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In the last lecture, we stopped at the parabolic problem and its finite element 
implementation. What we have talked about is there are these alpha families of 
approximations which are possible. Depending upon the choice of alpha we get 
something called a stable scheme or a conditionary stable scheme when we are doing the 
time marching. Let us look at these definitions in a little more detail today, so first 
definition is stability in the time sense. Here the time marching scheme is stable provided 
that we have two sources of error. 
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These are one is truncation and the other is round off. The truncation error comes because 
of our approximation of the derivative with respect to time. We are approximating the 
derivative with respect to time with a difference scheme which is essentially based on 
truncating a Taylor series expansion of u dot t about a time with some finite number of 
terms. Just like we do with the expansion of any smooth function so because of this 
truncation we are introducing an error which depends upon the delta t that we take from 
the given time to the next time. The other part of round off error is due to the finite 
arithmetic that we are doing that is the computer can only represent numbers with certain 
finite accuracy. It could be a single procession or double procession so these are the two 
sources of errors and what we say that a numerical scheme is stable, if sum of these two 
errors, the truncation and the round off errors are both bounded with respect to time. 
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What do we mean by bounded? It means that as this is time, the errors lies within some 
upper bound. It can go up it can come down. What will happen is in one step the error 
builds up in the next step it should actually decrease so that it stays within the bounds this 
is what we mean by stability that these errors do not grow with time, so this is the error, 
error at time t. This does not ensure that the solution is accurate that is the finite element 
solution that we have obtained at a given time station is very close to the exact one that 
we cannot guarantee. It only says yes that the errors, if they are there they are bounded so 
now let us go to the next definition. Next definition is about so called consistency. The 
numerical scheme is said to be consistent if as my delta t tends to zero. The solution u as 
a function of time, uFE
 

 as a function of time tends to the exact solution for the system.  

We have to keep in mind is that this is not the exact solution of the problem that we have, 
the actual continuum problem that we have. This is the exact solution of the system of 
equations that we have created after doing the integration with respect to space. So exact 
solution is with respect to the finite element discretization that we have put in, so this 
means as the time steps decrease I converge to the exact solution of the system K as we 
had written a K T plus C T dot is equal to F. Exact solution of this system is what this 
will converge to and it will not converge to something else. If it converges to something 
else which can also happen then the numerical scheme is not said to be consistent. This is 
a very important point that we have to keep in mind that the solution has a time step 
converges the numerical scheme should be such that it ensures that I indeed do converge 
to the exact solution of this system not of the physical problem that we are trying to take 
care of. 
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Third definition is convergence, this we have talked about a lot when we were doing the 
static problem, the convergence we mean that as the time stamp size tends to 0 that as it 
is made smaller and smaller, the round off and truncation errors for the system of ODEs 
tend to zero. This is very important as the delta t tends to zero, the round off and 
truncation errors tends to 0 which means that the solution is both consistent and stable. I 
get that the solution then converges to the exact point so it has to be stable plus 
consistent, for it to be convergent. The solution to the system of ODEs converges to the 
exact solution, for that system of ODE as the delta t tends to zero.  
 
Convergence will come with another added question. How fast does it converge? As delta 
t goes to 0. How fast does the error in the solution converge that is given by the measure 
of accuracy. The accuracy of the numerical scheme depends is essentially when we ask 
for this then we ask the question how close is the time marched scheme a solution to the 
exact one and this is 1 and 2, how fast does error decay with delta t? These are two very 
important questions that we will ask which means that by accuracy we mean the rate of 
convergence. 
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In light of this, what we have discussed in the last lecture? There the forward difference 
scheme is conditionally stable and it has accuracy of delta t, it is written by O that is the 
error is of the order delta t, the rate of convergence of the error is to the power delta t to 
the power of one, so rate of convergence is one. The backward difference scheme is 
stable and the rate of convergence is order delta t that it is unconditionally stable that is 
for any delta t, the error will remain bounded and it will converge again at the rate delta t 
to the power of one. 
 
We talked also about the Crank Nicholson scheme. This is stable and the rate of 
convergence here is quadratic that is the error converges as delta t squared. What we 
except is that with larger time steps. I will get more accurate solutions, if I use this one 
that is what it means. Just like when we use higher p elements with a course or mesh with 
lesser number of unknowns, we got the desired tolerance because the rate of convergence 
increases. These are similar approaches, similar philosophies which are adopted for both 
spatial and temporal solutions. For conditionally stable schemes there is the time step size 
should always be less than some critical time step size and this is given by critical time 
step size which depends upon the alpha that we have chosen and the maximum eigen 
value for the system that we are written here. 
 



