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In the previous lecture, we had seen how to do a quadratic or P equal to 2 approximations. We 

had defined the global basis functions which was piecewise quadratic in nature with the local 

support and then we went ahead and in an element talked about the quadratic shape function in 

the element. Piecing together the shape functions, patching them up, we got the global basis 

function as we have seen through the drawing in the previous lecture. 
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Obviously, we should ask the question, why do we need to do a quadratic approximation, when 

linear approximation seems to be doing a good job? Let us see this thing through a simple 

example; this is my domain. Next, for exact solution to the problem do something like this (Refer 

Slide Time: 01:25). So for this exact solution, we are going to make, for this domain let us make 

a two element mesh. This is my point X1 X2 X3. If I did a linear approximation using the 

differential equation that we had defined then my solution should be as we have seen, should 

give us the exact solution at the nodes; we should get a figure like this. The question is for the 



same mesh that is fixing X1 X2 and X3

(Refer Slide Time: 03:48) 

 can I improve the solution? What should I do to improve 

the solution? Fixing the mesh. One simple thing I can do is I can take a quadratic approximation. 

If I take a quadratic approximation, what most possibly will happen is this. The nodal value will 

be exact again and then from here the quadratic will be something like this. If this was linear, 

possibly this is going to be my quadratic (Refer Slide Time: 03:20) and this is obvious that the 

solution to the approximate problem will be closer to the exact solution, if I took for the fixed 

mesh, a higher order approximation piecewise. If I went and get a higher than P equals to 2 

approximations so that next thing that we can talk of is the cubic approximation. 

 

Let us do the cubic approximation or we said that the order of approximation is 3 and this is 

defined by the value of P. When I do the cubic approximation, let me take it through a simple 

two element mesh. When it is the cubic in an element that is c square is a cubic, we know that we 

can define the cubic using four independent functions. We need to have, because we have to 

have linear independence and completeness for the basis functions. We need to have in an 

element four such functions. Let us not bother about that now; let us draw. How will I draw? 

This will be point X1; this will be X2, X3, X4, X5, X6 and X7. This is my element I1. This is my 

element I2 and extremities of the element have given by X1, X4 and X4 and X7. For each of the 

element have introduced two interior nodes, for the element 1, we have interior nodes X2 and X3 

for the element 2, we have 2 integer nodes, X5 and X6 such that they are equally spaced in the 



element. If we have the uniform mesh, that is the mesh of the same size everywhere, so the h will 

be equal to L by 2 in this case. What is the size of the element? That is the distance between X1 

and X4 is h and between X4 and X7 is there. So the distance between X1 and X2

For this, let us through a picture define cubic functions, such that at the point 1, X

 will be equally 

spaced, will be h by 3. This distance is going to be h by 3. 

1, it has the 

value 1 and it has X2 X3 X4 and all other points, it has the value 0. Let me just draw this 

function. If I want to draw this function, I can think of a function like this. This will be a phi1. 

Similarly, I can draw the function which has the value 1 at point X2 and 0 at all other points. 

What is the cubic functions which has value 1 at X2, 0 at X1 X2 X4. So the cubic function is, if I 

draw, it will look like this. This is phi2. The function which is 1 at the point X3, 0 at X4, X3, X1 

that function will be phi3 and then finally the function which is 1 at the point X4 and 0 at X1 X2 

X3

First is I am defining the function in the first element, and then I will continue to the second 

element. So this function at least, it should look like, this is going to be part of phi

. 

4. This 

function is also non zero in this element. So it should do the same job of vanishing at point X5 

X6 X7 in the second element. This is how we are going to define phi4. If I have to define phi5, 

phi5 have to vanish at X4 X6 X7. So it is going to be like this. This is phi5. Similarly, phi6 will be 

like this and phi7 like this. So if I had more elements in the mesh, I could have drawn the basis 

functions. These are the global basis functions and as we have been doing till now, let us now 

look at restriction to an element. So what will do from the basis functions? 
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We know that u seven in this case, is equal to sigma i is equal to 1 to 7, ui phii of x. I will not 

carry this upper subscript throughout my presentation from now onwards. I will switch on to uFE 

where uFE

How are you going to do this thing at the element level? In the element level, we have to define 

now, the element level shape function. This is X

 will stand for the particular series that we are talking about. So this is the 

representation of the finite element solution. 

