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Module – 2 Lecture – 4 

In the previous lecture, we had looked at the finite element method and we had done a simple 

implementation of that method using the hat-shaped functions or the linear functions to a 

problem of a bar. 

(Refer Slide Time: 00:33) 

 

If I can draw that problem again, this is the bar with an end load P and subjected to a uniformly 

distributed load f0. So, in that case, we had built up the element equations. We introduced the 

idea of element calculations and then we had discussed how to take these element equations and 

put them in the global matrices; that is, the global stiffness matrix K and the global load vector F. 

The element calculations which we had written as K of l, element l and the matrix, and the load 

vector from the element F due to the element l - how these equations will be put in these global 

equations in terms of K and F? We had said that this will finally after assembly lead to an 

equation of this form: K U equal to F. What we had done in the last class was we had developed 



this matrix K, we had developed this vector F, but we had not taken into account the effect of the 

boundary conditions. How do we account for the boundary conditions? We had taken care of this 

end force P here by saying that if we consider the domain is broken into 6 elements as we had 

done into 5 elements with nodes x1, x2, x3, x4, x5, x6. x6 is equal to L and x1

(Refer Slide Time: 02:53) 

 is equal to 0. 

 

We had said that in the entry F6, we updated it equal to F6 plus P. That is in the final entry of the 

vector F, we added the value of this end load P which is applied and why we did it was discussed 

in the last class. So this part was taken care of. We had left at was a little bit more complicated 

part of an application of boundary conditions, which is how do we impose the Dirichlet or the 

essential boundary conditions? This is where we had trailed off in the last lecture. What do we 

have for our problem? We know that for our problem, u six is the approximation that we have 

made. This is equal to sum of i equal to 1 to 6 ui phii x and we know that u six at 0 for this 

problem has to be equal to 0. At x equal to 0 which is the node x1 only phi1 is equal to 1. All 

other phi(s) are 0. So this is equal to u1 (Refer Slide Time: 04:18). This condition has to be 

explicitly imposed in the solution. How do we explicitly impose it? Let us go to the system 

equations that we have. If you remember, what was our global stiffness matrix? Let us start with 

the system equations that we had written. 
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What did we have earlier? I will write it in a little bit general way. First equation was plus EA by 

h1, minus EA by h1 and 0, 0, 0, 0. Second one was minus EA by h1, here I will get, because of 

the assembly, EA by h1 plus EA by h2. Third one will be minus EA by h2, 0, 0, 0. This way, I 

will continue till the sixth equation which is 0, 0, 0, 0 minus EA by h5 and here I will have plus 

EA by h5

Here we see that nowhere have we really taken care of the value of u

. This is the global matrix K. This into the u was equal to the F.  

1; that is, we have not 

imposed the fact that the value of u1 has to be equal to specified value. Let us now be a little bit 

further general. We will say that u at 0 is given the value u0 bar. From what we have done 

earlier, this will be equal to u1. How do we impose this in our solution? The idea is very simple. 

We will take the first equation and what I will do is I will replace this with 1 (Refer Slide Time: 

07:15 min). The first entry, that is the diagonal entry, corresponding to the first row, that I am 

going to make as 1. The second entry I am going set it 0; that is, all other entries in this row, the 

first row corresponds to u1. The diagonal entry of the first row, I am going to make it 1. All other 

entries, I am going to make it equal to 0. At the same time, what am I going to do to the F1? I am 

going to put F1 is equal to u0 bar. Just look at the first equation. 
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In the first equation, what do we end up getting? The first equation becomes 1 into u1 is equal to 

u0 bar. So this by modifying the first row of the stiffness matrix, I have enforced the fact that u1 

has to come out to be equal to u0
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 bar. The question is that when we enforce this, the other 

equation has to change also. 

