plus 3n3 plus 4n4 plus ini.  
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As I already told, that all these linkages must satisfy the Grubler’s criterion which is 2j 

minus 3n plus 4 equal to 0, where j denotes the number of kinematic pairs and n denotes 

the number of total links. Substituting e equal to 2j which we have just now saying to be 

given by 2n2 plus 3n3 plus 4n4 plus ini minus, we replace this n by the number of counts 

of different links which is n2 plus n3 plus n4 plus ni. Simplifying this equation we can see 

the 3 and 3 cancels and ultimately we get n2 is equal to p minus 3 summed over all values 

of p starting from 4 up to i plus 4. That means n2 is given by p minus 3, p going from 4 to 

i plus 4. That is, this p denotes the number of quaternary links and higher order links.  

So we can easily see if the sum is 0, the minimum number of binary links (n2)min equal to 

4. This again convinces us what we have seen earlier, that this simplest linkage must have 

4 binary links what we call four bar linkage.  
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Next we would like to add another question that is what is the highest order link in an n 

link mechanism? That means, the total number of links is n then in such a linkage what is 

the highest order link? We should try to answer this question in a reverse manner. We 

will say, the highest order link, be ith order that is we have some ni’s. Then what is the 

minimum number of links that is needed to produce the single degree of freedom planar 

linkage. Towards this goal let me consider the following figure. 
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In this figure, we start with a link with i hinges. This is the link which has i hinges 

numbered as 1, 2, 3, 4 so on up to i. To produce a (Refer Slide Time: 07:55) at each of 

these hinges we connect another. At the 1st hinge we connect link number one, at the 

second hinge we connect link number 2, at the third hinge we connect link number 3 and 

so on this ith link at the hinge number i. To connect these two links 1 and 2, we must 

have some motion transfer links, accordingly, (i plus 1), (i plus 2) and (i plus 3) so on up 

to (2i minus 1). The thing to note that, the hinge number 2, 3, 4 up to (i minus 1), we have 

ternary links. Because link number 2 has three hinges here, here and here and that is true 

for all other links connected at hinge number 4, hinge number 4 and so on. Because, if we 

have binary link at 2 then this particular hinge will not remain (Refer Slide Time: 08:58) 

because three links namely (i plus 2) and (Refer Slide Time: 09:01) link number 2 will 

get connected at this higher order hinge. Then hinge as a simple hinge all these links 

starting from number 2, 3, 4 and so on up to (i minus 1) must ternary link. So we have 

produced a close chain minimum number of links if we start from a link with of ith order 

that is with i hinge. 
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Let me count total number of links n if we have started with, I have already shown the 

number up to (2i minus 1) and we count this starting link which is having i hinges so the 

total number links is 2i. Thus, we see that this is an ith order hinge then minimum I need 

2i number of links to produce a closed chain. That means, total number of links is n then 

imax can go up to n by 2 and not more than n by 2. I emphasize that is the possible value 

of imax, not necessarily imax has to be n by 2, definitely it cannot be more than n by 2. 

Next thing we have to prove, that this closed chain from this closed chain if I hold one 

link fixed it must produce a single degree freedom mechanism that is this particular 

closed chain must satisfy our old Grubler’s criterion. For that we count n equal to 2i. Let 

me count the maximum hinges j, we have started with i hinges on this initial link so j 

equal to i plus there is one hinge here and there is another hinge here which is at two plus 

on all other links two, three, four there are two external because these are all ordinary 

links one of the hinge has been already count with this starting link. There are two hinges 

extra hinges on each of it so that into i, how many such linkages? We have starting from 

two to (i minus1) that is 2 times (i minus 3). So that is the number of hinge i plus 2 plus2 

times (i minus3) which will give us (3i minus 4). 
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We see that in this closed chain, total number of links n turns out to be 2i, where i denote 

the highest order link in this chain. The total number of joins j turns out to be 3i minus2. 