 
 

(Refer Slide Time: 12:04)  
 

 
 

Let me come back for this system of equations. If I do not have the right hand side I put a 
lambda here then it would I would not put the lambda here. I will solve the system 
corresponding free problem minus lambda CT is equal to 0 and from here from this 
system I will solve for this Eigen value lambda. When there is no forcing function then 
we can use separation of variables and write the temporal part of the solution is e to the 
power of minus lambda t and the spatial part in terms of the lambda. This is the Eigen 
value problem that we will get and this lambda max depends on what is the k? And what 
is the c? 
 
In a way this depends directly on the approximation in the space that is as we keep on 
adding more and more elements to the finite element mesh. This lambda max is going to 
change so depending upon that lambda max, the delta critically is going to change. So far 
a fixed mesh there is a particular lambda max that we are going to get from the stiffness 
and the C matrix. While, we change the mesh this is going to change, so this is something 
that one has to keep in mind in when we want to the temporal solutions that the selection 
of the time steps have to be done in a proper way. Let us now go with all that we have 
learnt here to the next set of important problems which are hyperbolic problems. 
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As an example, here we will take the bar that we had the motion of the bar under an 
applied load. I could have an end load P which is a function of time and an action load f it 
is a function of space and time. Let me be more specific u at x equal to 0 for all time is 
equal to 0. What will I get as a boundary condition here? Here I will get EA del u divided 
by del x at (L, t) is equal to P (t). This is the boundary condition here I will not go into 
this detail because we have done enough of this and we can derive these things in your 
own now. What do we do? We again go from the differential equation? Multiply by the 
rate function at the given instant of time t and then integrate by parts so we will do that 
again, so we had if we remember del divided by del x of EA del u divided by del x plus f 
(x, t) is equal to rho del two u divided by del t square. I will multiply this by a w, multiply 
this by a w, integrate 0 to L this is the L, this is 0 then integrate this part by parts 
remember we are not going to do anything to this because this does not have a spatial 
derivative sitting here. 
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We will do integration by parts and if I go to the next one integral 0 to L, EA del u 
divided by del x, del w divided by del x plus rho u double dot w dx this is equal to 
integral 0 to L f w dx plus P(t) w by L. This is our instantaneous weak form that we get 
corresponding to this problem. We go ahead and do our approximation. How will we do 
the approximation? Using the variation of parameters that is u finite element as a function 
of x and t will be equal to sum of i equal to 1 to N. I will put it as coefficients ai

 

 now 
becomes function of t become functions of t into phi of x. For example, I may use again 
just like we are done in the last lecture a two element mesh.  

Let us say uniform then this phi’s will be the standard basis functions that we have this is 
phi1, phi2, phi3 and uFE will be equal to a1 phi1 plus a2 phi2 plus a3 phi3. In this case I 
could put n equal to 3 and what will be the a1 be, a1 will come from the value of uFE at 0 
is equal to 0 implies a1

 

 as a function of time could be 0. This we will not impose at right 
away we will do it when we have constructed the matrices then we will go and remove 
this part. The way we had been doing, imposing the boundary condition in the static part. 
We will continue with this representation and then do the rest.  
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If I put it back in here I will get integral 0 to L, EA sigma 1 to N. I will put now as j 1 to 
N aj phij prime, prime means derivative with respect to x plus rho sigma aj phij and here 
I will have actually into w prime this into w dx. This is equal to integral 0 to L fw dx plus 
P (t) w by L. We choose construct the ith equation choose w is equal to phii. This actually 
I should be doing with phii. Again this will give me the i th equation in terms of a, a dot, 
a double dot and so on. Here I should have aj double dot from what we have done in the 
last one, aj yes double dot will be sitting here, aj is sitting here and phij, phij prime. 
When I do this then I will get sigma j is equal to 1 to N aj integral 0 to L EA phij prime, 
phii prime dx plus sigma j is equal to 1 to N aj double dot integral 0 to L rho phij phii dx. 
This is equal to integral 0 to L f phii dx plus P into phii
 

 integrated by L. 

