Kinematics of Machines

Prof. A.K. Mallik

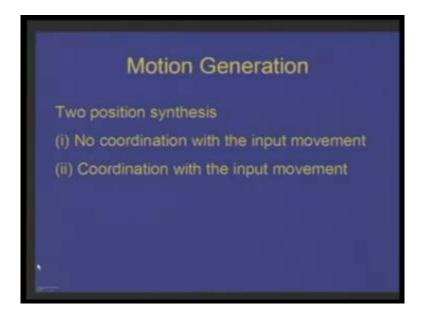
Department of Civil Engineering

Indian Institute of Technology, Kanpur

Module - 6 Lecture - 2

In our last class, we have seen different types of problems of dimensional synthesis of linkages. Today, we will get into the details of the geometrical method of solving these problems. We will start these problems with reference to a 4R-linkage.

(Refer Slide Time: 00:46)

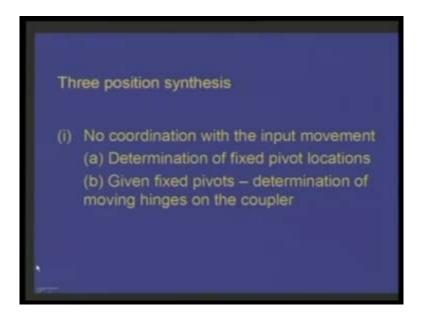


First problem we discuss is that of motion generation. By motion generation, we mean how to guide the coupler of a four bar through various specified positions. First, we discuss the simplest problem of two position synthesis. That means, the coupler has to be moved from position one to another prescribed position number two. These two position synthesis can be as I said earlier, without any coordination with the input movement. That means, we have satisfied so long the coupler takes up the prescribed positions numbered one and two. We are not bothered about what is the corresponding movement of the input link? Then we shall discuss how to solve the same problem of two position synthesis coordinated with the input movement. In the second type of

problem as the coupler moves from position one to position two, it is desired that the input link should be moved by a prescribed amount say theta₂.

After solving this problem, we get into three position synthesis that means the coupler has to occupy three specified configurations namely I, II and III.

(Refer Slide Time: 02:11)

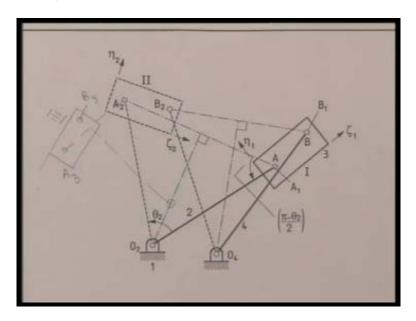


Here we will discuss without any coordination with the input movement. That means, we are happy, so long the coupler passes through these three positions and we are not bothered about what is the corresponding movement of the input link. Under this heading of three position synthesis without coordination with the input movement, we can classify the problem into two headings: one is determination of fixed pivot locations, that means, we shall choose the moving hinges A and B on the coupler AB. We have to determine, what must be the locations of the fixed pivot say O_2 and O_4 , so that the coupler passes through the three prescribed configurations.

Next, we shall discuss the given fixed pivots, how to determine the location of the moving hinges on the coupler. This second problem is very often more important from practical considerations, because as we know the fixed pivots have to be located on the frame, and if they are left unknowns, may be those locations of the fixed pivots come at very uncomfortable or unsuitable positions. We choose the fixed pivot locations from the frame according to our convenience and we determine rather the locations of the required moving hinges on the coupler A and B.

Let me start with the first problem namely II position synthesis without and with the coordinated input movement.