If we write the Grubler’s criterion that is 2j minus 3n plus 4 we get 2 times (3i minus 2) 

minus 3 times (2i plus 4) equal to 0. Thus the Grubler’s criterion is satisfied by this 

closed finite chain and consequently this can constitute a single degree of freedom planar 

linkage. So we concentrate on these two results that we have just now derived. 
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One is that the minimum number of binary links in a linkage must be flow and the second 

is that is highest order link n link mechanism that is imax is n by 2. Since, all the single 

degree freedom linkage must satisfy the Grubler’s criterion that 2j minus 3n plus 4 equal 

to 0 that gives 3n equal to 2j plus 4. We note that the right hand side 2j plus 4 is an even 

number and if 3n is equal to an even number then the n must be even, which means all 

the planar linkages simple pairs and single degree of freedom must have even number of 

links. We have already seen that the four-link mechanism is the simplest mechanism. The 

next more complicated mechanism should be n equal to 6 that is a six-link mechanism. If 

the kinematic requirements are little more complex, which cannot be satisfied by a four-

link mechanism then we have to try to use a six-link mechanism. Let me go into this 

number synthesis of six-link mechanism.  
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With a six-link chain we have n equal to 6 that is imax is n by 2 that is 3. The highest 

possible order is a ternary link. So a six-link mechanism constitutes a binary links and 

ternary links. So the total number of link n equal to n2 plus n3 equal to 6 where n2 is the 

number of binary links, n3 is the number of ternary links. For n equal to 6, we know to 

satisfy Grubler’s criterion 2j must be equal to 3n minus 4 equal to 3 times 6 minus 4 

equal to14 that is j equal to 7. We have got one equation, numbered equation one number 

in terms of two unknown in terms of n2 and n3. We derived another equation involving 

n2 and n3 by counting the number of elements.  
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The number of elements e equal to 2j which is also given by 2n2 plus 3n3. Thus 2n2 plus 

3n3 equal to 2j where j is equal to 7 this comes out to be 14. This is the second equation 

involving these two unknowns namely n2 and n3. Our previous equation was n2 plus n3 

equal to 6 and the second equation is 2n2 plus 3n3 equal to 14.  

We can easily solve these two linear equations in two unknown namely n2 and n3 as n2 

equal to 4 and n3 equal to 2. Thus, a six-link mechanism has four binary links and 2 

ternary links. We shall see what are the possible combinations of these binary and ternary 

links to generate different types of six-link mechanisms? 
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This figure shows one possible six-link chain with two ternary links and four binary 

links. As we see, the link number 1 is a ternary link, link number 4 is another ternary link 

whereas link number 2, 3, 5 and 6 are all binary links. The thing to note, that in this chain 

there are six-link and seven revolute pairs, we can count at vertices of this hexagon and 

one inside the hexagon. Another thing to note that here the two parallel links 1 and 4 are 

directly connected by this revolute pair and all the four binary links are connected to the 

ternary links, this chain is known as Watt’s-chain.  

So in a Watt’s-chain, two ternary links are directly connected to each other. In this 

Watt’s-chain, we can see that the two ternary links that is number 1 and 4 are equivalent. 

In the sense, both of them are connected to a ternary link at one kinematic pair and two 

binary pair at the other two revolute pairs like, 4 is connected to link number four by a 

revolute pair, to the binary link 4 is connected to the another binary link 3 at this revolute 

pair and is connected to the ternary link 1 at this revolute pair. Exactly the same thing 

happened for the link number one, it this connected to the ternary link 6 and this revolute 

pair binary link 2 to this revolute pair and to ternary link 4 by this revolute pair. 
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Thus to topologically there is no difference between link number 1 and 4. The same is 

true for all binary links namely 2, 3, 5 and 6 each one of which is connected to a ternary 

link at one end and to a binary link at the other end. For example, link number 2 is 

connected to a ternary link at one end and to a binary link at the other end and the same is 

true for all other binary links.  

Thus there are two types of links ternary links and binary links but both the ternary links 

are equivalent and all the four binary links are also equivalent. So from a Watt’s-chain by 

kinematic inversion that is depending on which link we hold fixed we can get two 

different types of Watt’s mechanism. One type of Watt’s mechanism we can get by 

holding binary links fixed with 1, 2, 3 or 5 and 6, because all of them are equivalent and 

the second type of Watt’s mechanism we can get holding one of the binary links that is 

either one or four are fixed.  

We will now show a model of a six-link Watt’s mechanism where we will find that one 

of the binary links is held fixed.  