1. This is element k. So this is X1 of element k. 

X2 of element k, X3 of element k and X4 of element k. At the element level, what is going to be 

the N1? This is N1 of element k; this is N2 of element k. Similarly, N3 of element k will be, it 

should be 1 at the point X3. Similarly, I will have the N4 of element k. 
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By now, it should be obvious what the functional representation of these Ni’s is. Given these 4 

points in the element, this Ni
k is equal to product of j going from 1 to 4, j is not equal to i, (x-xjk) 

by (xik-xjk). For example, if I am talking of N1, so in N1, in this product, we are going to ignore 

j is equal to 1. We have (x-x2k) into (x-x3k) into (x-x4k) divided by (x1k-x2k) into (x1k-x3k) into 

(x1k-x4k). This is how we are going to define the generic ith

If we check with the mesh that I had drawn the recipe is very simple that the element level i for 

the element k, so we are talking of element I

 shape function of an element which 

is of degree 3, so given this, now all the shape functions can be defined to the product rule. This 

is the Lagrangian definition as we have pointed out earlier. These are called Lagrangian shape 

function. When I give the definition of the Lagrangian shape function, then we have to remember 

that we have to go from the element level definition to the global level definition. So we have to 

have the local to global numbering, how will it be done? Here, I will have i is equal to 1, 2, 3, 4. 

k is equal to globally which corresponds to 3(k-1) 

plus i, the way we have done the numbering of these points of the node that we have placed. It 

gives up one to one correspondence like this, so the local i corresponds to global 3(k-1) plus i, 

we should check that. 
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Next is what is the element stiffness and load vector contribution to the global system? For that, 

we are going to go back to our representation of the problem. Here, I am going to substitute the 

finite element solution and the ith equation which we remember comes from F phii. So this was 

what we had globally and as we have done earlier, let me go back and point out a few more 

things in terms of terminology. This N1 of the element and N4 of the element are, as we have 

done in the quadratic case, are called the Edge or the Corner Shape function. This N2 and N3, if 

we see, only defined in the interior of the particular element. They are 0 everywhere else while 

N1 and N4 are also  non-zero in the neighboring element, that is why we call edge shape function 

or vertex shape function and N2 and N3 are called internal bubble functions and if we see that 

this N2
 k and N3

 k is actually the total definition of the global basis function. Let us come back 

here. 
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In this expression, we would like to get, this is the expression element level contribution. We 

know that at the element level this will get contribution from phi3 into k-1 plus 1 to phi3 into k-1 plus 

4. When we make the element equation, we will have how many element equations? Because P is 

equal to 3, we have 4 shape functions in the element; we will have four equations at the element 

level. What are these equations? These equations will be Kij of the kth element equal to integral 

over, I will go from x1of k to x4 of k EA dNj of k divided by dx into dNi of k divided by dx into 

dx, I am not putting the distributed spring part. This is only for the bar. If we have the spring, we 

will have to add the additional contribution from the spring. Similarly, the Fi for the element k is 

x1of k to x4 of k f Nik dx. I am not adding the boundary part because that will be added through 

the boundary condition. This is what I want to get at the boundary level. These are going to be 

my element level equations and we see that this one (Refer Slide Time: 19:30) is 4 by 4 system 

matrix and this one is the vector of size 4. We have done sufficient amount of assembly to know 

how to assemble these things. 
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To do the assembly process for the element, we would start of by defining the global stiffness 

matrix, KIJ such that it is given the value 0; this is initialized and similarly, FI is equal to 0. Can 

you tell me what the size of this matrix is? This global stiffness matrix will have a size; it will be 

equal to number of elements into 3 plus 1, cross number of elements into 3 plus 1. So the matrix 

of size 3N plus 1, similarly FI is a vector of dimension 3N plus 1. When we got the kth element, 

we will take KIJ global is equal to KIJ global plus Kij of the kth element. Let me first do the load 

vector part also; FI is equal to FI plus Fi
 of the element k. Here, I is equal to 3(k-1) plus i and J is 

equal to 3(k-1) plus j. We know which global entry, which global row and column should might 

element level row and column entry go to or assemble entry and similarly, for the load vector. So 

this is the assembly process. 
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The question is can I generalize it? Can I generalize to any P order approximation? Nobody tells 

us that the approximation should be of order 1, 2, 3 or 4. What govern whether I use an 

approximation of order 1, 2, 3 or even 100 is? First of all accuracy of the solution that we decide 

and also the economy of the computation, so accuracy and economy, these are some of the 

primary consideration that we have to have. Whatever key order whatever mesh size gives the 

best solution is what we want and as quickly as possible. Can I generalize what I have done 

earlier for the P equal to 3 case, to a generic element of order P. So generic element of order P 

mean it should have P plus 1 independent shape functions. This comes from the completeness in 

the sense that, we would like to represent a polynomial which is degree P exactly, using these 

functions polynomial of degree P will have P plus 1 term. It will have P plus 1 independent term 

because monomial 1x and so on x of P are independent monomial. So when I want to represent it 

using the shape functions, we need at least P plus 1 shape functions and that’s what we are doing. 