(Refer Slide Time: 03:49)



To explain the geometric method of solving an II position synthesis problem, let us consider this diagram. Here, the first position of the coupler, which is the rigid body is defined by these two axis zeta₁ and eta₁. These two axis completely defines the position of the coupler, that is what we call the first position I. It is desired that this coupler should move from this position I to position II and the corresponding positions of these two axis takes up eta₂ and zeta₂. That is to design a 4R-linkage, such that by moving that linkage, we will be able to transfer the coupler from position I to position II. Right now, we are not interested in the corresponding movement of the input link. To solve this problem, the first step is to choose location of A and B perfectly arbitrarily in this first configuration. Let us say, A and B are the locations of the moving hinges on the coupler and they are chosen arbitrarily.

In the second position the corresponding movement of A brings it to A_2 and B goes to B_2 . We must notice that the locations of A and B are fixed on this coupler, in position I, A and B. In position II, the same two points are here as A_2 and B_2 . The only job left is to determine the fixed pivot locations namely that of O_2 and O_4 . What we do, I know the length O_2A remains constant, so A and A_2 must lie on a circle with the centre at O_2 . Similarly, the point B and O_2 must lie on a

circle with center at O_4 . We join A and A_2 , B and B_2 , draw perpendicular bisector of these two lines namely AA_2 and BB_2 . We can choose O_2 and O_4 on these two perpendicular bisectors respectively. If I choose O_2 here, then O_2A will be same O_2A_2 , by rotating the link O_2A it will become position O_2A_2 . Similarly, if I choose O_4 anywhere on this perpendicular bisector, O_4B will be equal to O_4B_2 , by rotating the link O_4B , B will be moved to B_2 . That is the simplest solution of an II position synthesis, without any coordination with the input movement.

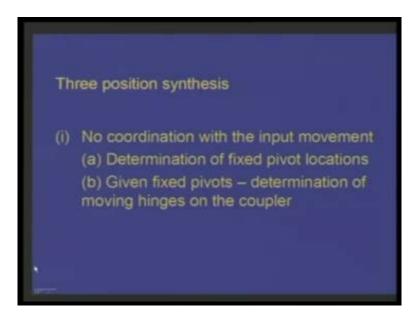
We have also specified that, as the coupler moved from position I to position II, the corresponding movement of the input link O_2A must be theta₂ in the counter-clockwise direction. In the previous solution, where O_2 could have been anywhere on this perpendicular bisector, now the location of O_2 is specified. To make this angle theta₂ between O_2A and O_2A_2 , we draw here at the point A, a line at an angle pi minus theta₂ by 2 and that line intersects the perpendicular bisector which was drawn earlier, at O_2 . That decides the location O_2 . This four bar linkage namely O_2ABO_4 is moved and then as O_2A rotates through an angle theta₂, the coupler will move from configuration I to configuration II.

It is very easy to see from this triangle, that this angle is pi minus theta₂ by 2, so will be this angle because O_2A is same as O_2A_2 , so the third angle will be theta₂. Such that the sum of the three angles of this triangle comes out as pi. This is the solution for II position synthesis coordinated with the input movement. O_4 can be still taken anywhere, because we are not interested in the movement of the output link namely O_4B .

If you want to add another third position as III, then A_2 goes to a specific location say here, which I call A_3 and B_2 goes here, which I call B_3 . Once we have chosen A and B arbitrarily on the coupler, then I know A, A_2 and A_3 must be on a circle. Similarly, B, B_2 and B_3 must be on another circle. The centers of these two circles should determine the location of the fixed pivot namely O_2 and O_4 . It is very easy to draw a circle passing through A, A_2 and A_3 , three points. Similarly, it is very easy to draw another circle, passing through these three points namely B, B_2 and B_3 , that will uniquely locate the fixed pivots O_2 and O_4 . Previously we had drawn a perpendicular bisector of AA_2 , which was this line. Now, I have to draw a perpendicular bisector of A_2A_3 and if these two lines meet at this point, that will determine the location of O_2 . O_2 will be the center of the circle passing through A_3 .