 



If I go back to the previous equation, in the second equation, this is the part (Refer Slide Time: 

08:39) corresponding to u1. This is the entry in the second equation corresponding to u1. We 

know that u1 is equal to u0 bar. How do we remove this from this side and put it into the known 

part? Because u1 is equal to u0 bar which is known. The idea is very simple. What do we do 

next? For all other equations, we will put, that is for i equal to 2 and more, we will put Fi is equal 

to original Fi minus K; which entry are we looking for? The entry corresponding to u1 in that 

particular equation. So the row will be I, column will be 1 into u0 bar. So this is how we are 

going to modify our load vectors. You see what happens in our case is that for all other entries 

below, for the second equation, this has to be taken care of because this entry is not equal to 0, 

but from the third to the sixth equations, u1
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 does not figure in the equations. So trivially, nothing 

has to be done, because, it is 0 which is being added or subtracted from the right hand side. 

 

With that in mind, what do we have in the second equation? Modified F2 will be equal to, by this 

token, what we had earlier as F2 minus of, we had Ki1 that is the first column of the second row; 

it will be minus of EA by h1 into u0 bar. This will become the modified right hand side for the 

second equation. Let us rewrite it; what did we have as our F2? F2 was f0 by 2 into h1 plus h2; so 

to that, I am going to add EA u0 bar divided by h1. This becomes the so-called corrected or the 

modified right hand side for our problem. Once we had transferred this information to the right 

hand side, then we are going to set Ki1 is equal to 0. That is we are going to blank out all the 



entries in the first column, for all the rows. This is for i equal to 2 to, for our problem, 6. 

Certainly, we are not going to do this to the first row because then it makes no sense. From the 

first row, we want u1 is equal to u0 bar and from the second row onwards, we want to take care 

of the known values of u0
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 by suitably modifying our load vector. 

 

If I now use this and write the system, I will end up getting this system; I will call it Kmodified into 

displacement vector U is equal to the Fmodified. Once I have these two things, then I can solve for 

U. How do I solve for U? I can solve for U by taking the inverse of K. U will be equal to KM 

inverse into FM. Here, we are not going to talk too much about what kind of solvers. What I 

would request the student should do is to go use some commercially available code. For 

example, we can use Matlab or Mathematica to solve this problem. That is we can feed to these 

programs, the matrix K, the vector F and ask it to return back to the vector u. Once you know the 

components of u, then you know your solutions u six because this will be equal to sigma ui phii

Now the question arises - why did we not ignore the first equation right away? Because, the first 

equation was meaningless from our point of view as we completely changed it. That is the first 

row because u

 

x. This is how we will construct the finite element solution to a problem. 

1 was known to us. We have to remember that when we are developing a method, 



it has to be a general-purpose approach. This was a particular example we took for which we had 

said u1

For example, for our problem u

 is a known value. 

1 was actually equal to 0. So really these corrections that we did 

as far as the load vector entries are concerned, were also trivially equal to 0, the corrections 

terms, but we anyway did it to show that in case u1
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 is the non zero number corresponding to a 

boundary value problem of interest; that is, I fix one end to a given deflection; that is also 

possible. In that case, what is it that we have to do? We see that the general-purpose approach 

gave us the right way of doing things out of which the special cases will also come out as 

solutions. So remember that whenever we are developing anything, we have to have the 

generality of the approach in mind. So with that in mind, we have done all these things. 

 

Another reason why we should assemble the first equation also is seen from the next example. 

Let us take a simple problem which is like this (Refer Slide Time: 16:02). This is again a simple 

modification of our earlier problem. This is a bar with distributed load f0 and end load of size P 

at the point x is equal to L. At the point x is equal to 0, I apply a load Q. This is the static 

problem. We know that for a static problem, static equilibrium for the whole component has to 

be satisfied. Out of that, we know that P and Q cannot be arbitrary. That is, if I give f0 and P, I 

know what Q should be for the system to be in static equilibrium. So looking at that what is our 



Q? Q is equal to P plus f0L, because in this case, f0

For this problem, what do we do? Remember that for this problem, we have already formed the 

stiffness matrix for the mesh of 5 elements. Let us keep that mesh of 5 elements, such that again 

here the mesh size h

 is constant intensity distributed load. This we 

will call as the so-called consistency condition. That is, the load has to be consistent to give static 

equilibrium.  

l

(Refer Slide Time: 18:18) 

 is equal to h which is L by 5. For this 5-element mesh, we already know the 

stiffness matrix; that is the unmodified stiffness matrix; so, that, we will inherit from what we 

done earlier. 

