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Module - 2 Lecture - 3 

In the previous lectures, we had talked about how to compute the stiffness matrix and the load vector for 

a given model problem using the finite element method. What were the essential features what we 

discussed in the previous lecture? We had defined these global basis functions phii,
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 which were given as 

functions of this type. 

 

That is, the functions which at the node i had a value 1 and at all other nodes they had a value 0. These 

are so-called piecewise linear functions that we have formed; they were continuous you can see that they 

are non zero only in the elements i minus 1 and element i. These were functions with local support. One 

thing that we should answer before going further is why did we choose these functions? 

If you remember in the previous lectures, we had talked about the problem with point loads. We saw in 

that case that the problem with point loads was that it has piecewise smooth functions which are 



 

continuous at the points and the derivatives have jumps at those points. So that was the motivation for 

using such functions in the Rayleigh-Ritz Method. Now, it is not always obvious what kind of functions 

we have to use for the given problem of interest? We should have some kind of general mechanism by 

which you can see what is the minimum smoothness requirements on the function phii that we are using 

to form our global basis functions, before we can define global basis functions. For different differential 

equations you will have different phii

If you remember that we had made our weak formulation of this type: integral x is equal to 0 to L EA du 

by dx and into dv by dx, where I will be using v or w as my weight functions and this on the right hand 

side is equal to integral x is equal to 0 to L f v dx plus as we had put an end load P v evaluated at x equal 

to L. So this was our weak form for the model problem that we have taken. So now let us look at this 

part. If I look at this part here you see that this term and this term are sitting in this integral. So we want 

this integral to be finite. So the integral should be finite. Now what does it mean? If this integral has to be 

finite then each of these terms du by dx dv by dx have to be defined in the domain of interest. So what 

we want is du by dx and dv by dx, they should both be defined in domain omega or I. 

’s. So let us see how to do it. 
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So what are the roughest or the least smooth of these functions u and v for which du by dx and dv by dx 

will be defined. The answer is very simple that is, if we look at this domain we can have du by dx and dv 

by dx defined means that they can be like this. That is at particular points I will call point xa, point xb, 



 

and point xc
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. At these particular points the derivatives can have jumps. This is if you remember I am 

writing it as du by dx dv by dx. So if this is the function that we have, then in that case the integral on the 

left hand side in the previous page is defined. Anything worse than that in this is if I have in a way worse 

than the jump means that there will direct delta at these points data derivatives that is in fact even the u 

can be discontinuous. In that case this integral will be infinite; it will not be defined. In order to have 

these integrals finite we ask the question what is the worst type of functions that will satisfy that 

requirement and the answer here is the functions for which derivatives have jumps at specific points. 

That is the reason why we say that if the derivative has jumps at specific points, then u and v are 

continuous in the domain. In such way that at certain points slopes change. So with this requirement we 

ask, what are the functions that can be used in our series representation? Because if you remember, in 

this series also we need functions which can capture this kind of behavior. 

 

So the phii’s that we have should also satisfy this minimum requirement of the derivative. So we want 

phi for this particular problem, because we want the left hand side to be defined; should also be 

continuous or we say it lies in C zero. That is the reason why we took phii’s as the hat shaped functions 

that we are taking. We could have taken it to be smoother, but the smoother functions would not satisfy 

this minimum condition and you remember that whenever you are developing a method that is a method 

which will translate into a computer program you do not want to write the program for one particular 

problem; you want to write it for a class of problems. 



 

Class of problems in this case is defined by what? - By different types of boundary conditions, different 

types of body force, and different types of materials. It turns out that in order to look at a big class of 

problems of practical interest we have to talk about the point loads. So in this case whenever we are 

trying to write a program or whenever we trying to define a finite element method we would like to cover 

the solutions for all these types of problems that are of interest and for the point load this phii

So do not think that the whole process is arbitrary in nature. Everything comes for a particular reason and 

the reason is we have to go back our weak formulation and look at the left hand side, look at the right 

hand side and ask the question what will make this left hand side and right hand side finite. So this is one 

thing that I wanted to harp on and that is a very important reason, very important thing that we have to 

keep in mind when we are doing the finite element method. Third thing that we obtained was, because 

this function phi

 with jump 

in derivatives was needed or with the material interfaces we needed and it comes out also from our 

minimum requirement for the left hand side to be finite. So that is the reason why one chooses one type 

of basis functions for a given differential equation. We will see later on when we go to the beam problem 

that these basis functions, the definitions of these are going to change. There again we will see what is 

the minimum requirements for which we have to define the basis functions. 

i were locally defined that is phii was non zero in only elements i minus 1 and element i, 

so in that case what happened is the integral were not all non zero. That is the stiffness matrix was sparse. 