Similarly, we have to find the center of the circle passing through B, B_2 and B_3 and that will determine the location of O_4 . This is the three position synthesis for the 4R-linkage, when the moving hinges A and B were chosen arbitrarily on the coupler and the fixed pivot location O_2 and O_4 can be decided. As I said earlier, more often or not, it is the location of O_2 and O_4 , which I have chosen according to the convenience, we have to determine the desired location of the moving hinges A and B on the coupler. We shall solve this problem in the next step.

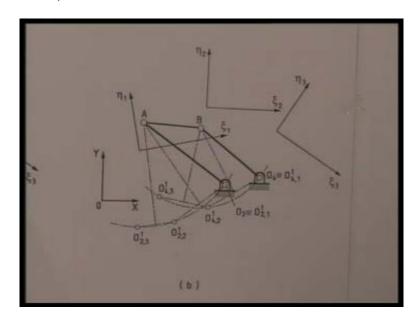
(Refer Slide Time: 11:23)



Let me now explain, how to determine the moving hinges on the coupler, such that its three position synthesis problem can be solved with given fixed pivot locations. Towards this end, we shall use the principle of kinematics inversion. If you remember in a mechanism the relative movement between various links remains independent of kinematics inversion.

What do you mean by kinematic inversion? In the same mechanism, we use a different fixed link and the original fixed link is allowed to move. We are interested only in the relative movement between various links and the kinematic inversion leaves this relative movement untouched, independent of whichever length we hold fixed. To determine the moving hinges on the coupler, we consider the same relative movement between the coupler and fixed link, but we hold the coupler fixed and allow the original fixed link or the ground link or the frame to move. We shall now explain this with the help of an example.

(Refer Slide Time: 12:29)



Let the three positions of the coupler are prescribed by eta_1 and $zeta_1$, this is position I. These coordinate axis are fixed on the coupler. The second position of the coupler is given by position II, when this eta zeta takes off the position eta_2 zeta₂. Similarly, this is the third position which is eta_3 and $zeta_3$. The problem is that, if we choose the locations of the fixed pivot at O_2 and O_4 , where should be A_1B_1 , that is the moving hinges in the first configuration, such that as we move this 4R-linkage, the coupler moves from position I to II and then from II to III.

To solve this problem, as I said earlier we shall use the principle of kinematic inversion. To locate A_1B_1 , what we do, we fix the coupler at this first position. Let $O_2 O_4$ move, keeping the same relative movement as prescribed here. Let me do this inversion by using a tracing paper, I use a tracing paper and put it here and draw this eta₂ and zeta₂ and the position of O_2 and O_4 , I mark on this tracing paper. I have drawn this eta two and zeta two axis on the tracing paper as you can see here and mark the position of the given fixed pivots O_2 and O_4 . The same relative movement I consider, as if the coupler has not moved from the first position. This is the position, I coincide eta₂ with eta₁ and zeta₂ with zeta₁.

The second position, if I hold the coupler fixed in the first position, then O_2 and O_4 moves to these two positions, this is O_2 and O_4 , having the same relative positions in the second configuration, but I have fixed the coupler in the first position. These two positions we mark on

the paper by piercing with the point. This is the position of O_4 , this is the position of O_2 . I name these positions as follows: I call it O_4 in the second configuration, but inverted on the first configuration, so I call it $O_{4,2}$ one. This is really I could have said, this is $O_{4,1}$ 1 and this is $O_{2,1}$ 1. Holding the coupler fixed in the first position, if I allow the fixed link to move, then O_4 comes here and O_2 comes here, which I call $O_{2,2}$ 1.