(Refer Slide Time: 19:51) 
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As an example of Watt’s mechanism a with binary link fixed let us go back to our old 

example of this parallel jaw player. We hold this lower jaw that is this blue link fixed, 

this is a binary link because it has two revolute pairs. Let us note that, this binary link is 

connected to another binary link at this revolute pair and to this ternary link at this 

revolute pair. This lower jaw is a ternary link because it has three revolute pairs and this 

small link is another ternary link which has three revolute pair and these two ternary links 

are directly connected so it is one type of Watt’s chain where we know two ternary links 

must be directly connected. If we hold this lower jaw fixed then we are holding this 

binary link fixed. We should also know that this upper jaw is a binary link and this below 

link is another binary link. This binary link is connecting this ternary link and this binary 

link. As a result of this we get a Watt’s mechanism by Watt’s-chain. This is Watt’s 

mechanism of one kind. Later on we will see Watt’s mechanism of another link where 

ternary link will be held fixed.  

(Refer Slide Time: 21:32)  

 

An example of another type of possible Watt’s mechanism let us consider this figure. 

Here we started from a Watt’s chain which has two planar links 1 and 4 and 4 binary 
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links 2, 3, 5 and 6. Here, is a binary link 1 which is held fixed this is known as Watt’s 

walking beam engine. In this Watt’s walking beam engine we must see that in the chain 

we have shown revolute pair between 1 and 6 which has been replaced by a prismatic 

pair between the cylinder and the piston. But in our analysis, we always treated revolute 

pair and prismatic pair as value equivalent. So here, as we see that this great beam that is 

link 4 is connected to ternary link directly by the revolute pair. This is another type of 

Watt’s mechanism which is possible to get by kinematic inversion from a Watt’s chain.  

An another example of a six-link mechanism with seven hinges we can get the following 

figure.  

(Refer Slide Time: 22:43)  

 

Here, as we see two ternary links namely 1 and 4. However, unlike in a Watt’s-chain 

these two ternary links are not directly connected to each other rather they are connected 

via this binary link number 6. Here, we have two ternary links 1 and 4 which are 

connected by a binary link 6, binary link 5 and by two binary links namely 2 and 3 and 

these particular chain where the two ternary links are not directly connected is known as 

Stephenson’s chain. We see that in a Stephenson’s chain two ternary links are not directly 
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connected. In a Stephenson’s chains the ternary links 1 and 4 are equivalent in a sense 

that both 1 and 4 are connected to three binary links and three revolute pairs. For 

example, one is connected to binary link 6, binary link 5 and binary link 2 at these three 

revolute pairs and link number 4, the other ternary links is also connected to three binary 

links to link number 5 here, link number 6 here and number 3 here. Thus both these 

ternary links are topologically equivalent because both of them are connected to three 

binary links. 

However, so far the binary links are concerned there are two varieties, namely 5 and 6 

and 2 and 3. We should note that both 5 and 6 are connected to two ternary links at two 

joints, 6 is also connected to two ternary links at two joins. Link number 2 and 3 at one 

end is connected to a ternary link but at the other end is connected to a binary link. So 

there are two types of binary links they can be grouped as (5, 6) and (2, 3). By kinematic 

inversion we can get three different types of Stephenson’s mechanism depending on 

whether ternary links 1 or 4 is held fixed or one of the binary links in this group that is 

either 5 or 6 is held fixed or one of this group namely 2 and 3 that is either 2 or 3 are held 

fixed. There are three different types of Stephenson’s mechanism which can be obtained 

by kinematic inversion from the same Stephenson’s chain. We now see a model of a 

Stephenson’s chain to generate a Stephenson’s linkage where a ternary link is held fixed. 
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Let us now look at the model of this Stephenson’s mechanism where one of the ternary 

links is held fixed. Here we have this fixed link as the ternary link which has three hinges 

one here, one there and another there and this is the other ternary link which is connected 

to the fixed link by two binary links. The two ternary links are not directly connected, 

they are connected via binary links at these two points and by two binary links at this 

point, this is a binary link this is a binary link. This binary links are equivalent because at 

one end this binary link is connected to a ternary link, at this end this binary link is 

connected to another binary link. Similarly, this binary link is connected to a ternary link 

at this end and at to a binary link at this end. These two binary links are of same nature. 

Similarly these two binary links are also of same nature because they are connected at 

both ends to ternary links. One of the ternary links is held fixed and we get one variety of 

a Stephenson’s linkage.  

