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Till now we have discussed the static problem in 1 and 2 dimensions and with a little bit of 

introduction to what happens in 3 dimensions. Let us now move on to a different class of 

problems.  
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So what we are going to look at need not necessarily be from the same type of analysis. We will 

look at Eigen value problems and under this big class of Eigen value problems, we are going to 

look at to start up with specific example of the free vibration problem. What do we mean by the 

free vibration problem? In order to get to the free vibration problem, let us do a review of what 

do we mean by it in the case of a deformable structure. 

Let us again go back to our 1 dimensional example problem of a bar, possibly of a variable cross 

section but with the central line of the symmetry with an end load P which is a function of where 

it is being applied and time and a distributed load in the interior. The loading is changing with 

time that is the end load which is applied on the bar is changing with time as well as the 



 
 

distributed load on the body. It could be due to any temporal disturbances arising from the 

environment in which the body exists. That is not the major issue but issue is we now like to set 

up the equation of motion. Till now we had been only talking about equation of equilibrium or 

from the conservation of linear momentum. We did not have the inertia part. Now we have to 

build in the inertia part. Go again to a section at a distance x from the end. This is at the end x 

equal to l and take the section of size delta x. We will assume that the material is such that the E 

and the area are functions of x. The density is also a function of x and this density is mass per 

unit length. This is what we mean by this density mass per unit length.  

When we have this thing given to us, these quantities, we would now like to pose, what is the 

equation of motion corresponding to this small piece that we have cut of? Let us take that small 

piece and look at the force system acting on it. So the interaction of this piece with its neighbor 

on this side is this actual force F at x + delta x. Interaction of this piece on this side with its 

remaining neighbor is the force F at x. The effect of the distributed load is q delta x and we have 

to remember that this piece has an acceleration given by the second derivative of u with respect 

to time, u double dot as, when I write dots, it means derivative with respect to time. This is 

essentially under this force system, this piece is going to move. So how do I write the equation of 

motion? This all must have done in the standard dynamics classes that I will have in the actual 

direction.  
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If I look at force balance, F (x + delta x) minus F(x), plus f as the function of x and t, delta x, this 

will be resultant force acting on this piece in the positive x direction. This will be equal to rho 

delta x which is the mass of this piece into the acceleration of this piece. The resultant force is 

equal to the mass into acceleration. So this is very easy for us to do, because we have already 

done this part in the static case. So this part will give me del del x of EA into del u divided by del 

x into delta x plus f, I am dropping the x and t part. It is understood now is equal to rho u double 

dot delta x. In the standard way, we remove this part and we are left with the differential 

equation del del x of EA del u divided by del x plus f is equal to rho u dot for all x lying from 0 

to L. This is for the dynamic case, the equation of motion for this actual bar member. We would 

like to do the free vibration analysis. What does the free vibration analysis mean? In the case of 

the free vibration analysis, this f is 0. The equation of motion is del del x of EA del u divided by 

del x is equal to rho u double dot. How is the vibration happening? It is due to the initial 

conditions, initial perturbations or disturbances given to the body. We are interested in this 

analysis. What do we do next in the case of the free vibration analysis?  
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In this case, we can do a partition or a separation of variable approach and write U is a function 

of x, a pure function of x and pure function of t, of x and t. So this is a partition or separation of 

variable approach that we have used. So we will use the separation variable approach and once 

we use it, the differential equation will now become d dx of EA into dU divided by dx. This is 

the big U into T is equal to rho U into d2T divided by dt squared, so this is what the differential 

equation will become.  

Let us take a simple case first or in turn have to take it. Let us now take this and see that here is a 

time part, here is the time part, this is the space part, and this is the space part. That is the 

function of x and t. So let us bring the 2 parts together. So we have implies d dx of EA dU 

divided by dx divided by rho U. This is equal to d2T divided by dt squared divided by T. Since, 

this is a pure function of x. This is a pure function of t. The 2 can only be equal, when they both 

are constant. We cannot have a function of x being equal to function of time for all x and time 

except when they both equal to constant and that constant, we know from our basic vibration 

analysis is given in terms of minus omega squared with the argument that really in terms of time, 

the solution is going to remain bounded and oscillatory in nature. It will not blow up so because 

of that this function has to be minus omega squared. All that we can learn in our vibrations 

classes. 
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Let us go and look at this problem as the 2 separate problems that implies I will have d dx of EA, 

dU divided by dx plus rho omega squared U is equal to 0, 0 less than x less than L. And I will 

have d2T divided by dt squared plus omega squared t is equal to 0, for t0

Let us take a simple case of the bar with rho is constant. It is not a function of x and so is EA that 

is, I have a uniform cross section and it does not change neither does the material change. If it 

take that special case, then as an example, we will get implies, if I look at the problem 

corresponding to the U, I will get, EA d2U divided by dx squared plus rho U is equal to 0 in 0 to 