 

The K stays as what we had obtained for the previous problem before we applied the boundary 

conditions. This will be equal to, if I remember it correctly, it is EA by h into 1, -1, 0, 0, 0, 0; -1, 

2, -1, 0, 0, 0; 0, -1, 2, -1, 0, 0; 0, 0, -1, 2, -1; 0; 0, 0, 0,-1, 2, -1 and finally we get 0, 0, 0, 0, -1, 2. 

This is the matrix K. What is F? F as we had said the unmodified F, that is before applying the 

boundary condition, so I will write the transpose of F, so that things are easily written. So 1, 2, 3, 

4. Now comes the next part - that is we have to take care of, if we remember how we went about 

this thing - after we got the unmodified stiffness matrix and the load vector, then, we took care of 

the Neumann boundary condition first. 



In this problem, both ends have Neumann boundary conditions. So if I look at the weak form - 

you should remember the weak form also - it is integral of 0 to L EA u prime v prime dx is equal 

to integral 0 to L f0

(Refer Slide Time: 21:16) 

v dx plus EA du divided by dx into v evaluated at L minus EA du divided by 

dx into v evaluated at 0. The question is what is EA du divided by dx at the two ends? At the two 

ends, at x is equal to L, EA du divided by dx is P. At the end, x is equal to 0, this is equal to Q. 

 

Let us go and look at it in greater detail. From 0 to L, we have EA u prime v prime dx. This is 

equal to 0 to L f0v dx plus P into v evaluated at L minus Q into v evaluated at 0. I would like to 

ask this question - which of the v, because we have chosen v to be functions phii, which of v’s 

will be 1 at point x is equal to 0 and 0 at the point x is equal to L? I would like to know which v 

will be non-zero here. By now, we should know that this will be equal to phi1 evaluated at the 

point 0 which is equal to 1 (Refer Slide Time: 23:10 min). v at L, which of the phi(s) is non-zero 

at the point x is equal to L? This is phi6 at L this is equal to 1. From this, what do we see? If I 

look at the equations, put v equal to phii then this P has to contribute to the load vector term 

corresponding to phi6 and Q has to contribute to the load vector corresponding to phi1. So what 

do we do? Here we apply the Neumann conditions. The known F1 that we have computed using 

this part to that we are going to add or subtract because Q is given like that. This will be now the 

modified F1 (Refer Slide Time: 23:17 min). Just like what we did earlier, F6 will be equal to the 

computed assembled F6 plus P. 



Application of the Neumann boundary conditions for this one-dimensional problem is very easy. 

If we go to the corresponding rows, just add a number, because Q is a number, P is a number. 

Once we have this, what do we know about v, for this problem? In this problem, v is 

unconstrained. What does that mean? Let us see what this will relate to. 

(Refer Slide Time: 24:13) 

 

Remember that there is no geometric constraint to be imposed. So we will take the original K 

that we got out of assembly, keep it and your load vector will be modified - one which we 

obtained by previous step. The question is if I want to solve this problem, can I solve? That is I 

have to find K inverse. Before we find that, we have to know whether K inverse exists or not. 