Not only sparse, it was banded that is some of the elements around the diagonal that is either side of the 

diagonal were only non zero everything else in the matrix was zero. Today let us go further and see how 

do we go and do everything from a computer based orientation. 
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Finally, we are not going to solve this problem by hand. We would like to write a computer program 

which can give us the answer to this problem. So from this point of you we would like to go head. To 

start off, let us if you remember that I take the ij th entry of the stiffness matrix. So what does it mean? 

I am looking at the ith row and the jth column of the stiffness matrix and what do we get for this entry? 

There are few possibilities that we have. That is for j equal to i minus 1, what do we have? that for j equal 

to i minus 1 I will have in the element x i minus 1 to xi, if you remember it will be equal to EA phii prime 

phii minus 1 prime dx for j is equal to i minus 1. This is all that is only in the element i minus 1 this part is 

non-zero everywhere else it is zero. Why? because if you see here phii is non zero in elements i minus 1 

elements and element i while phii minus 1 is non zero in only element i minus 1 but it is zero in element i. 

So element i does not contribute. Similarly let us look at the second possibility. Second possibility is, 

when j is equal to I, so in that case we will get integral over the element i minus 1 phii prime phii prime 

dx plus integral over element i EA phii

Third case is when j is equal to i plus 1. Then this integral becomes x

 prime d square x for j is equal to i. 

i to xi plus 1 EA phii prime phii plus 1 

prime dx for j is equal to i plus 1. For all other cases it is zero for all other j’s. You see that only these 

three entries are non zero in the ith row everything else is zero. You see that the ith row i minus Ith 

column entry the ith column entry i plus Ith column entry are non zero. This is the structure that we will 

have for all i’s. Similarly what will the Fi be? 
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That is the load vector it will be equal to because phii is non zero in the element i minus 1 and the 

element i so xi minus 1 xi f phii dx plus integral xi to xi plus 1 f phii dx; plus we have P phii at x equal to L for 

our model problem. Let us ignore this part for the time limit. That is for the time being, let us forget this 

thing. We will see why. I mean you should be able to know the reason why. You note that, for all phii’s, 

because we have taken a six element mesh, that is for i is equal to five element mesh plus or for the 

model problem, i is equal to 6 for that case only the phii at x equal to L is 1; all other phii’s are zero here. 

So this part P into phii is only going to contribute to f6 that is in the general case f n plus 1. To all other f 

phii’s it is not going to contribute that is why let us keep it out for the time being, we will handle this 

later. So now, we have this part of the load vector and if I go to the previous page (Refer Slide Time: 

16:15), this part of the stiffness matrix to handle. 
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So how do we go about handling this? One thing that we will do is we will try to compute these integrals 

because you see that they are limited to elements i minus 1 i or i plus 1 at the most. We will try to 

compute them using the element level integrations. Why? Because these are summation over the 

elements as we did in the previous lecture also. 

 (Refer Slide Time: 16:24) 

 



 

The integrals are obtained but summation of the integrals over these elements. So let us now go to a very 

important part of the finite element method which is called the Element Calculations. 

For the element calculation what do we do? Let us draw certain pictures. In finite element, one has to 

draw pictures there is no way out. 
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So let us look; I ask the following question. I give you element l that is, this is element Il. For this 

element what are the nodes that will be the end points of the elements? They will be xl and xl plus 1. First 

thing that I am going to do is, since this element has two nodes I am going to give them local number – a 

local name to these nodes. What I am going to call them? I will call them of x1 of element l this node and 

this node is equal to x2 of element l. So for each element, I have an x1 and x2, which are representing the 

two extremities of the element and x1 for the element l will equal to the global node xl or the coordinate 

and x2 will be global node xl plus 1

This you see we will give it a name; this is the local node number and coordinate. This is inherited from a 

global number. That is it is inherited from here (Refer Slide Time: 19:17). There is a one to one 

correspondence between these local nodes and the global nodes. Another thing that we will do is, let us 

now look at the function phi

. 