So we will have this P plus 1 shape functions to be defined. We would like to define them at the 

element level. So to do that at the element level, the same name, we go from x1
 of k, now we will 

go up to xp plus 1of k. This is the whole element. It is of type h. This element of size h is broken 

into P equal part, by putting these interior points. Interior points which are located at distance h 

by P from the previous point. This way I can construct the intermediate points. We have to 

define this functions which are 1 at one of the points and 0 at all other points. 
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So can we generalize the definition of the ith shape function that we have done earlier for the 

cubic and the quadratic to the piece one, answer is here. We will take the product of j going from 

1 to P plus 1 such that j is not equal to i product of (x-xj of k) by (xi of k -xj of k). This is for i 

equal to 1, 2 up to P plus 1. This definition satisfies all the properties that is at the node xj
 of k, 

this function has a value 1 and all other nodes, it disappears and it is polynomial of order P or 

degree P. This is how we can construct generic peak order shape functions. We have to do the 

global to local or the local to global enumeration. That again is very easy. We have the global 

there and local here. It should be quite obvious that this is going to be P(k-1) plus i global is 

equal to the local i, this for the element k. This is all that we have as far as to the global to local 

enumeration is concerned. Provided we put the point in the way I had shown for P equal to 3 

case. 
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After this, once we have done this, the next job is to do the element calculation. So at the element 

level, element stiffness matrix will be of size P plus 1 by P plus 1 and the element load vector is 

of size P plus 1.Then I can talk of the ijth entry of the element stiffness matrix. This will be equal 

to integral from x1
 of k to xp+1 of k. This one should be very careful about the limit of the 

integration EA dNj of k divided by dx dNi of k divided by dx into dx. Similarly, Fi of k is equal 

to integral x1 of k to xp+1 of k, f dNi

We have actually given the algorithm or a process or procedure by which we can now construct 

the element stiffness matrix and load vector for an element of any order P. We are going beyond 

P is equal to 1, P is equal to 2, P is equal to 3, it could have any P and after that obviously, the 

assembly procedure and so on will follow. 

 of k into dx. 
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Assembly from the element will be true, where we know that I is equal to P(k-1) plus i and by j 

is equal to P(k-1) plus j. This is how the whole assembly will be done. After we have done 

assembly, then we will have to apply the boundary conditions. How do we apply the boundary 

conditions? The approximation of the order P, remember that we have talking of P define 

everywhere, everywhere we have plain P in all element. 
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So boundary conditions, remember how did we apply the boundary conditions for the linear 

approximation? That is P is equal to 1, we started of while starting the Dirichlet boundary 

condition. For our problem we know that u is that at x is equal to 0 is equal to u finite element, 

because they have to be the same, is equal to 0, so its equal to value 0, which means this needs 

that the coefficient u1 has to be equal to 0. How did we go about enforcing it? The first we did 

was, we set that in the global stiffness matrix K for the first row corresponds to u1. We are going 

to set all the entries equal to 0, for j is equal to 2, 3 up to NP plus 1, we should note that here we 

have written that total number of unknown in the problem as, N is the number of element, P is 

the order of approximation plus 1. One should check that this is what we get, total number of 

unknown for the degrees of freedom, as they are called for the problem or NP plus 1. So this we 

are going to do then we said that K11 is set equal to 1. Similarly, F1
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 is equal to 0. After that zero 

or equal to the value of the applied displacement at the end x is equal to 0. 

 

For our problem, it is zero then we had gone and then the next part that is if I had a non zero 

value of u1 then I would have to correct the load vector as we have done in the case of the linear 

approximation, but here it is not 2, u1is equal to 0. I am going to now set KJ1 is equal to 0 for J is 

equal to 2, 3 up to (NP plus 1). This takes care of the Dirichlet boundary condition. The diagonal 

entry of the first row is set to 1; the load vector entry of the first row is set to 0. All other column 

entry in the first row is set to 0 and all the first column entry below the first row are also set to 



zero. That is why, we are KJ1 is equal to K1J is equal to 0. This is all as far as the Dirichlet 

boundary condition is concerned then we have the Neumann boundary condition. In the 

