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We have been talking about the vibration problem till now. So let us continue our discussion 

further. We had said that the certain properties of the Eigen value problem that we formed in the 

free vibration case.  
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One is that the finite element that the Eigen values or the natural frequencies obtained from the 

finite element solutions are higher than those obtained by the exact solution or the actual modes. 

This is sometimes referred to as the finite element system being stiffer than the exact one. This is 

some feature of the finite element solution that one has to keep in mind. Why do we have to keep 

it in mind? Because, if I am writing a program and to do the computation of the natural 

frequencies of a system, which is the very simple extension of what we had been developing till 

now. Then as a benchmark, I should test the program for specific problems for which we can 

construct the exact solution. For example, the problem that I have been considering, here in this 

case, when I go and use the finite element approximation and get the natural frequencies, I 



should get the natural frequencies to be higher than that obtained from the exact one and as the 

mesh gets refined, they should converge to the exact one from above. These are certain features 

which have to be kept in mind. If it does not happen then something is wrong in the way I have 

done the programming or in the way I have developed the finite element approximation.  
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Let us also look at some implementation issues. We had said that here I have taken this example 

of a 5 node system and we had let us say that we are taking a piece wise linear approximation. I 

can again take higher order approximations just like we have done the standard finite element 

computation. Here this is the element 1. This is the element 2, element 3 and element 4. So just 

like we did the procedure for static analysis, here we have to obtain the global matrices K and M. 

We have to obtain these global matrices from our finite element computation. Again I will say 

that look what is this K was as I had done ‘0’ to ‘L’ integral of EA phii prime phij prime dx was 

Kij and this can now be written as we have done earlier. That is L is equal to 1, 2, in this case 4, 

the number of elements ‘xl’ to ‘xl+1’ EA phii prime phij

 

 prime. I can break the integral into sum 

of the integral over each of these elements.  



Which of the phii’s are active in the particular element? The only phi which is in the active in 

this element, let us say element 3 is phi3 and phi4. Exactly what we have doing till now will now 

be done and we will compute these matrices at the element level, assemble them in the global 

matrices and that, we have done. But we have to do for the mass matrix also, where the integral 

will be integral of rho phii phij
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So we have to now compute the Element Level Stiffness and Mass Matrices. How do I go about 

doing it? Let us see. So we have our generic element with node l, l+1. This is the element Il. Here 

the basis function from the figure I have drawn which is non zero. The basis function will be phil 

and phil+1. These will correspond to the element level N1 of the element and this will be N2 of 

the element. If I want to write the U(x), the approximation of it in the element Il will be equal to 

alphal phil plus alphal+1 phil+1

 

. These things will not change. These things remains the same as 

what we have been doing till now. We are going to essentially find the effect of these in the 

integrals.  
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We will have integral at the element level xl to xl+1 EA Ni for the element l  prime Nj for the 

element l prime dx, prime means the derivative with respect to x. This is equal to Kij for the 

element l. i is equal to 1 to 2. In fact, if we use higher order approximation, it goes up to P+1 and 

j is equal to 1 to 2. So this will give me 2 by 2 matrix in the case of the element. This will give 

me K for the element l. Similarly, I will have integral from xl to xl+1 rho Ni for the element, Nj 

for the element, dx. This is equal to Mij

 

 for the element l. What is the assembly procedure? 

Assembly procedure will be this i locally at the element level corresponds to some global I and 

similarly, the j at the element level corresponds to some global J. So i = 1 corresponds to l, i = 2 

corresponds to l+1 globally. j = 1 corresponds to l globally and j = 2 corresponds to l+1 globally. 