i. Which of the phii’s are non zero in this elements? We have given the 

answer many times over. It is these two functions (Refer Slide Time: 19:42). So this is going to be phil 



 

and this is phil plus 1. These are the only two phi’s which are non zero in this element. So what we are 

going to do is we are going to now give them again an element name and that is the name when I is at an 

element Il. So what name will I give, quite natural. I am going to give it the name N1
l and this one will be 

N2
l. That is, we should remember that this phil in the element Il is equal to N1 of element l. Similarly phil 

plus 1 restricted to the N2 element l is identically equal to N2 of this element l. What are these N1 and N2

This N

 

called? 

1 and N2’s for the element are called the Element Shape functions. This N1
l and N2

l are given a 

name called the element shape functions. What you would see in most of the books is that they start from 

N1
l and N2

l remember that N1
l and N2

l are nothing but phil’s restricted to the element i. So once we have 

these elements shape functions N1
l and N2

l then you see what we are doing; we are defining everything 

with respect to the element. All the global quantities that we are defining them with respect to the 

elements. So now tell me what is N1
l and N2

l
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? 

 

It is very easy N1
l will be equal to what? Since it has to be 1 at the point x1

l and zero at the point x2
l. It 

will be x2
l minus x divided by h of the element l; that is the size of the element l and remember that hl is 

equal to x2
l minus x1

l that is the size of the element is hl given by x2
l minus x1

l and note that here what 

happens when I put x1
l that is at the point x is equal to x1

l I get N1
l is equal to l that the point x is equal to 

x2
l N1

l is equal to zero. 



 

Similarly, N2
l is equal to since it is zero at the point x1

l and 1 at the point x2
l it is equal to x minus x1

l 

divided by hl as simple as this. This is nothing but phil N1
l is the phil and N2

l is the phil plus 1 in the 

element Il. So we have defined what these element shape functions are in terms of the element 

coordinates and in terms of the element size h1. So once we have defined these, then we ask the other 

question; what is finite element solutions, what is the representation of it in this element Il? So we have if 

you remember u we had in the generic case u to the power of N plus 1 x is I will call it different 

connotations different places this will be equal to what? Again the question is which of the phii if you 

remember that ufe is equal to sigma i is equal to 1 to N plus 1 ui phii. So the question is, which of phii 

will be non zero in the element. The answer is it is going to be phil and phil plus 1. So what will get? ufe 

in the element will be equal to ul phil plus ul plus 1 phil plus 1. Now we know that this phil in the element is 

equal to N1 of l and phil plus 1 in the element is equal to N2 of l. This ufe in the element Il, in the element 

Il, is equal to ul in to N1 of l plus ul plus 1 into N2

Now these u

 of l. 

l and ul plus 1 are global quantities, because they are defined with respect to this series so now 

we will give them a local name that is an element wise name. So this we will represent as in the element 

this is u1 of l and in this element this is u2of l. You should remember that ul is equal to in the element u1 

of l and ul plus 1 is equal to in the element u2
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of l. 

 



 

So what do we have? ufe restricted to the element l is equal to u1
l N1

l plus u2
l N2

l . So these are called, 

they have to be given a name; these are the Element Degrees of Freedom. The ui’s in this finite element 

connotations globally are called degrees of freedom while the element - they are element degrees the 

freedom. Now we will ask the following question as to which of the Kij’s does the integral from the 

element contribute with the non zero entry. The answer is directly related to the phii
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’s which is non zero 

in the element so that it comes that, for the row’s i and i plus 1 row globally and for these rows the 

columns will be i minus 1, i and i plus 1 column. So these rows and these columns are the ones to which 

the element contributes. So what we see is that the element contributes to the ith and i plus 1th row of 

global stiffness matrix K and to the i and i plus 1 column. 