Neumann case, if we remember the weak form, we had B(u, v) is equal to F(v) which is actually 

equal to integral x is equal 0 to L, fv dx plus P into v evaluated at L. Which of our global basis 

functions are going to be non zero at the point x equal to L? The answer is simple which is going 

to be the NP plus 1 global basis function. It has the value 1 at the point x is equal to L and all 

other basis functions are going to disappear at the point x is equal to L. In the case of the 

Neumann boundary conditions, we simply go to the last entry. Last load vector entry that we 

have which is F(NP+1), this is set equal to F(NP+1) plus to this I am going to add P. So Neumann 

boundary conditions are applied. We have the system of equation which is of size NP+1 by 

NP+1, we can go use any standard solver which can solve global problem, K U is equal to F. 

Solve it, find the values of this coefficient ui

(Refer Slide Time: 36:50) 

. 

 

Once we have done it, let us look at some features of these solutions of the finite element 

solutions. What are the features? One should note that all these ui’s, the coefficient ui in the 

series representation of uFE, in this case, corresponds to the finite element solutions evaluated at 

the point xi. These are the properties of the interpolation functions that we are used or the basis 

functions that we have used at the Lagrangian functions. One can always construct other families 

of the shape functions and basis functions for which this is not going to be true. In this case only, 



the particular case, the coefficients turn out to be the finite element solutions at the nodes or at 

these points. We can directly look at the value of the coefficients. I will say that the solution at 

the points, the point xi is equal to this coefficient. So that is the nice things to have. The question 

is which is equal to the finite element solution at the point, how good is it as compared to the 

exact solutions? As compared to the exact solution, let me make the mesh, simple one and not 

going to add the intermediate points, xp+1, x2p+1, x3p+1. It terms out, this will have 

correspondingly to u1, up+1 u2p+1 u3p+1. It is very interesting property of the solution which we 

will see, when we do the programming. One can easily program, what I have such a long and see 

that these things are indeed to whatever I am going to say. These u1

(Refer Slide Time: 40:16) 

, these values for the case EA 

equal to constant and k is equal to 0, in this case, that is the problem where there are no action 

spring attached to the member and the member has uniform cross section and the same material 

everywhere. In that case, there is very curious thing that happens. It turns out that these values 

are actually equal to the exact solution at these points. 

 

So I would say, at the point ip plus 1 exact solution is equal to u finite element at this point ip 

plus 1 which is equal to uip+1 for i equal to 0, 1, 2, … N. This is the very curious property which 

only the solution to the problem described about like this. The question is remember that other 

points at all the interior points, the point lie in the interior of the element, this is not true. Let us 

look at the other cases. In case EA of x is not equal to constant and k(x) and or k(x) is not equal 



to zero that is either of this is true or both are true. In that case, this is not going to be true. That 

is u is that at the point ip plus 1 is not equal to uip+1
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. Remember that in the case of the bar with a 

variable cross section or the variable material or a bar with all of these and or the action string, 

this is not going to be true. However is everything loss? No, it is not going to be true, but this 

will be very close to the exact solution. This is the feature of the finite element solution that is 

again we need to the one dimensional problem that we are talking about. We will not able to 

generalize it to the 2 and 3 dimension but anyway nevertheless, this is the very nice property of 

the solution. Then the question is what about derivatives. 

 

Finally, what we are interested in are the derivatives? The answer is the following that let us do 

the simple problem. Let us see the case where the bar is subjected to the end load P is equal to 10 

are uniformly distributed load f(x) is equal to 1, material is EA is equal to 1, k is equal to 0. We 

take this bar and in this case, for this bar, if we know that the differential equation will be end up 

getting u(x) is going to be –(x square by 2) plus 11x. We can check that u at 0 is equal to 0. Here 

we are taking bar of length 1. So the length is equal to 1. In that case, u(x) is –(x square by 2) 

plus 11x such that vanishes at 0 and has derivative of value 10 at the other end and x equal to 1. 