Again this is in the matrix form and these quantities are nothing but this is the Kij

 

, 
elements of the global stiffness matrix. This quantity is nothing but elements of the mass 
matrix and this quantity is nothing but element of the load vector at the given instant of 
time. Another thing is if EA is a constant with time then the stiffness matrix does not 
change with time. It could change for certain problems specially, where I have plasticity 
or when I am doing a finite elasticity problem where the area is changing with time when 
in that case EA could change and because of that the K could change. Here the mass 
matrix again similar thing, the density could change as the material is deforming for finite 
elasticity. The way we have done things in this problem, the density does not change 
even this part the M also remains constant with respect to time. 
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Let us now write it in a form which we know how to use so this will be K into a plus M 
into a double dot is equal to F. This is our hyperbolic semi discrete form. What are the 
boundary conditions? As before the boundary conditions are either the displacements or 
the forces at the ends. This problem will need initial conditions. The initial conditions for 
such a problem, for the second order problem in time will consists of defining what is the 
displacement at time t equal to 0? And what is the velocity at time t equal to 0? Before 
we go ahead, let us look at how to impose this? That is we would like uFE

 

 at x equal to 0 
and u dot FE at x and 0. 

uFE would be at time t equal to 0 will be sigma i is equal to one to N ai(0) phii (x). If I am 
using the Lagrangian representation then what are this ais, these ais are the value of uFE at 
a corresponding node. So ai at 0 is equal to uFE at the corresponding node xi at time 0. 
We are going to now impose that this is equal to u at the node xi

 

 and 0.This is one way of 
imposing the boundary conditions so what we will get is essentially we will say that the 
initial solution is obtained by interpolating the given initial displacement using the finite 
element basis functions. 
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Similarly, we will get uFE dot at x and 0 is sigma i is equal to one to N, ai dot 0 phii (x) 
and again ai dot at 0 is equal to uFE dot at the point xi 0 and we are going to force it to be 
u at the point u dot at the point xi and 0. We are going to interpolate both the velocity and 
the displacement in order to get these coefficients ai dot and ai 
 

at the initial time. 
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If we see that, we have the values of these coefficients the coefficient a, or the unknown 
displacement coefficients a, at the time 0 and a dot at time 0. 
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Essentially in the time marching scheme, the vector a, at step 0 and the vector a dot at 
step 0 are known. Once these vectors are known then we can march in time that is we 
will again take time step delta t. Such that t (0) is equal to 0, t (1) is equal to t 0 plus delta 
t. I am taking uniform time steps but we could change the time steps and the solution 
shows very little activity that is it is very smooth with respect to time in a particular part 
of the time interval. I can use large time stamps but if it is showing some very sharp 
temporal behaviour in some time interval there I should use smaller time steps so in an 
adaptive way, we could choose the time. But here we want to be simple and keep the time 
steps constant. This way I can again have the time at station i is equal to the time at 
station (i-1) plus delta t and we want to find the solutions at each of these stations a, a dot 
and all those things at each of these stations. Just like we have done in the case of the 
parabolic problem, we have to propose a different scheme to represent the acceleration 
term here, acceleration term in terms of the values of displacements and the velocities at 
previous times. There are many methods available primarily the ones which are very 
popular are the Houbolt’s scheme. 
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There is one called the Wilson theta scheme, there is one called the Newmark scheme. 
What we are going to follow is the Newmark scheme because in structural mechanics, 
this is the scheme which is very popular. One need not use only the Newmark’s scheme 
that is not the only scheme which is available, we could have many such schemes 
depending upon what accuracy we want? What kind of efficiency in terms of solution of 
the system of the equation it needs to etc? Whatever is the scheme, if I go to the system 
that we had obtained here, this system will have its own features with respect to time. 
What kind of features that the solution here with respect to time is going to be 
oscillatory?  
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If I think of it as a spring mass system this is the spring, this is the mass. It should have 
an oscillatory behavior in time, if the F is 0. If F is nonzero we will have one part which 
is the standard homogenous solution and the other part which comes due to the F. The 
force part of the solution is something that we have to keep in mind when we are 
constructing the numerical solutions to the systems. 
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Let us go to the Newmark’s scheme, it is quite similar to what we have done in the alpha 
family of approximations earlier. The Newmark’s scheme works on this principle that the 
displacement vector, it is essentially component wise at station i is given in terms of the 
displacement vector at station (i-1) plus apart due to the velocity at the station (i-1) plus. I 
will explain this later what does this mean? Similarly, the velocity at station i is given in 
terms of the velocity at station (i-1) plus delta t, it should be acceleration here so a double 
dot at station (i-1) comma beta comma alpha. I need to put it like this, the displacement is 
given in terms of the displacement at the current station in terms of the displacement at 
the previous station and the part due to the velocity at the previous station plus the part 
due to this acceleration term. The velocity is given in terms of the velocity at the previous 
station plus delta t into a part due to the acceleration term. We have a double dot (i-1) 
comma theta in a generic way is equal to one minus theta into a double dot at station (i-1) 
plus theta a double dot at station i.  
 