 

So let us now look at these contributions. What are these contributions? What we have is that for the ith 

row. The element contributions will be integral from, since we are talking of the ith element, so it will be 

xi to xi plus 1 EA phii prime phii prime dx this is going to be non zero. Similarly, xi to xi plus 1 EA phii plus 

1 prime phii prime dx this is going to be non zero. Similarly, for the i plus 1th row, what are going to be 

non zero? xi to xi plus 1 EA phii prime phii plus 1 prime dx and integral xi to xi plus 1 EA phii plus 1 prime 

phii plus 1 prime dx. So you see that these are the four entries in global stiffness matrix to which the 

element contributes with non zero matrix. So what we are going to do is, we are going to call these 

entries we are going to write in the form of the matrix and the first entry will be called K11
i.. Second 

entry will be call K12
i. The third entry will be called K21

i i and the fourth term will be K22
i. Tell me why I 



 

am calling in K11, K12, K21, and K22of element i? Because, in the element if you remember, I can replace 

phii with N1 of the element i prime. Similarly, I can replace phii plus 1 with the N2

So for a given element, you see that naturally this will be nothing but the first integral will be EA N

 of the element i prime. 

1 

prime and N2 prime second entry will be N1 prime N2 prime. The first entry will be N1 prime N1 prime 

second one will be N1 prime N2 prime, second row the first entry will be N2 prime N1 prime and the 

second entry of the second row will be N2 prime N2 prime. So naturally this comes in terms of the 

element convention as the matrix K for the element i is equal to K11 of element i, K12 of the element i, 

K21 of the element i, K22
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 of the element i, and this will be equal to let me rewrite it again, integral now I 

am rewriting the integrals all in terms of the element quantities. 

 

So it will be integral from x1 of the element i to x2 of the element i EA N1i prime N1i prime dx and the 

second one will be x1
i to x2

i EA N1i prime N2i prime dx and the first entry of the second row will be x1
i 

to x2
i EA N1i prime N2i prime dx and x1

i x2
i EA N2i prime N2i prime dx. This is all; this matrix if you 

remember, we had given it a name it is called the Element Stiffness matrix. In this case, the element 

stiffness matrix is a 2 by 2 matrix because only two of the phii’s are non zero in the elements. All other 

phii’s are zero. If there were more phii’s which we will see later one which will be non zero in the 

elements the matrix size increases by that much. So this is the element stiffness matrix and if you see that 

we have computed now the entries of it. What we had done in the previous stage, we had simply 



 

rewritten in terms of the element connotations that we are introduced. So they are given in terms of the 

element level entities, let us now go and use this for a particular problem. 
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So let us take the case where EA as a function of x is equal to EA is equal to constant. So a simple thing, 

now what do we have? We will have, remember that we need the derivatives of N1 and N2. Let us take 

for the element of N1
i the derivative for the element i the derivative of N1

i this will be equal to what from 

the definition of N1
i , so let us go back to the previous pages and see the definition of these functions N1. 
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So you see that, if I take the derivative of this expression N1 then it becomes -1 by hl. The derivative of 

N2 here it becomes plus 1 by hl. Let us go further and introduce this becomes equal minus 1 by h

(Refer Slide Time: 37:13) 

l. 

 

Similarly, N2 of i prime is equal to +1 by hl. This has some very interesting properties. You should check 

for yourself that, N1
i at any point x in the element plus N2

i at the same point in the element is equal to 1. 

If you look at this thing here, this expression N1
i prime plus N2

i prime is equal to zero. In a way this is a 



 

check for what you are computing. No if N1
i plus N2

i comes out to be non zero you know there is a 

problem in whatever you have done and in similarly if N1
i plus N2

i is not equal to 1 then there is a 

problem; N1 prime plus N2

Using this let us now go to our element calculation. So what will K

 i prime is not equal to zero then there is a problem. These are some small 

checks that we can incorporate and whatever we do.  

11 of element i be equal to? It will be 

equal to integral x1
i to x2

i EA which is now a constant for this particular case in the example that we are 

taking. Now N1
i prime is equal to -1 by hl. Again N1

i prime is -1 by hl dx and this is this expression, the 

integrant is a constant. So this will be equal to integral EA in to 1 by hl square into x2
i minus x1

i. But 

what is x2
i minus x1

i? It is equal to hi. This will be equal to EA into 1 by hi. So K11
i came out to the EA 

by hi. So let us now calculate K12
l
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. 