I hope it is clear, that I get the inverted position of these fixed pivots if I hold the coupler fixed in the first position. Then, we take the tracing paper again, draw eta₃ and zeta₃ and mark this O_2 and O_4 . This is the relative position of O_2 and O_4 with respect to coupler in configuration. If I make a kinematic inversion with the coupler fixed in the first position, that is eta₃ and zeta₃ I make coincide with eta₁ and zeta₁ respectively. Then, O_4 moves here and O_2 moves here, this position I call $O_{4,3}$ 1 the third position inverted on the first position. Similarly, this is $O_{2,3}$ 1. If we fix the coupler and allow the fix link to move, the same relative configurations as given by the moving coupler with respect to the fixed link. Then, the fixed link moves, such that O_2 goes from O_2 1 to $O_{2,2}$ 1 to $O_{2,3}$. Similarly, O_4 goes from $O_{4,1}$ 1 to $O_{4,2}$ 1 and $O_{4,3}$ 1, by holding that coupler fixed. If the coupler is fixed, then A does not move, A is fixed and because AO_2 distance is same then O_2 moves on a circle with A as center. We have to determine the center of the circle passing through this O_2 1, O_2 2, $O_{2,1}$ 1, $O_{2,2}$ 1 and $O_{2,3}$ 1. This is one point, this is one point and this is one point. It is very easy to determine the center of a circle passing through these three points and that will be A_1 .

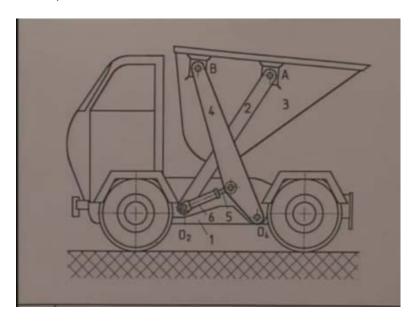
Similarly, the center of the circle passing through $O_{4,1}$ 1, $O_{4,2}$ 1 and $O_{4,3}$ 1, center of that circle will be set here and that will be B_1 . We have located the moving hinges required position of the moving hinges such that if O_2A_1 B_1O_4 and this 4R-linkage are moved, the coupler goes from position I to position II to position III, with O_2O_4 has the fixed pivots. As the principle of kinematics inversion forms the basis of procedure for dimensional synthesis, let me repeat it once more the solution shown in this. What we have done, we are using a tracing paper eta₁ zeta₁, eta₂ zeta₂ and eta₃ zeta₃ they specify the three desired positions of the coupler. O_2 and O_4 have been chosen according to the (Refer Slide Time: 19:41). Our task is to determine the location of the moving hinges A and B. We want this A and B in the first position of the coupler. We make a kinematic inversion, hold the couplers fixed in the first position and allow the fixed link to move and determine where do these points O_2 and O_4 to keep the same relative

movement between the coupler and fixed links, which remains invariant for a given (Refer Slide Time: 20:13).

Now, you note O_2 I call $O_{2,1}$ 1, this subscript one refers to the configuration and superscript one refers where we are inverting. That means, which position we are holding fixed. The superscript in this problem will be always 1, because we are always inverting on the first position, which we are holding fixed. Let me explain, how I get this inverted position. What we do, we use a tracing paper and mark this second configuration defined by eta_2 and zeta_2 axis. The relative position of this fixed pivot in the second configuration here is O_2 , here is O_4 . If I now have the same relative movement, but hold the coupler fixed in its first configuration. That means, eta_2 zeta₂ I coincide with eta_1 zeta₁. We see the O_2 moves here and O_4 moves here such that the same relative position corresponding to the second configuration is maintained. O_2 comes here and O_4 comes here. This position I call $O_{2,2}$ 1 and this position I call $O_{4,2}$ 1. Again we note superscript 1 refers to the configuration one, where we are fixing or holding the coupler fixed. These two refers to the configuration, which is being inverted, it is the second position which we invert.

