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In the last lecture, we had stopped at the point where we discussed the stopping criteria 

for the non linear iterations and we had proposed one stopping criteria which was based 

on computing the residual at the residual vector R at the end of the current step. Which 

means this will be equal to I would say ([K i] {a i} - {F i}) - of this. This is what we have 

said our residual is going to be. Here by putting the computed solution at the end of the 

step back in the calculation of the stiffness matrix multiplying with the, taking the action 

of it on the computer displacement vector - F i 

 

this is what we will call as our residual to 

be used in the computation of the error. 
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This computation and we have said that essentially if the length of the residual vector 

divided by the length of the solution vector is less than or equal to some tolerance then I 

stop. There are various stopping criteria’s which are in use and the basic problem with all 

the stopping criteria is that we should avoid the termination of the solution process in a 

very very preliminary stage. That is if the stopping criteria tells me that the tolerance has 



 
 

been reached and the solution has not converged then we will have a problem. There are 

various versions of stopping criteria, which are available another one which is available is 

by taking the length of the difference between the 2 solutions of the current step and the 

previous step divided by the length of the solution, and if this is the (2:40 ) then we stop. 

 

(Refer Slide Time: 02:54) 

 

 
 

So several other stopping criteria are available, one can use any one of them. What we 

had said if you remember reinitiate the discussion here. That here is my F, here is my 

delta, here is my non linear solution corresponding to a particular level of the force of the 

load, here is my first solution or using the direct iteration where we essentially solve for 

the linear part so this becomes the delta zero, then I come down as we had said, and from 

here again we said that we will re compute and so on. This is for the direct iteration, what 

we had said is what if I come down here at the end of the first iteration and instead of 

doing this, I do this. Then I go to this part, I have the earlier solution to that essentially I 

am finding a correction. I had delta zero, to this I will add a del delta zero to get delta 

one. I want to add a correction so that I get the new solution and this computation of this 

correction to the previous solution is what we are interested in. This will be del delta 

zero, this will be delta one, when you see what it is doing? It is giving us faster 



 
 

convergence to the desired solution this delta desire. This is the basic idea and what we 

had said this method is the Newton raphson method so today we are going to discuss this 

method in greater detail.  

 

(Refer Slide Time: 05:15) 

 

 
 

Let us go back to our problem and to refresh ideas let us have the weak form which is 

given integral zero to L EA uFE prime w prime plus k0 uFE w, dx plus integral 0 to L k1 

uFE cubed w dx, this is equal to integral of fw dx plus Pw at L. Let us say that I have 

obtained the solution, at the i-1th step, i-1th step solution. This will be given as uFE at the 

step i-1, which will be equal to sigma j equal to 1 to number of nodes, aj due to i-1 phij 

here phij

 

 is the bases function globally.  
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Given the solution now I can compute the residual, what will be the residual be I come 

back here I say that, here by putting w is equal to phik and so on. We get the form K 

which depends on uFE at the step i-1 into a at the step i is equal to F i, this is what we had 

done earlier in order to solve for the a i. What we will do is, I will call K uFE at the step i 

as we have done already in order to discuss the residual, minus this plus F i is equal to the 

vector R i. What does it mean, because the current solution is not the exact one then this 

matrix system will not be equal to the load vector. If it was then R i would be 0, if it is 

not R i will be non 0. This way I can compute R i at each step. Similarly I will have 

minus of K uFE

 

 at the step i-1 into a at the step i-1, plus F at the step i-1 this is equal to R 

i-1.  

This is what we have? I have the generic definition of the residual vector in terms of the 

generic solution vector A. Then we say that I want to find, given a i, given the vector a at 

the step i-1 find delta a.  
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Such that the new residue is minimized, this is what we want? We will say that the 

residue. Given the solution at the step i-1, I want to go the step I, using this change in the 

a i, a i-1 in such a way that the new residue is minimized. What we will do is we will take 

the residue at the step i and expand it in a taylor series expansion in terms of the delta a i-

1 about the residue in the step i-1. I want to expand since the residue becomes a function 

of a i, I want to expand the a i in terms of a i-1 around a 

 

i. 