That is I again use the local to global enumeration routine that we had made long ago in the 1 

dimensional code to give me this information and then I will go and assemble in the following 

way.  
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Kll will be equal to, these are the global level, Kll plus K11 from the element. Kl, l+1 will be equal 

to Kl, l+1 plus K12 for the element. Kl+1, l will be Kl+1, l plus K21 for the element. Kl+1, l+1 will be 

equal to Kl+1, l+1 plus K22 for the element. This is the simple assembly procedure for the K matrix 

is exactly the same as we what we had done and similarly, we will do for the mass matrix. The 

assembly that is Mll is equal to Mll plus M11 l and Ml, l+1 is equal to Ml, l+1 plus M12
 l and Ml+1, l 

is equal to Ml+1, l plus M21
 l and finally, Ml+1, l+1 is equal to Ml+1, l+1 plus M22

 

 for the element. We 

do this assemble procedure. We loop our all the element and we construct the global K and the 

M matrices.  
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Now the question is that the K and the M, if I take again our problem that we had considered, the 

mesh that we have taken, this will be a 5 by 5 system, but from the boundary condition at this 

end, I have to put alpha1 equal to 0 because the U(x) has to be 0 at the point x equal to 0. So how 

do I enforce alpha1

 

 equal to 0?   
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One way is to actually take the global systems and eliminate alpha1. Set alpha1 equal to 0 from 

boundary condition. We can do that reduce this 5 by 5 system to 4 by 4 system that is that 

remove the variable alpha1 and the first equation. We actually solving for the system which will 

have K22, K23, K24, K25 all the way down to K52, K53, K54, K55, this into alpha2, alpha3, alpha4, 

alpha5. This will be equal to lambda into M22 M23 and so on, M25 M52 M53 and so on up to M55

 

 

into alpha. So this will be the reduce system or we can use the tool that we have developed for 

doing the elimination.  
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We go to the 5 by 5 system. How did we set alpha equal to 0 on both sides? We simply 

eliminate. We will do this, set this term to 1, first entry, then make it 0 then I will have K22 K23 

K24 K25 and so on, into the alpha array, alpha vector is equal to lambda into, I will put again here 

1 0, 0, 0, 0, 0, 0, 0, 0 and then M22 and so on. First row gets completely decoupled and we get 

essentially alpha1 is equal to lambda alpha1. This will give me lambda is equal to 1. So we will 

get 1 Eigen value as 1, throw it out. We will not consider this Eigen value in our system of 

natural frequencies. We will throw all these Eigen values out and the remaining 4 Eigen values 

will be the ones, we are going to take. We will take lambda2, lambda3, lambda4, and lambda5. 

This will become our modes. This become the first mode, this becomes second mode and so on. 



This will actually lead to our omega1, this will lead to omega2, this will lead to omega3 and this 

will be omega4

 

. We should check that indeed the Eigen values are the same as what we would 

have obtained by doing this. These are the next 1 would be equivalent, but throw this Eigen 

value out on a certain equations. With this, we should be in a position to set up the Eigen value 

problem and solve it.  
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One more thing that we would like to talk of is again while doing this integration, we go to the 

master element, use all the two set we have developed as for as integration over the master 

element is concerned. Do the numerical integrations. Create the matrices and we will get a 

solution.  
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Let us go back and see what we had done as far as the exact solution is concerned. We had these 

functions as our modes corresponding to the natural frequencies omega1, omega2, omega3 and 

omega4

(Refer Slide Time: 14:59) 

 and we set these modes are oscillatory in nature and we set keep a note of that because 

this was needed in what we do.  

 

 
 



The first mode shape is like this. Second one is like this. Third one is like this. Imagine, let us go 

back and recreate this picture in what we are doing.  
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Let us come here. This is x is equal to l and here is the exact U1 as the function of x 

corresponding to omega1. What will be the finite element approximation do if I took the one 

element solution? That is if I took a mesh with only one element. This is l. This is 0. I simply put 

one element. In that case, we will see that we will get a 1 by 1 system because one element will 

have the two nodes. This node will be knocked off will be left only in terms of this one and the 

solution may look some thing like this. This will be we get as U1FE

 

 from the finite element 

solution. It will be a straight line. This curve is quite a nice curve. So this will not be such a bad 

approximation and we can see that if we solve the one element problem, that is a single degree of 

problem, we will get an Eigen value which is a very close to the exact point. 
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In fact, we can do it here. Let us do it here. Here if this is 0, this is l the first shape function will 

be essentially this one and this one. This shape function will be x by L and this one will be 1-(x 

by L). So we are only interested in this. uFE as the function of x will be equal to alpha x over L. 