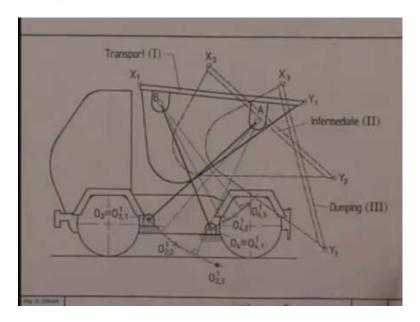
For the third position we draw on the same tracing paper, eta₃ and zeta₃ and mark these O_4 and O_2 . The same relative position between the coupler and the fixed length is maintained, but the coupler is fixed in its first position, so I move this and make it coincide eta zeta with eta₁ and zeta₁. As we see O_2 moves here, O_4 moves there. This position I call $O_{2,3}$ 1 and this position I call $O_{4,3}$ 1. Rest is simple, I determine the center of the circle by drawing these two perpendicular bisectors of $O_{2,1}$ 1, $O_{2,2}$ 1 and $O_{2,2}$ 1, $O_{2,3}$ 1. These two perpendicular bisector intersect here, which is the center of the circle passing through these three inverted positions of O_2 namely $O_{2,1}$ 1, $O_{2,2}$ 1 and $O_{2,3}$ 1, this is what I call A. Similarly, the center of the circle passing through the three inverted positions of O_4 is B and that is the other moving hinge on the coupler. The problem is solved, that O_2ABO_4 is the required 4R-linkage which when moved the coupler moves from position I to position II and position III. This is the three position synthesis of motion generation for the coupler of a 4R-linkage with the fixed locations of the ground pivot.

(Refer Slide Time: 23:50)



Let us take an example of this three position synthesis, with reference to this steeper dumper. As we see here, the dumper bin that is link number 3 is driven by this link number 4, which is driven in turn by this hydraulic cylinder piston arrangement, which are link number 5 and 6. As the cylinder expands, this link 4 turns clockwise, here we have a 4R-linkage namely O_2ABO_4 . This 4R-linkage is driven by moving link 4 by this hydraulic cylinder and as a result this dumping bin goes from this configuration to some other configuration and the final dumping configuration. Our job is to locate the suitable positions of A and B for given locations of O_2 and O_4 , these are the fixed pivots which must be on the body of this steeper dumper. The A and B have to be determined, such that this dumping bin passes through the three given configuration and that is the problem. Let us see, how we solve it by using the principle of kinematic inversion.

(Refer Slide Time: 25:09)



Let us now, discuss this example of steeper dumper and the dumping bin has to take up this first configuration, which is the configuration during the transporter movement. This is another configuration, which we call the intermediate configuration and this is the third configuration, which I call the dumping configuration. The task is for given locations of O_2 and O_4 , we have to determine where should A and B lie on this dumping bin, such that when we move this 4R-linkage, that dumper goes from transport to intermediate to dumping configuration. The thing to note, that in plane motion of a rigid body the configuration of the rigid body is completely defined by any two points on it. Here, we take those two points at corner X_1 and Y_1 . You can forget about the rest of the dumping bin and we only concentrate on these two points namely X_1 and Y_1 . That is, they are location in the first configuration, then X_2 and Y_2 that is their location in the intermediate configuration and X_3 and Y_3 is the positions in the dumping configuration.

The dumper bin is completely defined by X and Y passing through these three positions X_1 , X_2 , X_3 and Y_1 , Y_2 , and Y_3 . As I said, I will make a kinematic inversion to locate A and B in the first configuration, that is transport configuration. We hold the dumper bin fixed in this first configuration. That means, X_1 , Y_1 will not move, rather we allow O_2 and O_4 to move keeping the same relative movement, that is kinematic inversion. To carry out the inversion I use a tracing paper and mark this point X_2 and Y_2 and mark Y_3 and Y_4 and Y_5 coincides with Y_4 . We see that,