L. 

 is less than t is less than 

some t final so initial time final time, that is why we have this. We can go on forever also. That is 

not the issue. We are interested in looking at this problem. Why? Because this problem gives us 

what is the value of this omega? Corresponding to the omega, what is the value of this U? So 

where omega forms the natural frequencies and U is the corresponding mode that is 

corresponding to this omega, what is the corresponding shape deflected shape of the bar as a 

function of x? How do we solve it?  
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It will be into omega squared, omega squared rho U will be 0. How do I find omega and how do 

I find the corresponding U’s? As for as U is concerned, U at 0 for all times the displacement 

small u as the function of x and t was equal to 0, at x equal to 0. So U of 0 is equal to 0 from the 

fixed boundary condition at 0. For this particular problem, it need not be the same for all 

problems, boundary condition at x equal to 0.  
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Further, we also have in the case of the free vibration problem, we are also going to force our 

this P as the function of L and t as the function of time to be equal to 0, because there is no 

external forcing function acting on the body. So for the free vibration problem, F will also be 0, 

P will also be 0. So in our case, what we will get? We will show it later on.  
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EA dU divided by dx is equal to P is equal to 0. This is at point x equal to L. This is equal to P 

which is equal to 0. So this is at free end. The force at the free end will be given in terms of EA 

dU divided by dx because that is the actual force. This is equal to P which is equal to 0. 

As far as this is concerned, this representation of the solution, in this case the solution can be 

represented as e to the power of alpha x implies we will get EA alpha squared plus omega 

squared rho is equal to 0 implies alpha is equal to plus minus i omega root of rho by EA, if I do 

this, alpha squared is equal to minus omega squared of rho divided by EA in the root of the 

minus will be plus minus i omega root of rho by EA.  
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This will give the representation of U of x becomes equal to, we can write it, A1 cosine alpha x 

plus A2 sine alpha x because the alpha came out to be imaginary. So it is in terms of this. Now U 

at 0 equal to 0 implies the A1 is equal to 0, because cos alpha x becomes 1. This term becomes 0. 

So I am left with A1. We will have EA dU divided by dx at L is equal to 0 implies A2 alpha cos 

alpha L is equal to 0. We are interested in the free vibration analysis that is we want the non 

trivial modes and the corresponding frequencies. Now if I say, this is equal to 0 which means A2 

equal to 0. We will end up getting a trivial solution. In order to not get a trivial solution, we want 

cos alpha L equal to 0 implies alpha L is equal to (2n-1) pi by 2, n is equal to 1, 2 and so on. It 

implies we will now write alphan is equal to (2n-1) pi by 2L, we have so called infinite modes. In 



 
 

the case of a continuous system, we will have infinite natural frequencies. This is the very 

important point that we have to keep in mind before we progress to how to do the finite element 

approximation. So we have these infinite natural frequencies, for n going from 1 to infinity, 1, 2, 

3 up to infinity and given this alphan
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, we have the corresponding mode.  

 

We will have alphan is equal to omegan root of rho over EA implies omegan is equal to (2n-1) pi 

by 2L into root of EA by rho. This is what we call as the natural frequency and by putting this 

value of alphan, this expression for alphan in the expression for the corresponding U see 

remember , we had this U here, we will get, U what we know as the corresponding mode for the 

natural frequency, this will be equal to sin alphan

 

 x, n th natural frequency, nth mode. This is 

very important thing to keep in mind, before we go for the approximation. Before we do the 

approximation of anything, we should not do it blindly, we should know what exactly the nature 

of the functions is, we are trying to approximate. All of the entities that we are going to 

approximate, nature not that we have to know the exact function. We should be able to say what 

is the nature? The nature is that these are oscillatory in nature and not only oscillatory as the n 

rises the oscillatory nature becomes more and more pronounce. 
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For example for this problem if I plot, this Un s as the function of x, this is x equal to L, this is L 

by 2. So here I will plot the Un(x). U1 is essentially a sin of alpha1 x which is 0 at x equal to 0, at 

x equal to l, it becomes 1 and we get something like this as U1, U1(x). If I look at U2 what will 

happen is, U2 will do the following. It will go up come, this is U2(x). Similarly, if I look at 