Integral 0 to L, EA, the derivative of x by L. So 1 by L into 1 by L, dx is equal to K11. This will 

be equal to EA by L. Similarly, the mass matrix will be 0 to L, rho into x squared by L squared 

dx. This will be equal to rho by L squared into x cubed by 3. So it will be (1 by 3) L3. So this will 

be equal to rho L by 3. We get this is M11. If I do this problem, I will get K11 into alpha is equal 

to lambda M11 into alpha. So lambda will be equal to K11 by M11

 

 which will be equal to EA by 

L divided by rho L by 3. This will be equal to 3 EA by rho L squared.  
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Lambda will be 3 EA by rho L squared, lambda from the finite element solution. So this is what 

we will get for that problem. Once we have this, now what about the alpha? The alpha can now 

be computed quite easily but let us look at this lambda. What was the lambda exact?  
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If I go back to the earlier result, lambda exact will be equal to, it will be essentially the square of 

this, because the way we have done omega squared was our lambda. So let us go to omega and 

so it will be 2 into n minus 1, into pi by 2L into EA by rho, whole squared pi by 2L into EA by 

rho whole squared.  
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That will be pi by 2L into EA by rho whole thing squared. This will be equal to pi squared by 

four into EA by rho L squared. If we see that pi squared will be approximately 10, so 10 by 4 and 

this will be approximately 2.5 and this is approximately 2.5 EA by rho L2

 

. This is the lambda 

exact. The lambda exact is less than the lambda, we have obtained and the natural frequency will 

be square root of this. This is quite close as an approximation. Not bad with one element, we 

could create a solution which is quite close to the one which we actually needed. 
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Now let us go back and look at the two term solution, if I did. What will happen, if I did the two 

term solution? Put this, what will happen if I do the two term solution that is when I put two 

elements? This approximation of the mode shape will become better. As this becomes better, I 

will see that the lambda1 FE will come much closer to lambda1 exact and further, if I took this 1 

term solution, I just cannot expect to do a good job for the second mode. There is no second 

mode which I can capture. With the two term solution now, I will have two Eigen values. Two 

frequencies can seemingly be approximated with the two term solution. What was the second 

mode? The second mode would do this. In the two term solution, for the one mode, very good, 

for the second mode, I will do most probably, I will do this. This is certainly not a very good 

approximation of the second mode, but nevertheless, it is an approximation and we will see that 

when I took two element mesh, the lambda1FE will be very close to the lambda1 that I exact but 

the lambda2 FE will not be as close as to the lambda2 exact but it will again be higher, not so bad, 

but badness will be certainly a mode as compared to the lambda1

 

. As we refined the mesh further 

and further, the quality of the approximation of the natural frequency or the Eigen value 

corresponding to this problem becomes better and better.  
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With mesh size h, the lambdaFE or in that sense omegaFE tends to the omega exact. There is a 

very interesting way of measuring it and that is given by if we say in this case, where we have 

distinct Eigen values. Lambdai minus lambdaiFE due to the finite element solution for a given 

mesh, I could have hundred elements in the mesh or I could have five elements in the mesh but 

as the mesh is refined that is has the h changes, I am using the h method of the finite element 

method, this will be less than equal to some constant into the strain energy of Ui exact minus 

UiFE. This is the very important result. This U is the strain energy which means that is given by 

integral 0 to L, EA into Ui exact prime minus UiFE

 

 prime whole squared dx. So this depends on 

the strain energy of the error, this is called the strain energy of the error in the Eigen mode or in 

the Eigen function. How well can finite element method approximate the corresponding mode 

also reflects on how nicely can we obtain the corresponding frequency? 
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This number is dependent on this squared and here, in the case of Eigen value problem, 

essentially for such a case, lambdai exact minus lambdai 

 