this O_4 has moved to this position and O_2 has moved to this position. These two positions, we call $O_{2,2}$ 1 and $O_{4,2}$ 1. To invert the third position, we mark X_3 and Y_3 and O_2 and O_4 . If I invert it on the first position that is X_3 goes to X_1 and Y_3 goes to Y_1 . As we see, this O_4 has come here, which I call $O_{4,3}$ 1 and O_2 has come here, which I call it $O_{2,3}$ 1. Thus, we have located the three inverted positions of O_2 namely given location, which is $O_{2,1}$ 1 and these two inverted positions $O_{2,3}$ 1 and $O_{2,2}$ 1. Similarly, for the given location O_4 , which is $O_{4,1}$ 1 and the inverted positions $O_{4,2}$ 1 and $O_{4,3}$ 1. The center of the circle passing through these three inverted positions of O_4 determines B. The center of the circle passing through these three inverted positions of O_2 determines A. If I join O_2A and O_4B , we get the required 4R-linkage, and which will drive the dumper bin through these three configurations I, II and III.

We have just seen how to solve the problem of motion generation for three position synthesis. We have noticed that the whole method depends on the fact that three points lying on a circle has a unique center. If we want to extend this method to more than three accuracy points, what happens? You remember what we did? Suppose we wanted to locate the fixed pivots after choosing the moving hinges A and B. We use the fact that A moves on a circle with O_2 as center, so A_1 , A_2 , A_3 , these three positions of the point A determines O_2 as the center of the circle passing through A_1 , A_2 , A_3 . Similar thing is true for the location of O_4 , which is the center of the circle passing through three positions B_1 , B_2 , B_3 .

(Refer Slide Time: 30:42)

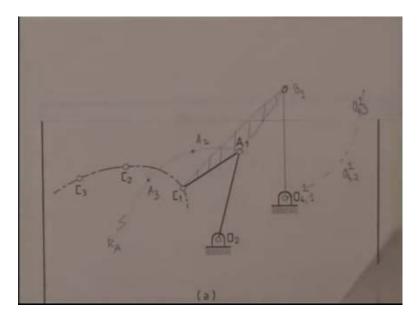


Then the question is can we extend this method to more than three accuracy points. Because then A_1 , A_2 , A_3 , A_4 which are all four arbitrary positions, there is no guarantee that they will lie on a circle, so there is no way we can determine the center. However, there is a method which is beyond the scope of this course, so we will not discuss that in detail, but we can think of that there must be a solution if we keep the following fact in mind. We see the location of A was perfectly arbitrary I could have taken A anywhere on the plane of the coupler. There are special locations of this point A, such that as the coupler moves to four arbitrary positions, A will lie on the circle. This method can be extended to given four accuracy points. In this course, we will discuss some limited version of this by saying using a method of point position reduction that we will take up much later.

The method can also be extended to five position synthesis, but then A cannot be chosen arbitrary. For three positions, A was chosen anywhere on the coupler plane. B is chosen anywhere on the coupler plane. For four position synthesis A have to be chosen on a particular curve, for five position synthesis they are only some discrete fixed locations for the choice of A. As I said, this general discussion of four and five position synthesis is beyond the scope of this course. We will discuss later on some limited version for four position synthesis by a technique, which is known as point position reduction.

At this stage, let me now get into the second type of problem namely the problem of path generation. For path generation, we start our discussion with three position synthesis, because two position synthesis, as we have seen is pretty obvious.

(Refer Slide Time: 32:51)



For three position synthesis of path generation, the problem is posed as follows: let a particular coupler point C has to pass through three positions namely C_1 , C_2 and C_3 . Actually, this is the desired coupler curve, but we are not interested in the intermediate positions, we have defined a three position synthesis problem that a coupler point C of a 4R-linkage must pass through C_1 , C_2 and C_3 . To solve this problem, we choose O_2 and O_4 , the locations on the fixed pivots arbitrarily anywhere according to the convenience of the problem. Then, we also choose A_1 arbitrarily. A_1 is the moving hinge on the input region. The only thing remaining is to determine, where is the other moving hinge on link number four which I call B that is B_1 . $O_2A_1B_1O_4$ is the required 4R-link and A, B, C is the coupler. As these 4R-linkage moves, this particular coupler point C should pass through C_1 , C_2 and C_3 and we have to determine, where must be the location of the other moving hinge B_1 .