This expression in terms of a i we want to expand it in the taylor series expansion about a 

i-1. This will become the residue at the step i-1, plus we will have, I will write what this 

means. The partial of the residue with respect to the vector a evaluated at the step i-1 into 

delta a into the vector delta a i-1 plus I will have higher order terms. You see when I take 

the partial of a vector with respect to a vector I will actually get a matrix or a second 

order tensor. We will come to that. 

 

We said that in the Newton rhapson method, it should be minimized rather we say it 

should be 0. And we are ignoring the higher order terms. And what we do? You say that 

well I take linear expansion about the solution obtained in the previous step, and I will 



 
 

use that in order to obtain the new correction to the solution. This will give me, this 

implies that del R del a evaluated at the step i-1 into delta a at the step i-1 is equal to 

minus R at the step i-1. This is what drives our solution. If you see this, this is a matrix 

which is now, note given a solution at the step i-1. This known matrix into this change of 

the perturbation in the coefficients part is equal to the minus R and so from here we can 

find this. 
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How do we write this del R? del R del a, this will be equivalent to saying that I want to 

find some matrix, which I will call by we will see the reason Kij T entry of it is equal to 

del Ri del aj, evaluated, because let me now change my naming system, that we don’t 

have a problem. I will say lk, del Rl del ak evaluated at i-1. How will I do it? What is Rl

 

? 

The l th component of the residue vector. This will be from what we have done earlier in 

the definition of the residue. If you remember in the first place we had.  

This is the definition of the residue. Let us go to what we want to do and we will have 

this as Fl - Klk lm I will say, not Klm has to be generic lm into am. If I say implies del Rl 

del ak is equal to del Fl del ak minus Klm is itself a function of ak, del Klm by del ak into 



 
 

am minus again here we will have Klm del am del ak. What we have taken, our F is 

independent of the displacement; in the case that I have a follower load where the load is 

changing with the configuration F will also be a function of the displacement. 

Nevertheless, here it is 0. This quantity if I look at it is equal to deltamk that is it is equal 

to 1 only when m equal to k. This deltamk, this whole quantity will become Klk. This is 0 

this is 1, then this quantity from the expression that we have Klm is equal to integral 0 to 

L EA phil prime phim prime plus k0 phil phim plus k1u squared into phil phim

 

. 
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This is the definition of Klm, uFE squared is in terms of this coefficients themselves, this 

will become then I will get delta Klm by delta ak from the first part. If I come here first 

part the way the derivative will give me 0, because this part does not have the ak sitting 

there. This part will get knocked off, the linear part will not contribute to this. Second 

part I will find the derivative of it with respect to…, it will become integral from 0 to L 

from what we have done here k1 twice uFE into derivative of uFE with respect to ak. What 

is derivative of uFE with respect to ak. It will be phik. It will be twice k1 uFE into phik into 

phil phim dx. What do we have to do? Here you see that delta Rl delta ak is equal to 

minus Klk plus or minus this part. 



 
 

We will do that. This quantity will now become delta Rl delta ak is equal to minus Klk 

this Klk contains both the linear and the non linear part, minus I will get here integral 0 to 

L 2k1 uFE phik phil phim dx into if I go back this will be into am. Essentially since m is 

occurring twice, I get am into phim is nothing but a summation over this combined would 

be sum of am phim. And this would be equal to nothing but uFE. This will be equal to 

minus Klk -2 integral 0 to L k1 uFE squared into phil phik dx and this is my delta Rl delta 

ak. You see here that this will have by itself minus of Klk linear minus Klk non linear, Klk 

nonlinear part for what we have marked in the previous slide will be equal to integral k1 

uFE squared phil phik. See from our definition what we have here this is nothing but Klk

 

 

non linear. 
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This will become equal to minus of Klk linear plus 3 Klk, Klk non-linear, this is what we 

are going to get out of this computation. You have to be very careful here you see this 

part together they form uFE. 

 

Once I have this then now I have the representation this 

matrix, because it came from the partial of the residue with respect to the solution vector 

at the current solution vector. It is called the tangent stiffness matrix. 