, actually I should have it other way 

now but since I have taken the absolute value. It is something C h to the power of 2P. C will 

change for the corresponding mode that is as we go to the higher and higher frequencies, this 

constant will degenerate further. We will get bigger and bigger as the weight of the convergence 

will be this. We get twice the rate of convergence of the normal finite element solution. We had 

talked about the energy norm that is square root of this strain energy. Here, the error in the Eigen 

value converges as the strain energy itself. Eigen value problems are much more forgiving as 

compared to getting information about the point by stresses point by strains. We can obtain our 

Eigen modes with the much coarse mesh, pretty good values of the Eigen values or the natural 

frequency can come with the much coarse mesh as compared to what will be needed to get point 

wise estimation of the stresses and so on and other issue.  

This is one thing that one should keep in mind that depending on the particular problem, we have 

to design the approximation in such a way that we get accurate results and we should know 

something more about how the solution behaves, in order to be confident of what we are 

computing and what we are giving to the particular user. Incidentally, this same feature what we 



had discussed here also works in the two dimensional problem. Let us say, I am talking of a 

domain with the crack, a crack domain. Here also I may be interested in solving the elasticity 

problem. I may be interested in getting the natural frequencies. In that case, what we will get is 

essentially the nature of solution and how would we do the approximation in the vicinity of the 

crack tip is going to effect the quality of the natural frequencies that we compute for the crack 

rate. So the meshing in the vicinity of the crack tip becomes very important. We can not ignore it 

and in fact, in this case, lambdai exact minus lambdaiFE

 

 will go essentially as some constant h to 

the power of minimum of 2 alpha, P.  

It depends on whether alpha is smaller P is small and in general, the crack leads to where alpha is 

the exponent of the leading singular part of the solution. In the case of the crack, it is essentially 

half. Any P take will be certainly greater than half. So alpha will dominate that is the nature of 

the singularity at the crack tip is going to dominate the rate of conversion and then we have to do 

all the things that we did for the stress computation to get the good solution but nevertheless, the 

rate of convergence has the two in the power. It is certainly better than the point wise data. Here, 

we are talking lambda as a global data.  
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Similarly, Eigen value problems can also be there in the case of buckling, buckling of plates, 

beams etc. In this case, as we take the P against deflection for a beam, let us say the tip 

deflection then where I have how is the load applied. I have a compressive load being applied to 

the structure this center. This compressive load should lead to only an actual deformation but 

they comes a value if I keep on increasing the load, that comes the value of the load at which the 

beam or this bar does not deflect inclined. It wants to do this. It tries to have a transverse 

deflection. How do you take care of that? For that we will look at equilibrium in the deform 

configuration and there is a whole theory behind how to do the analysis. Nevertheless, as the P is 

increases, this is the transverse deflection. Let us say it is of the tip. This increases that comes the 

critical value then it falls. This is essentially what we call as a buckling load of the critical and 

we try to approximate it through this is solving a non-linear problem. We try to approximate it 

using a linearized problem. In the non-linear problem, we use concepts from finite deformation 

elasticity and all these things, finite elasticity but we are not going to use it here.  

 

The idealization is based on assuming that up to the critical load, the member essentially behaves 

in a linear elastic way that is it is only going to give actual deformations, negative deformation 

because of the compression.  
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At the critical load, it develops, transverse deflections also and without going into the details of 

it, we will get that let us say that I am applying a load P is just less than P is equal to P critical 

minus a very small number, in that case equilibrium under the action of the load for this member 

is governed by standard linear elasticity that is I will get integral 0 to L in the energy sense EA 

du divided by dx. I am just writing the weak form of the barred problem. dv divided by dx into 

dx is equal to P into v at L or minus P into v at L. This is what drives the problem.  

 

At the critical load, at this point, increases the load little bit so that I get P critical. At that point, 

this strain we had assumed is given by du divided by dx, not any more, at this point, the strain 

will be governed by the non-linear or the finite strain or the green strain. It will be given as 

essentially du divided by dx plus as an approximation half of dw divided by dx whole squared 

where w is the transverse deflection. This is essentially by throwing out some higher order terms. 