We have this kind of an interpolation for the acceleration and we see that in the 
interpolation when it is used for the displacement term. I have a separate value of theta 
when I am using interpolation for the velocity I use a separate value of theta. Based on 
the choice of the alpha and the gamma, I will get different families of the Newmark’s 
scheme. How do I choose these families? A member of this family for the 
implementation, stability and accuracy are the two important criteria’s based on which I 
will have to choose. We see that I can write a (i) in terms of a (i-1) a dot (i-1) and the 
acceleration at the step (i-1) and acceleration at the step i.  



 
 

In this representation, I can write by substitution the acceleration at the step i in terms of 
the displacement at the step i minus one, velocity at step (i-1) and acceleration at step i 
minus one. I can write a double dot I in terms of the unknown a (i) and knows at the step 
(i-1). Here we assume that the solution is completely known at step t (i-1). Similarly, the 
velocity at step I will be given in terms of the velocity at step (i-1) plus the part due to the 
accelerations. This is how we are going to update the velocity. Here in this the way we 
have done things explicitly, we do not need to use velocity in the formulation but the 
velocity has to be updated so that it can be used here so if I want to go and do the 
implementation of this what will I do? I will take this formula here expand it out. I will 
take it expand it out and then put it back in the equation that we got in a semi discrete 
form and I get the system of equations which will be used to get me a (i) in terms of what 
is known as the previous time step. Let us look at some choices of the alpha and the 
gamma which will leave to different families of approximations. 
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Here I have written that I will choose alpha and gamma will be written in terms of 2 beta. 
Gamma is equal to 2 beta and if I have alpha equal to 1 by 2, gamma is equal to 2 beta is 
equal to 1 by 2 this is called a constant average method and this scheme is shown to be 
stable. If the alpha is equal to half, gamma is equal to 0 then I get the central difference 
scheme which is said to be conditionally stable. When alpha is equal to 3 by 2, gamma is 
equal to 8 by 5, gamma equal to 2 beta, remember that it is always 2 beta. We get the 
standard Galerkin method which is shown to be stable. Alpha is equal to 3 by 2, gamma 
is equal to 2 then we get the backward difference scheme which is also stable. For the 
conditionally stable schemes where gamma is less than alpha and alpha is greater than 
equal to 1 by 2 which essentially corresponds, we can take the central difference scheme 
falls in that category.  
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In that case, again as we had in the case of the parabolic problem here in the hyperbolic 
problem we have a critical time step size such that delta t has to be less than or equal to 
delta t critical. What defines the delta t critical? It is the natural frequency of the system 
that we have. If I solve this problem K, a is equal to omega squared M a. So for this 
system the maximum natural frequency squared that defines the time step size. The 
bigger is a natural frequency, the smaller is the time step size that we have to take. Why 
should we do that? Because we see that the higher is the natural frequency, the more 
oscillatory is the solution in time as well as in space. In time if it is oscillatory then I need 
at least the time step size to be this much, in order to be able to capture this behavior. The 
time step size is essentially governed by the worst most oscillatory part of the solution 
that the system is trying to represent. 
 
This is the philosophy that we have to keep in mind, remember that as the mesh gets 
refined further and further, the maximum frequency increases. Omega max increases, I 
can now resolve in space higher and higher frequency terms. If I can resolve higher and 
higher frequency terms in space, it tells me that the omega max because as the size of the 
increases omega max also increases and as omega max increases I need to use smaller 
time steps in order to resolve these frequency components. Otherwise the temporal error 
will become large, it may blow up and then the entire job that we have done in trying to 
do a very good approximation in the spatial region will go out of the window. We will 
not be able to get accurate approximations in that case. Remember that if I am doing 
something in the spatial region that is I am trying to refine the approximation there I have 
to do a corresponding job in the temporary region.  
 