Remember that v is an unconstrained test function. If it is an unconstrained test function, then I 

can very well use v(x) equal to 1, that is valid. Why is it valid? Because, it satisfies all the 

conditions or the constraints that we have put on v - that is the derivative of v exists, the energy 

due to v is finite, it is 0 actually. So we can use this. v(x) is equal to 1 everywhere. If we put it 

back in our weak form, what do we get? Integral 0 to L EA u prime v prime dx becomes equal to 

0. This on the right hand side will be equal to integral of f0v, so it will be f0L plus P minus Q. So 

what do we see? We see that we had earlier stated the consistency requirement for static 

equilibrium and that has come out of this also. This is what we want our loads to do. Loads have 

to satisfy these constraints, in order to find the solution to the problem. That is for K inverse, we 



will see whether it is invertible or not, but at least here the issue is whether the solution can be 

found or not. 
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The next question is, what can we say about K? If we see one very curious thing that if I take the 

unmodified K and I choose U to be equal to the vector 1, 1, 1, 1, 1, 1 transpose, then what is K 

U? I will call it U choice. K Uc will be equal to 0. It will be equal to the 0 vector, and then what 

can we say about the Uc? Uc is essentially the vector which lies in the null space of K. That is for 

certain there is 1 non-trivial vector, we see for which K Uc is equal to 0 which means that 

certainly K has a rank deficiency of 1. The question is - are there any other vectors which are not 

the same as Uc and which are nontrivial, for which K U is equal to 0? The answer is no. There 

are no other vectors which are different from Uc; that is we can multiply with the constant that 

does not change the vector as such. So except Uc, there is no other vector for which K Uc is 

equal to 0. So K has a rank deficiency of 1. This is fine from mathematics. 
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From physics what does this mean? It means that for rigid translations, which means that if u(x) 

is equal to some constant that is the whole bar is moving as an entity, in that case, the stress and 

the strain at any point in the bar are 0; because, it is a rigid body motion, there is no relative 

deformation of one point on the bar with respect to the other point on the bar. If there is no 

relative deformation, there is no strain. If there is no strain, there is no stress. The rigid 

translations correspond to 0 strain energy for the system, which is what we got. So the 0 strain 

energy modes are the rigid modes and for this bar, this is the only mode which is there and this 

shows in the rank deficiency of our system. There is no other rigid motion which is permitted for 

this kind of a bar. So the rank deficiency of the stiffness matrix that we got is 1.  

The rank deficiency is 1 and we saw that our system equations are consistent. So solution will 

exist, but the question is - here we will have infinite solutions, because, so many solutions are 

available, what do we mean by that? Infinite solutions which will be of the form u(x) is equal to 

u deformation of x plus urigid

Really what we are interested out of this problem is in knowing the state of stress and strain. 

Stresses and strains will require derivatives. If I look at this du divided by dx, it will be equal to 

 of x, that is plus C. That is the second part corresponds to the rigid 

translation and it could be anything - a constant C; and this part (Refer Slide Time: 30:45) is the 

one which leads to non-zero stresses and strains in the bar. 



dud divided by dx plus 0. That is the rigid part does not contribute to the derivative. If the rigid 

part does not contribute to the derivative, that is, its presence does not change the strain 

information, then, I can fix this C to be anything and get the same derivative or the strain. So we 

will put C equal to 0, we can put it. C is equal to 0 means that urigid is 0. If urigid
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 is 0, we can say 

that how do we enforce this in our problem? 

 

We can say fine, I am going to say that u(x) at point 0 is equal to 0. I can enforce this also to fix 

the rigid motion which is equal to u1. Once I do this, then I will follow the same route as we 

followed in applying the Dirichlet condition to get a solution to the problem. We are fixing u(x) 

at the point 0 equal to 0. It is not the same as putting C is equal to 0, such that we get a solution 

to the problem and how do we impose this in our code? It is by modifying the equation 

corresponding to u1. That is, K11 we are going to make it equal to 1; K1i for all i is greater than 1, 

we are going to make equal to 0 and similarly, K1i

We see that there was a very important issue that we have tackled here – that is a solution to the 

problem may not exist. If I apply the loads wrongly or if I apply the boundary conditions 

wrongly, I will get garbage solution.  

 is equal to 0 for all i(s). Under this condition, 

we are going to get a solution to the problem. 