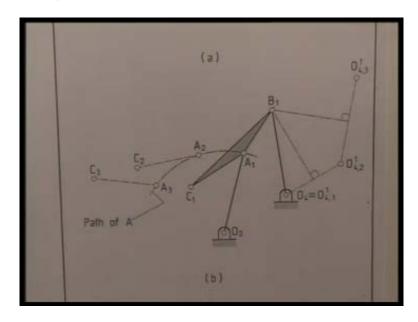
To do this, we again make a kinematic inversion, as we see we have to determine the point B on the first position of the coupler that is A B C B_1 . We hold the coupler fixed in first position and allow the fixed link O_2O_4 to move, since B_1 is remains fixed and B_1O_4 distance is constant, so O_4 must move on a circle with B_1 as the center. Our job is to determine, what we call the inverted position of this fixed hinge O_4 , as O_4 which we call $O_{4,1}$ 1. We have to determine $O_{4,2}$ 1 and $O_{4,3}$ 1 corresponding to the three positions of the linkages. To do this we proceed as follows: first, we determine the location of this moving hinge A corresponding to the other two

configurations. As we see because O_2A distance is constant, A must lie on this circle. This is what we call the path of A say k_A , A lies on this circle with O_2 as center and O_2A_1 as radius. Since, the distance A_1C_1 is also fixed, this is one of the coupler lengths. We determine A_2 by making C_2A_2 as C_1A_1 , this C_1A_1 is same as C_2A_2 and A must lie on this circle, so I can determine the location of the point A_2 . Similarly, corresponding to the third position since AC distance remains constant I draw a circular arc with C_3 as center and C_4 as the radius and that intersects the path of A at this point, which I call C_4 as one part of the coupler, ABC is the coupler. We have to determine C_4 by holding the coupler fixed at its first position that is at C_4 as a tracing paper and mark C_4 and C_4 and C_4 and C_4 with C_4 and C_4 with C_4 and as we see C_4 moves here. We mark this point on our drawing sheet, this point we call C_4 corresponding to the second position but inverted on the first position we call it C_4 . Again, now we consider the third configuration that is we mark C_4 , C_4 and C_4 . Let me now show how to find out the inverted position corresponding to the third configuration.

This is C_3 I put it as a cross and this is A_3 and this is the location of O_4 , so if I invert it on the first position of the coupler that means, I make C_3 coincides with C_1 , A_3 coincides with A_1 . This C_3 I am making coincides with C_1 and A_3 with A_1 and as we see O_4 has moved there, so I marked this point on my drawing sheet and this I call $O_{4,3}$ 1. If the coupler is held fixed, corresponding to these two relative movements on these three configurations, the location of O_4 is here, here and here (Refer Slide Time: 39:42). If the coupler is held fixed at its first configuration that is the point B does not move, it remains on O_4 moves in a circle with $O_4 O_4$ as the radius. If I locate the centre of the circle passing through these three positions, this is the circle which passes through these three inverted positions of O_4 and the center is determined somewhere here, which I call O_4 and O_4 and the center is determined

We have determined the linkage O_2 A_1 B_1 O_4 and C is the coupler point and this ABC is one rigid body and this is another link which I can join as another rigid link. O_2 A_1 B_1 O_4 with C_1 as the coupler point and if this linkage moves as A_1 goes through A_2 , C_1 will take up the position C_2 and as A_2 goes through A_3 , C_1 will take up the position C_3 . We have solved the problem of path generation with three accuracy points.