This is called Von Karman theory approach. Cut anywhere the actual forces P and then we can 

show that we will have when we increase the load little bit. This part is assumed that I am in 

equilibrium corresponding to this load. From here, I am applying the extra bit that is I am 

applying the extra load to go to the new equilibrium position. The new equilibrium position 

given this will have an additional displacement in the plane and the actual direction and the 

transverse direction. This is generally given in terms of what we call as perturbation 

displacements. From the current equilibrium configuration corresponding to this and then it can 

be shown that this whole thing can be written in terms of the following weak form. This will be 

equal to P integral 0 to L into dw P divided by dx into dw bar P dx.  

 

This essentially gives if I take now w P as the incremental or the perturbational transverse 

deflection, write it using the finite element representation using the c 1 elements, this one will be 

approximated using the finite element way and this will be corresponding test function or the rate 

function and this is again on the right hand side, I have the unknown w 

 

P and here is the test 

function. This will lead again to an Eigen value problem of the following type.  
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The K, this is for the bending into alpha is equal to P into what we call as K G into alpha, where 

is this coming from, this is called geometric stiffness matrix or geometric part, in the sense, that 

it is coming from this part of the strain that is by representing the large strain components. The 

entries of K, Kij is equal to integral 0 to L, EI phii double prime, phij double prime and Kij 

geometric is equal to integral of 0 to L. I will go back and see what do I have phii prime, phij 

prime dx. I am not writing these things in detail. I am really interested in finding this load P 

actually this happen at which the transverse deflection is present. There again I setup this. Now 

phii or c 1 functions, this is very important that these will be c 1, because we want phii double 

prime phij

 

 double prime to be defined. 

We do the same thing. Again this is the where the w P as the function of x is given as sum alphai  

phii . i is equal to 1 to some number of unknowns N. This gives me the Eigen value problem 

where lambda is equal to P that is the buckling and that is the load unknown load and then the 

critical load out of this is essentially equal to the minimum Eigen value that we have. That is 

what I am looking at. I would like to obtain the minimum Eigen value corresponding to this 

problem. Here again I get P critical is equal to the minimum Eigen value and how many Eigen 

values will get for this system will get N by N depending on the number of unknowns.  
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Similarly, if I went and solve this in the continual form that is we will get, if we do the 

formulation of this in an exact form P. This would be the exact differential equation that we have 

and again if we solve using what we had already used for the free vibration problem, I will 

actually get infinite values of P because this is an Eigen value problem at the continual level, 

infinite values of P. They will be distinct value of P and corresponding to each P, I will get a 

buckled mode shape. That is exactly what we do in our buckling analysis and if I will take a rod 

like this and apply to this, a compressive load, it deforms. It will deform like this. So the rod will 

become this at P critical. When the load becomes P critical, the rod will become this.  
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As we had talked about earlier here, we have lambda1, lambda2 up to lambda N such that 

lambda1 is less than equal to lambda2 is less than equal to lambda3

 

 and so on. The first Eigen 

value is the Eigen value I am interesting in. This is very important also from an implementation 

point of view because in this analysis, we are only interested most of only interest in the critical 

load. I am interested only the first Eigen value. If I am interested in the first Eigen value, I really 

do not need to compute for the remaining Eigen values. If I do not need to compute for the 

remaining Eigen values, I can use faster solvers which give me the first Eigen value very nicely. 

The cost of computation comes down tremendously, if I am interested in only the first few Eigen 

value and I am not demanding all the Eigen values.  
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So as an implementational issue computation cost, for the Eigen value problems, this is the big 

issue. When I use I want to get information about the first few Eigen values or one Eigen value 

and the cost comes down tremendously. What will be the accuracy of the P critical that we 

obtained? Again, it will be determined by essentially, this bending strain energy of the 

perturbation transverse displacement w P. How well are we approximating w 

 

P that is how well 

is the finite element solution going to represent this mode? With one element, I will get this, so 

exactly the same theory. Certainly, there are certain differences but the same ideas can be 

extended to the Eigen value problem under computation.  