Let us look at another problem which has a little different boundary condition. 
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Let us go to the next problem. Since we are playing with problems, let us do this one. Here is the 

bar. Again, let us keep it to f0, but here what I do is at this end I fix a spring, with spring constant 

K and I give an initial compression to the spring delta0. This is the point x is equal to 0. This is 

the point x is equal to L (Refer Slide Time: 34:25). If I give this initial compression delta0 then 

due to the action of this force, this bar is going to elongate, that is the end x is equal to L will 

move by an amount u at L due to the action of the forces. So u of L is unknown. For this u of L 

that you get at this end, what is the total force that the spring is applying on the bar? The spring 

applies compressive force of size k into delta0 plus u at L, because, the total compression of the 

spring now becomes delta0

In our formulations that we have done, let us write the weak form for this problem. You should 

always write the weak form to the particular problem that you are trying to solve to understand 

what is going on. Weak form will be integral x is equal to 0 to L, f

 plus the displacement of the end L which is u at L. 

0v dx plus P, that is the 

applied external force at the end x is equal to L into the v at the end x is equal to L. What is this 

force equal to for us? It is actually, if we remember, P was tensile earlier, now it is compressive; 

so it is minus P. This plus becomes actually a minus. I will write minus k delta0 plus u at L 

multiplied by v at L. This is the weak form we get. We see that something very curious about 



this weak form. This unknown u at L, we had said that in the weak form, we are going to collect 

unknowns on the left hand side and knowns on the right hand side, but in the right hand side, 

even an unknown u at L is sitting. So what do we do? We shift it to the left hand side. 
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When we shift it to left hand side, weak forms becomes x is 0 to L, EA u prime v prime dx plus k 

into u at L into v at L is equal to integral 0 to L f0 v dx minus k delta0 into v at L. With this what 

happens? Let us go to our finite element formulation; let us again take the 5-element mesh that 

we had drawn. For the 5-element mesh, tell me what is it that we have to do to respect to the 

applications of these conditions? First thing that we do is we ignore these two terms (Refer Slide 

Time: 38:10). We do the standard element calculations to find the element matrices KL and FL; 

assemble them into the global matrix K and the global vector F. This condition k uL vL will be 

something that we have applied to the stiffness side. Tell me in the stiffness, for which P, that is 

for which row this part is going to cause the change? v at L, which v is non-zero at L? This is 

true for only phi6; so v at L is equal to phi6

We will have to modify the stiffness term. This is the row which is fixed. The columns come out 

of u at L that we have. u at L, if you remember, what is the representation for the u? It is sigma u

 that is for the sixth equation. 

i 

phii. So which of the phii is non-zero at x is equal to L? It is again phi6. This will be essentially u 

at L will be equal to u6 phi6 at L. What does this lead to? The whole expression, if I want to 



write it somewhere, this will become ku6. This tells me very clearly, which column this has to go 

in. This means, this entry goes in to the sixth column. In the stiffness matrix, that we have 

obtained out of our assembly we go and add k, because, u6 stays in the displacement vector. I 

will add k in the sixth column of the sixth equation. So that is the first thing we have to do. 

Second thing, let us see as far as the load, now this term looks very much what we have handled 

as far as the load is concerned. So this is very easy, because, v at L is only non-zero for phi6. 

This minus k delta0

(Refer Slide Time: 41:14) 

 goes to the sixth load vector. Let us do that. 

 

What else do we have to apply? We put K66 is equal to K66 plus small k. F6 is equal to F6 minus 

k delta0. So these give us our modified stiffness matrix K and the modified load vector F, but our 

job is not yet done, because we have to also put that u1 is equal to 0. For that we will again make 

K11 is equal to 1, F1 is equal to 0, K1i is equal to Ki1 is equal to 0, for i is equal to 2, 3 up to 6. 