 
 

We have tangent stiffness matrix that is the local slob in the drawing that we have made 

in the beginning, stiffness matrix is K T such that I will write what we mean by this K T 

lk is equal to for this problem Klk plus 3 linear plus 3 Klk non linear or this is also in the 

generic way del Rl del ak at the step evaluated at the step i-1. The components of the 

tangent stiffness matrix are obtained by taking that partial of the Rl

 

 evaluated with this.  
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In this case what will the tangent stiffness matrix entry be because we have to evaluate it, 

we have not done the evaluation at the previous step. It will be for us this problem Klk 

tangent and I have thrown out the minus part why because this minus on this side and if I 

go back the minus here and the minus here will cancel them out. We will be left with 

essentially the K T acting on delta a is equal to R and so on. We will have let’s say K T lk 

will be equal to integral 0 to L EA phil prime phik prime plus k0 phil phik

  

 dx. 

This part remains fixed you don’t have to update this all the time once, you have created 

this part which is your K linear lk plus integral 0 to L 3 times k1 uFE at the step i-1 whole 

squared into phil phik dx. This is nothing but Klk non linear. For this problem this is what 

we will get as a tangents stiffness matrix at a step i-1. 
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Let me go back to my drawing here it is a local tangent or the local slope at the current 

solution level that we are talking about. This way we can construct the tangents 

representation each time and I will get the K T into delta a at the step i-1 this is equal to R 

at the step i-1. What is R at the step i-1, it is by putting uFE

 

 at the step i-1 in the 

expression for the stiffness matrix and the (27:33).  

This will be K due to uFE

  

 at the step i-1 into a i-1 minus with this plus F at the step i-1. 

This is how we are going to get the residue vector and once we solve this then we are 

ready to, you can compute this by inverting K T. You see the feature of K T, K T will 

also be symmetric for this problem. 

It will be symmetric, it will be invertible what do you do with respect to the boundary 

conditions on delta a. If I have this bar you remember with f here, the u is given as 0 lets 

say or it could be given as some other value, but wherever they u is specified my delta a 

has to be 0 at that point. 

  



 
 

I would get the delta a1 for any step is equal to 0. If I take a let us say 3 element meshes. I 

could have the u given as u0 bar u0, which is non-zero, in that case I will get some 

contribution due to this basis function, but my delta a1

  

 here as to be 0. This condition has 

to be enforced, we enforce it using the standard penalty formulation or the way we have 

been doing it and we go ahead and solve for delta a i. 

You get the solution use it, update a i will be equal to the vector a i-1 plus delta a i-1. 

This way we go ahead and construct the solution in iterative way and we stop using the 

stopping criteria’s that we had mentioned earlier.  
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The question is how do we do it at the element level again we have let us say a mesh of 

some elements. Let me pick a generic element I, In in this element, let’s say I have these 

basics functions which are non-zero. I am taking a linear approximation to bring the point 

out. I will be corresponding to the node n and n plus one phin phin+1

  

. 

This is what we will have at the element level. What we are going to do is at the element 

level we are going to compute the K linear for the element n, K non linear for the element 



 
 

n. How do we compute, it will be essentially, if I have a piecewise linear approximation 

this will be a 2 by 2 matrix, this will be a 2 by 2 matrix. This we one can compute once 

and for all and keep it or we can redo every time depending upon the size of the problem, 

and the convince we have with respect to storage. Then this Kij linear in the element N 

will be equal to integral x1 of the element n to x2 of the element n, EA Ni of the element 

n prime, Nj of the element n prime plus k0 Ni of the element n, Nj 

 

of the element n this is 

where i and j goes from 1 to 2.  
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In this case in the generic case it will go from 1 to P +1. Similarly Kij non linear in the 

element n will be equal to integral x1 of the element n to x2 of the element n, k1 into uFE 

from the step i-1 in the element n whole thing squared into Ni in the element n Nj in the 

element n dx. What is this? uFE in the element n this will be sigma i equal to 1 to P + 1, a 

for the element n i or I would put it as al of the element for the step i-1 into Nl 

  

for the n. 

This is what the uFE in the element will be now what is al n i-1, this will come from the 

global to local enumeration. We have to keep in store the solution at the previous step 

that is at the i-1 step from where we extract the coefficients, use it to construct solution at 



 
 

the function uFE in the element n. We go to numerical integration, we will evaluate this 

function at each integration point find the square of it put it there multiply with the value 

of the shape functions Ni Nj

  

 at these integration points and we do the summation as 

usual. 
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This will give me the element wise the non linear stiffness matrix. Then we follow the 

usual assembly procedure using the global local enumeration that we had talked about till 

now, we have outlined a procedure with which we can construct solutions to non linear 

problems. We could also do the same for the case of large deformation problems where 

the strain exx is given as del u del x plus let’s say half of del u del x whole squared. Let’s 

say we use the standard strain energy expression, the minimization of the total potential 

energy here this can be put in the expression for the total potential energy pi which will 

be in terms of u-v for the bar problem, this u will have half integral 0 to L EA exx

 

 whole 

squared dx. 