There are lots of Eigen values solvers available in the open source. We can download it from the 

net or numerical recipes in Fortran and C then so many books on those they also have Eigen 

value solvers which are generally a little bit more difficult to make program and finally make it 

useful for computation as compared to the solvers, we had for the inversion of the matrices. 

From the open source, we can have many such algorithms which are available. We can go to a 

site called netlib.org that is an open source site, we can download lots of bookings from there. 

There is something called ARPACK which is very powerful, generalize Eigen value solvers 



package available again as a free open source package. It can be used to compute Eigen values of 

large systems. Here we did not really say what the size of the system is.  
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Depending on the problem, 1-D problem, meshes are small. Approximation is small. When I 

want to do this Eigen value problem in 2-D or 3-D for example, in the 2D, very important thing 

is when I am interested in plate buckling, in this case, the plate is subjected to a compressive load 

or even to a shear load. Here is the plate subjected to some shear loads. In that case, I am 

interested in the critical value of this load. In that case, if the plate has cut outs everywhere, crack 

sitting some where at various sites. I have to resolve these geometrical details properly so that 

the finite element solution corresponding to the buckled mode shape is not bad. The finite 

element solution has to be good in order to have a good value of the P critical. We have to do the 

meshing which is detailed enough to take care of these details. This leads to a very large sparse 

Eigen value problem. The mass matrix and the K and the stiffness matrix could be 20000, 30000 

or 40,000 by 40,000 size. Then getting the Eigen values becomes the tough job and some of 

these algorithms have to be used. So there is the lot of literature available on how to simply solve 

a large sparse Eigen value problem. We can use straight away from the literature.  

 



In this lecture, we are trying to cover some classes of Eigen value problems that arise in 

mechanics. Some typical example that we have taken is the free vibration problem or the 

buckling problem, both of which give rise to Eigen value problems which have to be solve first 

and formulated in the finite element sense and then they have to be solved and then check 

whether those numbers are reliable or not. Benchmark problems have to be solved and for the 

students it will not be very difficult to program this in the existing static analysis codes because 

we already have the structure with which we have the shape function routines, we have our 

element calculation routines, where all we have to do is add this extra parts which may be for 

computation of the mass matrix or computation of the geometric stiffness matrix add them. Do 

follow the same procedure that we are following for the assembly. Assemble these matrices. 

Obtain, download or write whichever way we like to do. Get an Eigen value solver. Put it and 

check. This way, we can now expand our codes that we have developed the 1D and the 2D code, 

to also take care of Eigen value problems and so we can create much more information which is 

useful to a designer or to an analyst.  
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In the next lecture, we are going to look at some problems which fall in the category of non-

linear problems. Till now we have only dealt with linear problems. We will add non linearity in 



to the system which is not forcibly done but this is where the real situation is actually, most of 

the problems in real life are non-linear in nature. Those nonlinearities, if we add to the system 

then what happens to the response of the system in terms of the finite element solutions, that is 

how do I go ahead and do a finite element computation, which will give me the information that 

I need correctly? So we are going to look at finite element formulation for nonlinear problems 

and from there we will start. A very simple example is this. I take a bar again a stick to a bar that 

we had. Here is P. Here is f(x) and I will now make it lie on elastic supports on either side such 

that this can be represented by distributed actual spring which can be given with the spring 

constant k(x). We had taken it earlier as k0

 

. I will add to it to a part which is this.  

The spring now has the nonlinear part in the definition of the spring constant. How do I take care 

of the response of the bar with this kind of a support spring? Example, this could be the effect of 

the rubbery support, where the rubber behaves in the nonlinear way. We should try to find its 

information will be respect to the force which is applied. This could be a model of rubbery 

spring, something like that. We could add more complexities but primarily, we would take this 

problem as our problem for which we will develop the non linear analysis tools. We will solve 

the problem and we see, how well or how badly do we do with respect to, what is the exact 

solution of this problem.  