Once we do this, apply these conditions, then I will get Kmodified which is what we have to solve 

(Refer Slide Time: 42:28 min). We see that here, because of the spring at the end x is equal to L, 

even the stiffness matrix needed a modification. This kind of boundary condition which is in 

terms of a spring applied at one of the ends is called a Mixed B C or a Robin Boundary condition 

which is that the end load, that is EA du divided by dx, at the point x bar is given in terms of 

some constant plus beta times U at x bar. 
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That is, the boundary condition is given in terms of some known and a component which is 

unknown, because U here is unknown; it is mixed in the sense that it has both known and 

unknowns, sitting in the boundary conditions. Because unknown U is sitting there, this has to be 

taken to the left hand side and it leads to a change in our stiffness matrix. These were some of the 

problems that we can handle, but remember that our basic assembled K and F that we obtained 

out of assembly, they remained unchanged, till we came to the next part, where we first applied 

the force boundary conditions whichever end it is given and then we applied the displacement 

boundary conditions whichever end it is given displacement or the even mixed one. This is the 

procedure here we are going to follow in any finite element computation. You see the beauty of 

it is that out of our element calculations, the stiffness matrix and the load vector came out 

automatically. 

The question is if I want to change the number of elements in the mesh, no problem. If I want to 

change from 6 to let us say some number, let us say the total number of elements is NEL. These 

could be non-uniform. So non-uniform means that the mesh size is not the same for each 

element. Then it does it pose any problem? From what we have done, the stiffness matrix for any 

number of elements, let us say NEL is equal to 100, can be easily formed using these stencil that 

we have given and what is the stencil? 
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It is that the equation will have out of the element contributions due to N1 of the element l and 

N2 of the element l. So the equations for the element remain unchanged, irrespective of whether 

we are using 100 elements or 5 elements. Only thing that changes is that h that is the mesh size, 

what we have done and the material parameters that you may wish to change. So the element 

matrix representation remains same. Then it is the matter of assembly which we can do. Using 

this approach that we have outlined for this problem, very easily we can form the stiffness matrix 

and the load vector for a mesh of any number of elements or with any number of elements with 

either uniform meshing or non-uniform meshing. Once we do that, we can form the global 

matrixes K U and F solve; after we assemble, then we apply the force boundary conditions; after 

that modify the matrices to take care of the displacement boundary conditions and solve the 

problem. The thing is that bigger the size of the system, certainly, it cannot be solved by hand. 

So we have to go to a computer to invert the matrix K, but in principle, we can easily form this 

matrix K and solve it. Then obviously, we have to remember that u here will be equal to, let us 

say, number of elements plus 1 is equal to sigma i is equal to 1 to (NELplus 1) ui phii

What I would like is as an exercise, you can take f

 x. So this u 

finite element can be easily obtained (Refer Slide Time: 47:50 min).  

0 is equal to 10, P is equal to 20, EA is equal 

to 1 and solve this problem using 2, 4, 8 or 16 elements and so on; elements of uniform mesh 

size. 
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That is, in this case, uniform mesh size means h will be equal to L by NEL. Let us take L is equal 

to 1. One can easily attempt the solution and see that out of this, that if this is x (Refer Slide 

Time: 48:48), this is u, let us say, this is uexcat then this will be the 2 element solution, then this 

will be the 4 term solution, then the 8 term solution. I will make it with blue again, we can see 

that. Essentially, what will happen is the solution will keep on coming closer and closer to the 

exact solution. You see that as the number elements are increased, our approximation does very 

well. This is true for any of the boundary conditions you take. The question is that do we always 

have this type of differential equation to handle? The answer is no. 
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Let us make this differential equation a little bit more complicated. Still we have a straight bar 

with an end load P, but here we will have a distributed spring support. So it is an actual support 

which leads to a distributed spring constant k(x). As if the bar is resting on an rubber padding 

and this rubber padding is applying an uniform resistance with the force proportional to the 

displacement and the proportionality constant is k(x), because it is changing with the position.  