We will have exactly the same scenario, as we got in the previous problem where this 

quantity is now going to contribute to the non-linearity of this quantity. When you take 



 
 

the first variation of pi from there we will get the non linear expression in terms of del u 

del x, again we do the same procedure of finding if I am using the direct solution then I 

will go ahead and find a solution using this solution I am going to update the solution to 

the next solution or if I am using the Newton raphson method I will have to find the 

tangents stiffness matrix arising of this expression. 

 

Similarly I can have the case of the non-linear beam deformation, where in the case of the 

beam exx would be equal to del u0

 

 del x minus z del w del x plus half del w del x whole 

squared this is from the von karmon theory. Again you see that in the strain itself I have 

this non linear term in terms of del w del x sitting and del u del w del x squared here.  
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Sitting there and this again has to be taken care of in following the same procedure that 

you had followed till now; the other issue is that when I have a non linear time dependent 

problem. In this case that is a good idea that lets say I want to go to a particular load 

level. Let’s say this is the F. Its better in fact I could have done it for the problem that we 

have been discussing till now the Newton raphson regime that I break the loads into this 

small steps delta f1 delta f2 delta f3 and so on. 



 
 

 

And I solve the problem in steps for these incremental loads. When I am in a time 

dependent regime then I will have to frame first the semi discreet formulation with the 

non linear stiffness matrices sitting there and the mass matrix if it is non linear sitting 

there. Then at every time station, I am at a time station delta t, I am at a time station i-1. I 

want to go to the time station i, using the delta t. Then here I set up the non linear system 

of equations and we can use the standard Newton raphson strategy that we have done and 

we can solve this. The good idea will be that break this into small steps the time station is 

broken into small steps for that time station, the load is broken into small steps.  

 

That is the amount by which the load increments. This is my t, this is my f. I will have 

this. I will go to the increments in the load and when I will solve the problem 

accordingly. I will have to set up the non linear systems of equations at every time step 

and go ahead and solve it. 

 

This procedure has to be handled in a very very careful way, specially the convergence or 

the stopping criteria has to be properly formulated boundary conditions have to be 

properly imposed in order to get a good solution. If there is something wrong in the code 

you will see that the number of iterations taken for convergence will increase 

significantly or you may not even converge. 
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If you look at these problems where it does happen that the load response curve does 

something like this then we have to get into something called here. We are increasing the 

load clearly. The generic approach is called the load control approach. If I have this kind 

of situation I will have to go to a displacement control approach which means that at this 

point I cannot really go beyond this point with my load control approach, because here 

the tangents stiffness matrix will become singular. I have to do something in order to 

come to this part of the solution, where I go to this displacement control or we will use 

the so called continuation methods which are available in the literature. 

 

There is a nice code which is downloadable from the pits bern site, called PITCON 

(41:55) called continuation method code. Which will solve all this exotic problems where 

the solution does this kind of a behavior or it does this (Refer Slide Time: 42:05) this is 

called a snap through, this is called a snap pack. 
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Especially this kind of a situation, the snap situation arises when I have an arched 

member and I am applying a middle load (42:20). What will happen, this member will 

initially deform like this, slowly as the load is increased and suddenly it will come to this 

configuration. Where it will become stable after that it will keep on deforming like this, it 

snaps to this configuration and then it becomes sufficiently stiff. 

 

All these things can be done for that you need to go these advanced courses, the bottom 

line in this course has been to enforce the concept of the series representation of the 

approximate solution in terms of the special basis functions which we have created, 

which this creation of the basis functions is a essentially the heart of the finite element 

method, because they have local support, they have the continuity requirement that we 

have enforced and it is possible using this approach to tackle any problem, come up with 

the variation formulation or the weak form and construct suitable approximations to the 

problem, with that we would like to stop here.  

 
  