Further there are issues that in the spatial region, I have a rate of convergence if I do not 
get the similar rate of convergence in the temporary region, I have to ensure the time 
steps as small enough that in the temporal error, the method may be stable but the 
temporal error is essentially at the same order of magnitude as the spatial error because 



 
 

otherwise the total error in the solution is so large that it will get essentially over powered 
by the spatial error or a temporal error and then the solution is of no use. This is very 
delicate inter plane has to be done. If possible one can think of automatic methods of 
predicting the sizes of the error and then controlling the time step in the mesh in such a 
way that these do come under control. 
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Let us go and look at an implementation in generic way of this approach. Let us start off 
with this a at step i is equal to a at step (i-1) plus delta t a dot at step (i-1) plus I will put 
half t delta squared into we had a double dot gamma (i-1) gamma. I will put it like this 
into one minus gamma a double dot at step (i-1) plus gamma a double dot at step i, so 
from here if I see I will get implies a double dot at step I is equal to from this 
approximation one by 1 by 2 delta t squared gamma into a (i) minus a (i-1) minus delta t 
a dot (i-1), this minus one minus gamma by gamma a double dot i minus one, so this a 
dot is given in terms of the unknown a (i) at the current time and the known a (i-1) a dot 
(i-1) and a double dot (i-1). 
 
I put this back in the differential equation that we have so I will get essentially collecting 
terms I will get differential equation at time station i K into K plus, I will get here one by 
1 by 2 gamma delta t squared M into a at station i is equal to F bar at station i. F bar at 
station i will be F at station i plus the contribution of all these things that is a simple 
algebraic job that has to do. For example, it will be plus 1 by 2 delta t squared gamma 
into M operating on a (i-1) plus one by 1 by 2 delta t gamma into M operating on a dot at 
i and plus M one minus gamma by gamma into M operating on a double dot at i minus 
one. This will construct, this will give me the load vector here and this and then I invert 
this matrix, this matrix is called as K bar.  
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Essentially, once I have this K bar a (i) then I go and apply the boundary condition that is 
according to the problem, I want to force a one at the station i to be equal to 0 because u 
at station at time t is equal to 0 at x equal to 0, so I will force exactly the way we had 
been doing in the static problem and we had discussed for the parabolic problem in the 
last lecture. Enforce the boundary condition let us say enforce essential boundary 
condition to get K double bar a (i) is equal to F double bar i. We will get a (i) is equal to 
K double bar inverse into F double bar at station i. I can construct the solution at time 
station i using all the information at station (i-1) and the load vector at station i itself. So 
this I can do, now we see there is a small problem here when I am talking of station 1 
when i is equal to one, for the station i equal to one I need to obtain, when i equal to 1, I 
assume that I know a at 0, a dot at 0 and double dot at 0 this I know, this I know, this I do 
not know.  
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These two have come from the initial conditions this is something which I do not know 
because the initial condition does not give me the acceleration at time t equal to 0. I have 
to start with something, in order to start with something we do a very simple thing that 
we say that M into a double dot at station 0 is equal to F at station 0 minus K into a at 
station 0 because a is known, implies a double dot at station 0 is equal to M inverse into F 
at station 0 minus K into a at station 0.  
 
I have this formula which I am going to use in order to obtain the double dot at time t 
equal to 0 and this becomes the starting value of a double dot, use this progress in time, 
get the solution. Remember that the time step size has to be small enough to resolve the 
temporal behaviour of the solution. Imagine I am talking of a free vibration problem I do 
not do the separation of variable solution. 
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I use the direct approach that is I want to solve K a plus M a double dot is equal to 0. If I 
want to solve this problem using what we have just done which is the direct approach, I 
should get the oscillatory nature of the solution given the initial conditions and the 
oscillatory nature of the solution should be able to represent the frequency content which 
are there that is the solution should be in terms of linear combinations of the natural 
frequencies for this system, this we know from our basic vibration analysis courses. I 
should be able to resolve in time, all the frequency components because the solution in 
time is going to be cosine omegan t in terms of this sine omegan

 

 t. Depending on the 
highest frequency term which is there, I should be choosing the time step such that this 
also resolved. 

With this, we will finish the temporal part of our approximation. We have seen how to 
construct the semi discrete formulation, apply the various finite difference approaches to 
do the time marching in order to get solutions at various times. We have discussed the 
stability convergence and consistency of these schemes and we have clearly given some 
possible schemes which can be used in a particular temporal solution methodology. In the 
next lecture, we are now going to shift from this set of problems, we are going to look at 
one set of problems that we have not discussed till now which are again very useful to all 
the users of finite elements methods. Users are the people who are in engineering 
mechanics or in structural mechanics, fluid mechanics or in heat transfer. One set of 
problems which are important are the non linear problems. We are not going to deal with 
all the non linear problems, we are going to look at again a sample problem and through 
this sample problem show how we can construct the solutions to the nonlinear problem. 
This is what we are going to do in the next lecture and that is what we will be covering in 
this course.  