 

This will be equal to integral of x1
i to x2

i of EA N2
i prime N1

i prime dx. This is equal to integral over x1
i 

to x2
i EA in to 1 by hl into hi into -1 by hi dx. So this will be equal to again by doing this integration it 

becomes minus EA by hi. Actually for the previous expression also it is not EA by hl, it is EA by hi 

because we are talking of the ith element not the lth element, okay. 



 

So this is what K12
i is. So by the same token if you do the same job for the next row, K2

i will be equal to 

minus EA by hi and K22
i will be equal to EA by hi
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. These are the four entries of the element stiffness 

matrix we get. What does the element stiffness matrix become? 

 

K for the ith element is equal to EA by hi into here 1 here -1 here, -1, here, 1 here. See this also is 

symmetric; the element stiffness matrix is also symmetric. You see that we have formed a recipe for the 

ith element. So now it is very easy to do this job for any of the elements because all you need as far as the 

information is concerned is value of the EA and the size hi of the element. Once you have that, then this 

together gives me the element stiffness matrix. I do not have to do this computation repeatedly, so I do it 

once and this structure can be used for all the elements. This is one of the beauties of the finite element 

method. Because, the shape functions are so defined that this structure remains uniform in something. 

Similarly, if I am looking at Fi that is the contribution to the load vector. So this is an element load 

vector. This will be equal to F1
i, F2

i and this will be equal to integral from x1
i to x2

i f N1
i dx and here 

also integral over these elements f N2
i dx. Let us take the case that fx is the constant. There is an 

example, let us say it is equal to f0. So then what does this become? 
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So here we will get F1
i F2

i is equal to f0 into integral over the element and this after doing the integration, 

it is quite easy to show is equal to f0 into hi by 2 and f0 into hi by 2. Now we have obtained all the entries 

of the element stiffness matrix and the element load vector. The question is now which of the global 

equation it is going to go to? So imagine that I started from this element calculation. That is, I define the 

element shape functions, found the element stiffness matrix, and element load vector; I would like to 

know which of the global entries they are to be added to. For that we need so-called local to global 

enumeration for numbering and which we have already stated that the local 1 for the element maps to 

what? Globally it maps to I; local 2 of element maps to global i plus 1. So the job is very simple. We 

know which of these global entries I have to add these local entries to. What do we do in terms of, 

remember our job is to form the global stiffness matrix K and the global load vector f. 
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What we have done is, we have done the integrations over these elements and now we have to add them 

together to form the global entries. Tell me for the 5 elements mesh, let us say N is equal to 5 and also let 

us assume that all the elements of the same size that is the uniform mesh that is hi is equal to h is equal to 

l by N. Let us take this particular case. So for this particular case for the choice of the EA and f that we 

have taken can we form the global stiffness matrix? So what do we do? We first make all the entries so 

the global stiffness matrix will be size of 6 by 6 or N plus 1 by N plus 1. So we are first going to make all 

the entries of the global stiffness matrix 0. This process is call initialization. That is the set the values to 

zero. Then I start looping over the elements. See I am talking in terms of the computer program. So I start 

looping over the elements and adding the stiffness entries and the load vector entries from the element to 

this global K and global f. I am also going to initialize all the entries of f to 0. So let us do that. Here I 

have the big K matrix, so from the first element the first and the second entries of the element go where 

they have to go to the first row and the second row and the first and second column because for the 

element 1 the global phii’s which are non zero or the phi1 and phi2. Here will come K11
1,here will come 

K12
1

Similarly, in the second equation it will have K

. This is all that these elements contribute to the first row that is the first equation. 

21
1,K22

1. So the element 1 entries go to the first row first 

column and second column - second row first column and second column. Let us go to the element 2. 

Where will it add up? Element 2 if you see the phi2 and phi3 are non zero in element 2. So where will the 

K11
2 add to? It is going to add to this K11

2. Similarly, you will have K12
2 here K21

2, K22
2. Then I go 



 

further look at element 3, for element 3 phi3 and phi4 are non zero, so it only contributes to the third and 

fourth rows and the third and fourth columns. So third row and third column will have K11
3 and 

similarly, here I will have K12
3and then here I will have in the 4th row I will have K21

3 and here I will 

have K22

This way I can keep on adding. Then I add K

3 

11
4, K12

4, K21
4 and K22

4
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 and so on. If I now write this 6 by 6 

matrix after doing all this, the element, the global matrix K becomes equal to EA by h into what do we 

get? 