So du divided by dx for this problem is equal to –x plus 11. 
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Let us try to solve the problem using the 3 element mesh, 3 element mesh with linear 

approximation. This is x1 is equal to 0, x2 is equal to 1 by 3, x3 is equal to 2 by 3 and x4 is equal 

to 1 and the P for this approximation is 1, that the approximation is piece wise linear. So the 

derivative of the finite element solution in each element is going to be a constant. If I plot here 

on this scale, the derivative of the solution then we will call this number and starting here from 

10 and I am going up to 11. The exact solution is going to be a straight line which goes some 

value of the 11 at the point x is equal to 0 through a value of 10 at the point x is equal to 1. Let 

me extend this further. Let me now take the mid point. So this function, the derivative of exact 

solution which is du divided by dx at this point, we have the value of 11-x. So it is 10 and 2 by 

3rd, at this point we have the value of 10 and 1 by 3rd, here the value of 10 and 5 by 6th. Here it 

will have the value of 10 and 1 by 2 and here it will have the value of 10 and 1 by 6th and what is 

the duFE is that if I plot the derivative of the finite element solution is going to be like this. So 

this is duFE

What can be P out of this? This is the picture of the two things but we can extract some more 

information also out of it. The derivative of the finite element solution for this particular 

approximation is exactly equal to the derivative of the exact solution. This is the point 1 by 6

 divided by dx. 

th. 

This is the point ½. This is the point 5 by 6th. So exactly equal to the derivative of the exact 

solution at the mid point of the element. This was the element 1, this is element 2 and this is 



element 3. This is the very important property that we have for the derivative of the finite 

element solution that is for the linear approximation, for this kind of loading that we have taken 

it is exactly equal to the derivative of the exact solution at the mid point of each element. This 

property is given a name. It is called super convergence. Even though we show it with very 

specific example, for linear approximation, we can show is that then we have any other loading 

in all those cases, the mid points turns out to be a point of very good derivative information. That 

is the derivative of the finite element solution at the mid point of the element is very close to the 

exact solution, at in fact closer to the exact solution then the derivative evaluated at any other 

point in the element. That is why it is called the point of super conversion. Remember that in this 

case, the mid point now for P equal to 2, 3, 4, 5, 6 for all these keys, we will have such points 

existing. This will be called point of super convergence and j will be specific to the interior of 

the element. These become the existence of such point for super convergence becomes very 

important then we want to force process the derivative information. 

The question is why do we want to force process? Because, if we look at this here the finite 

element solution is doing the terrible job at the internal element into (51:30). Here, I know that 

derivative should be the same that is stress, because the material is the same should be same from 

the both direction, but finite element solution is doing something completely different is see the 

jump. The question becomes how we can use available information to construct at derivative 

information. This does the much better job than what we have obtained directly. That part goes 

into something called post-processing that is, we take what we have computed and out of it, we 

get supposedly better information as far as the quantities of interest or concerned and what will 

be ideal case here is? We would like to have the post processor in such a way that follows this 

statement. Question is in this problem, can we do it? Answer is yes. We will see later on. Not in 

this lecture. Let us now look at one more property of the finite element solution in this lecture. 

This comes from what we have defined as the bilinear form. So this is our weak formulation in 

terms of the bilinear and the linear form for the inverse solution. 
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We know that the finite element solution also satisfies this, but for a particular type of v, such 

that this is true for v, for all v(s) which are given as summation of vi phii. For such v’s, this is 

also going to be true. For the exact solution, it is true for all admissible v(s). So if it is true for all 

admissible v(s) for the exact solution, it is going to be true for these v(s) also. If I take this set of 

v(s) and put it here and take this difference then I will get B(u - uFE, v) is equal to 0 for all v 

equal to summation of vi phii. This property is called Orthogonality of Error. Till now we have 

not introduced this term? This error is given by the function e(x) which is equal to u(x) -uFE(x), 

the terms that for all the v’s u(x) -uFE(x), if we take bilinear form of x which is equal to 0. How 

does this property really help us? We see that out of this we are end of getting of very curious 

thing. 
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For our problem, can we choose v equal to uFE as the special case for our problem, the answer is 

yes, because the uFE is also 0 at the point where we have given the Dirichlet boundary condition 

and everything else is satisfied. If uFE was not 0, at the point where the Dirichlet boundary 

conditions are applied then this is not going to be true but for our problem this is going to be 

true. If this is true, then I can also say from what we have done earlier which means that the B(u, 

uFE) is equal to B(uFE, uFE). What is this quantity? If I go to the definition of the bilinear form, 

this is equal to EA duFE divided by dx whole square dx. This also remind us of physical quantity, 

at the physical quantity remain with us is the strain energy of the finite element solutions. So this 

strain energy as we can see is equal to 1 by 2 of B (uFE, uFE

We will continue from here in the next lecture and using this definition of the strain energy of the 

finite element solution and similarly, the strain energy of the exact solution. Strain energy of the 

exact solution will be 1 by 2 of the u, u. We will talk about how does the finite element solution 

approximate the exact solution with respect to the strain energy. Thank you. 

). 