Another example of Stephenson’s linkage let us consider the same Stephenson’s chain 

and consider one of the binary links to be fixed.  
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As shown in this figure, this is the Stephenson’s chain that we have considered earlier 

and in this chain if we hold a binary link say link number 2 fixed then we get this 

mechanism. As we see, 2 is connected to ternary link 1 and link 2 is the fixed link which 

is connected to a binary link 3 and to a ternary link 1. Link number 4 is the ternary link 

which is connected to link 3 here, link 6 here and link 5 here. This is known as 

Stephenson’s valve gear mechanism which is used in a steam engine. We have seen, a 

six-link chains consists of four binary links two ternary links and various combinations 

which are possible as Watt’s linkage or Stephenson’s linkage.  
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Let us consider the next higher order link possible to give you the flavor of number 

synthesis. The next most complicated mechanism we consider with n event is an eight-

link mechanism that is n equal to 8. Consequently highest order link possible in an eight-

link mechanism that is imax equal to n by 2 equal to 4. An eight-link mechanism we will 

have binary link it is possible to have ternary link and it is possible to have quaternary 

link. 

If the number of binary links is n2, the number of ternary links is n3 and the number of 

quaternary links is n4 then the total number of links n which is equal to n2 plus n3 plus n4 

equal to 8. This is our first equation to determine n2, n3 and three and n4. We also know 

that the number of elements e equal to 2j equal to 3n minus 4 so that Grubler’s criterion is 

satisfied, which means 3 times 8 minus 4 equal to 20. Counting the number of elements 

from the view point of links we can write 2n2 plus 3n3 plus 4n4 equal to 20 because this 

is also equal to the number of elements so this is our second equation two. 

 It may now appear that we have three unknowns, n2, n3 and n4 to determine but we have 

only two equations namely 1 and 2. Thus there may be infinite solutions a little thought 
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would convince us that is not the situation we still have finite number of solutions 

because we should remember all these numbers n2, n3 and n4 are integers not only that 

the minimum value of n2 is also 4. Number n2 can start from 4 then can go up to 5, 6 and 

so on.  

Let us see what are the various solutions possible to these two equations that under such 

restrictions that all these numbers n2, n3 and n4 must be positive integers there is no point 

having a negative number for the number of links and also that minimum values of n2 is 

4. 

(Refer Slide Time: 31:52)  

 

For an eight-link mechanism, we have got two equations namely n2 plus n3 plus n4 equal 

to 8 and 2n2 plus 3n3 plus 4n4 equal to 20. If we assume that the values of n2 is 4 then 

from these two equations we get n3 plus n4 equal to 8 minus n2 equal to 8 minus 4 equal 

to 4 and from the second equation we get 3n3 plus 4n4 equal to 20 minus 2n2 that is 20 

minus 2 times 4 equal to 12. We get these two equations to solve for n3 and n4 and the 

obvious solution is n3 equal to 4 and n4 equal to 0. That means we can get an eight-link 
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mechanism consisting of four binary links and four ternary links. There is no necessity 

that we must have a quaternary link. 

(Refer Slide Time: 33:22)  

 

If we take n2 equal to 5 then we get n3 plus n4 equal to 8 minus 5 equal to 3 and 3n3 plus 

4 n4 equal to 20 minus 2 times 5 equal to 10. Solving these two equations we get n3 equal 

to 2 and n4 equal to 1. Thus, we can also have an eight-link mechanism with 5 binary 

links with 2 ternary links and 1 quaternary links. Similarly, if we take n2 equal to 6, one 

can easily find that will get n3 equal to 0 and n4 equal to 2. That means, we can have an 

eight-link mechanism with 6 binary links and 2 quaternary links. From these three 

different types of eight link chains by kinematic inversions one can get a very large 

number of different mechanisms.  

In conclusion, let me now repeat the foremost important points that we have learnt today 

during this discussion of number synthesis of planar linkages. The first point is that, the 

minimum number of binary links in any such linkage must be four: that means, we must 

have at least four binary links. The second point is that the highest order link in an nth-

link mechanism is n by 2, that is in a six-link mechanism the highest order is ternary in an 
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eight-link mechanism the highest order is quaternary. Third thing we have seen that, the 

total number of links must be even and the last point is that with increase in the number 

of total links the possible types of various mechanisms that we can have some such 

chains by kinematic inversion increases drastically.  