 

Here I will have the first entry will be K11
1

Similarly, in the next row I will get, -1 here by substituting the K

 which is 1. Next one will be -1. Then what else? Is there 

anything else which is going to be there? The answer is no. All other entries 3, 4, 5, 6, will be 0. 

i j’s from the elements. Here I will get 1 

plus 1 is 2, here I will get -1 and everything else is going to be zero. Here the first one in the third 

equation you see that phi3 and phi1 are… there is no point in the domain where they both are non zero. 

That is phi3 is 0 in element 1 and phi1 is 0 in all other elements. So by the token, the first entry will be 0 

and as we have done it in the previous page also that is what it comes out to be. Second entry will be -1 

third will be -2 -1 0 0. Continue the process, 0 0 -1 2 -1 0 0 0 0 -1 2 -1 and the final equation 0 0 0 -1. So 



 

this is the global stiffness matrix that we were after and you see very nicely by doing the computation at 

the element level and adding them up in the global matrix I form the global matrix. 

This whole process of doing the computation at the element level and then adding up these entries in the 

global matrix at the right location in the global matrix using the local to global enumeration is called 

Assembly. In the computer program you can see very clearly essentially you have to write it to loop. You 

will start looping over all the elements get the element entries add them up in the write location in the 

global matrix and that is the whole assembly procedure. I have assembled the global K matrix; let us now 

assemble the global F matrix. 
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So the global F will be equal to what? You see the phi1 will only be the non-zero in element 1. So it will 

be F1 of element 1, here phi2, so F2
1plus F1

2, here I will get, F2
2plus F1

3, F2
3plus F1

4. Let me erase this 

part then F2
4plus F1

5 and then I will get, F1
5. This is my global assembly of the load vector and we have 

already done computations at the element level, so it is very easy to do it here. What do we get? F1
i is 

equal to what do? We have f0 into to h by 2. Here I will have f0h by 2 plus f0h by 2 because all elements 

are the same size this becomes f0h. The third one becomes again f0h, fourth one becomes f0h, fifth 

becomes f0h and sixth one becomes f0h plus 2, because it is only getting contribution from one element. 

So this is nothing but the assembly of the load vector. Now you should see something that I have 



 

deliberately not touched the boundary condition here. How do we now go and apply the boundary 

conditions for the problem that we have? 
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So again let us take the particular problem that u is equal to 0 at x is equal to 0 and here P is equal to EA 

du by dx at x is equal to L. So now you see that first thing that will do is will apply the natural or 

Neumann boundary conditions. How do we apply it? 

So you see here, that this also corresponds to global node 6 and remember that if I have all these things 

only phi6 is non zero at the point x6. So if you remember back what we have done, we had to add p phii 

evaluated at x equal to six only for phi6 we will get that expression equal to P into 1, because phi6 is 

equal to 1 for all other phii’s this expression is going to be 0. What do we do? We find out, see in any 

problem you may have load condition applied at any of the two ends. So first of all we find out which 

end this load condition is applied at or at which node. We may have concentrated load at this center and 

as we have said that where ever the concentrated load is applied that has to be node. Which node we 

have? Here we are going to modify F to be f0 h by 2, f0 h, f0 h, f0 h, f0 h and the last 1 f0 h by 2 plus I 

will have P. Here, what we do is this Neumann boundary condition applied by simply adding this term P 

to the corresponding a row of the load vector. So this is how the Neumann boundary condition is applied. 

In the next class, next lecture we are going to talk how to apply the Dirichlet boundary condition. 
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This is little bit more involved and see we have not yet get applied the problem, we know that out of the 

Dirichlet condition u1 should have been 0 so how do we impose u1 is equal to 0. So once we have done 

this we have essentially given the outline of how to go about doing a finite element computation. I have 

given you hints as to how we should progress with the programming of all this in a computer program. It 

does not matter which language, but the various blocks or the building blocks or the subroutines or the 

functions that will be involved in the computer program should come out of this kind of a discussion. 

Later on we will see that how does this help. That is if I have to improve the accuracy of the solution 

what do I have to do? How can I do easily and how can I increase the order of approximation which we 

are not touched?  It touched here to get a better approximation solution. 