In this case, I will simply write the differential equation again. It will be d divided by dx plus 

k(x) into u(x) equal to f(x). This is the differential equation. The boundary conditions, we have 

already stated them. The weak form for this problem will be integral x is equal to 0 to L, EA 

again by doing integration by parts, u prime v prime dx plus integral x is equal to 0 to L k(x) into 

u(x) into v(x) dx. This is equal to integral fv x is equal to 0 to L dx plus P into v at L. This is 

going to be the weak form of the problem at hand. I say that let us do the finite element 

approximation corresponding to this problem. 
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Let us go back to our 5-element mesh. For this mesh, what is going to change as far as the 

element calculation is concerned? If I take the generic element out, element l, x1 of l, x2
 of l, this 

is N1
 of l, N2

 of l. What is going to change? What we are going to change is that, look at the 

element level, so x1 of l through x2
 of l, you are going to evaluate this term plus now we are 

going to evaluate this contribution also. The load vector side remains the same. So this part 

(Refer Slide Time: 53:14) now is an addition. So what do we do? We replace this wherever u is 

there we will do u is equal to phii or phii plus 1. Similarly, v is equal to phii or phii plus 1. So what 

will happen is that to our standard element stiffness matrix that we had calculated earlier, we 

have to add this part corresponding to v equal to phii or phii plus 1. Similarly, u is equal to phii or 

phii plus 1. 
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So all we are going to do is change so the K element will be equal to, what do we have if we do 

this integration? Earlier, we had EA by hl, minus EA by hl, minus EA by hl, EA by hl and we 

had said this corresponds to phii (Refer Slide Time: 54:22 min), this corresponds to phii plus 1. 

Similarly, this row corresponds to phii, this row corresponds to phii plus 1 (Refer Slide Time: 

54:35 min). To this, we are going to add plus, what are we going to add? Let us take k(x) is equal 

to some fixed value k0. We are going to add k0, if I integrate out, into integral x1 of l to x2 of l, 

N1 of l into N1 of l dx k0 integral x1 of l to x2
 of l, N1

 of l N2
 of l dx and this will repeat here. 

Here we will add k0 into integral x1 of l to x2
 of l, N1

 of l N2
 of l dx and this will repeat here k0 

into integral x1 of l to x2
 of l, N1

 of l N2
 of l dx. This additional part, if we work it out, will be 

equal to k0. 
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I have k to be constant, but it need not be. So the additional part becomes k0 into hl by 3, hl by 6, 

hl by 6 and hl by 3. This has to be added to the element stiffness matrix that we got out of the 

first part and that will give the total element stiffness matrix K of l which will now become equal 

to plus EA by hl plus k0hl by 3, minus EA by hl plus k0hl by 6, minus EA by hl plus k0hl by 6, 

EA by hl plus k0hl

With this, let us now close our exercise that we did with respect to a very simple finite element 

formulation using hat functions. We saw how we construct the element calculations, how we 

apply the rules of assembly to form the global stiffness matrix and the global load vectors, how 

we apply the Dirichlet boundary conditions and first the Neumann boundary conditions, then the 

Dirichlet boundary conditions. Whether we have to check for consistency or not, that has to be 

problem dependent and we further extended the problem to include various types of boundary 

conditions and also finally, the case where there is a distributed spring attached to the member. 

 by 3. This is all the modification that has to be done to the stiffness matrix. 

Curiously, in this case, the problem with forces at the two ends will have no problem as far as the 

solution is concerned, because in this case, the global stiffness matrix is invertible, because there 

is no rigid mode. If we had a rigid displacement, it would lead to deformation of the springs, so 

the energy of the system is not going to be 0. 



In the next class, in the next lecture onwards, we are going to refine whatever we have done 

further. We will address the issue of how do we go from this setting to a setting which will be 

more amenable to a computer implementation and also how do we address the issue of 

improving the accuracy of the solution, not only through mesh refinement, but also by increasing 

the order of approximation. 

Thank you. 