(Refer Slide Time: 41:15)

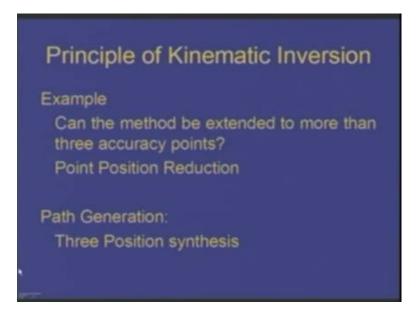


Let us now see at the solution of the problem which has been solved just now. As I said C_1 , C_2 , C₃ are the three required points of the path of the coupler points C, these are given to us. O₂ and O₄ have been chosen arbitrarily according to the convenience. We also choose A₁ arbitrarily. The only point is to determine, where should be B₁ the other moving hinge. What we have done, first we determine the path of A, which is a circle with O₂ as center and O₂A₁ as radius. On the path of A, I locate the position of A corresponding to the second and third configurations as A₂ and A₃. This is easily done, since I know this distance AC being a rigid link does not change, so with C2 as center, I draw a circular arc with AC as radius and that intersects the path of A at O2. Similarly, with C₃ I get A₃. We make a kinematic inversion to locate the point B₁. Please note that, because we want to locate the point B₁ which is on the coupler, I hold the coupler fixed such that B₁ does not move and it is finally obtained as a center of the circle passing through three points. With B₁ fixed, it is this point O₄ which moves on a circle with B₁ as center and B₁O₄ as radius. To locate the inverted positions of O₄, we have done as explained earlier, let me repeat it. We mark A₁, C₁ and O₄. This is the relative positions of A, C and O₄ in the first configuration, so I call this O₄ as O_{4,1} 1. Corresponding to the second configuration, the relative positions we mark A₂, C₂, and O₄. These are the relative configurations of the points A, C and O₄. We are holding the coupler fixed, that means, A₂C₂ does not move rather they remain at A_1C_1 .

If they remain at A_1C_1 as we see this point O_4 comes here, which I call $O_{4,2}$ 1. Similarly, we mark A_3 , C_3 and O_4 . These are the relative positions of A, C and O_4 in the third configuration. Because we are inverting on the first configuration, I take C_3 to C_1 and A_3 to A_1 and wherever O_4 goes that I call $O_{4,3}$ 1. I hope it is clear how to obtain the inverted positions of O_4 and the center of circle passing through these three inverted position of O_4 is at B_1 as determined by these two perpendicular bisectors. We design the linkage O_2 A_1 B_1 O_4 with C_1 as the coupler point, if this linkage when moved C_1 passes through C_1 , C_2 , C_3 .

Again, I emphasize please note this notation $O_{4,2}$ 1, the subscript two refers to the second configuration which is being inverted on this superscript that is the first configuration. Similarly, $O_{4,3}$ 1 corresponds to third configuration and inverted on the first configuration. I would suggest the students can try by inverting say on the second configuration rather than on the first configuration. That means, we locate the point B_2 rather than B_1 , we say that the coupler does not moves from A_2 , B_2 , C_2 and we invert the first position on the second and the third position on the second, when O_4 will be $O_{4,2}$ 2 and the other two positions we will call $O_{4,1}$ 2 and $O_{4,3}$ 2 and the center of the circle passing through these three inverted positions will locate B_2 .

(Refer Slide Time: 46:20)



Let me now summarize, what we have learnt today. Today, we have discussed the graphical method for three position synthesis with reference to motion generation and path generation

problem. We treated the coupler as the moving link and for motion generation it is the position or orientation that is the configuration of the coupler, which were prescribed and has to be satisfied. In the path generation problem, it is a particular point on the coupler which has to take three positions which you are specified and we have to come up with the 4R-linkage. We must have noticed, the most important point of this graphical method is the principle of kinematic inversion.

The students should note, inversion should be done on which link, that means which link should be held fixed and on what configuration, we have a choice. We can choose the inversion to be made on the first, second or third configuration it does not matter. But it is the choice of the link which has to be chosen depending on the problem. For example, in both motion and path generation problem, we have to held the coupler fixed and allow the fixed link to move. In our next lecture, we will discuss function generation problem and we will see that we have to make a different kind of kinematic inversion, to solve that problem.