U3(x), it will do the following. Let me reiterate that U3

We have these solutions for this then how do we go and construct a finite element solution? How 

to construct a finite element approximation of omega

(x) is this function which is given by the 

corresponding choice. As the alpha is increasing, the n is increasing, this function the mode 

becomes more and more oscillatory in nature and this way, I can continue. This picture we have 

to have in mind because we have to see how well is the finite element solution doing as far as 

this problem is concerned.  

n and Un

 

 as the function of x? In order to do 

this, we will go back to the differential equation that we had created as far as the spatial part is 

concerned, this differential equation. Let us come to that differential equation and write it down.  
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We will have d dx of EA dU divided by dx is equal to rho U, 0 less than x less than L. This is 

equal to minus omega squared rho U or I will erase it and rewrite it, here for the convenience 

plus omega squared rho U is equal to 0. In the standard finite element setting that we have been 

following till now over and over again. Take this differential equation multiply it with a weight 

function w and let me have w and the omega very clearly written of, integrated from 0 to L, then 

we will get, this will give me integral 0 to L, d dx of EA dU divided by dx plus omega squared 

rho U whole thing into w dx is equal to 0. This is the weighted residual form for this given 

differential equation, where omega is an unknown and U is an unknown. We have to solve for 

both. First we have to set up that problem. We see here again, we have the same problem that 

second derivative of u is sitting, w is sitting by itself. So do an integration by parts once for this 

quantity and this integration by parts will give me, integral of 0 to L, dx minus of this into dw 

divided by dx into dx plus integral 0 to L, I can take the omega squared out, rho u wdx, this will 

be equal to EA dU divided by dx into w evaluated at 0 and L. 

From what we have done earlier, this part corresponds to the specified force on the boundary. 

This part has to be made 0 wherever the U is specified to be 0 on the boundary. At x is equal to 

0, U is equal to 0, big U is equal to 0. So w also has to be 0, at x equal to l for the free vibration 

problem EA dU divided by dx is equal to P is equal to 0. So that, this term is 0 at both the 

boundary. So I can knock this of. So this becomes equal to 0.  
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If I now write this weak form, as we have obtained here, this is the weak form, we will write it as 

integral of 0 to L, EA dU divided by dx into dw divided by dx is equal to omega squared integral 

0 to L, rho Uw dx. This is the weak form of the problem that we want to solve. Once we have 

this weak form then what do we do? We have to now create a finite element approximation. How 

do we do it? We see that again in this case, we want dU divided by dx to be defined. Similarly, 

dw divided by dx is to be defined. So we want functions U and w for which the first derivative is 

defined. That is the functions need to be only continues, so as far as the approximation will go to 

the C 0 approximation.  
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Now we will construct. So let us say that we have a bar, bar is broken into some number of 

elements. Let us this is 1, 2 as an example 3, 4, 5, I will go for the simplest possible 

representation of the basis functions which corresponds to the C 0 approximation which we have 

already done. We have this add functions. Everything else is exactly like what we did in the 

static problem, at all that we set up. Here we will have our phi1. This is basis function phi2. This 

is basis function phi3. This is phi4 and this is phi5. We will write U as the function of x is equal 

to sum, i going from 1 to 5, here alphai phii. If I have, instead of 5, I generalize it. If I have N, 

then I will replace it by N. As many number of elements that we need, so here we had 4 elements 

4 plus 1 is 5 degrees of freedom and if we have N elements and N plus 1 degrees of freedom. 

That is not a problem. So this is the representation that we do for the U of x. Similarly, the way 

we have done, the w of x will also be equal to sum i is equal to 1 to N. I will generalize it betai 

phii

 

 of x.  
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So we substitute this representation, so choose w as the function of x to be equal to phii

(Refer Slide Time: 30:25)  

 of x 

because this choice is allowed from what we had argued earlier. Remember that in the charge for 

the w.  

 

 



 
 

The w has to satisfy the essential conditions wherever they are specified. In this problem for 

example beta1 has to be equal to 0 that is in the representation of w will actually start from I 

equal to 2 to N because the part multiplying phi1
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 is 0, the w has to be 0 at 0. 

 

So given all those things, we choose w(x) is equal to phii(x) put it in the weak form that we have 

obtained, we will get implies integral 0 to L EA into sigma i is equal to 1 to N alphai. Instead of 

i, I will put it j, just again not to confuse alphaj phij prime into the dw divided by dx which is 

phii prime. Prime means derivative with respect to x is equal to omega squared integral 0 to L 

rho into sigmaj is equal to 1 to n alphaj phij phii dx. This will imply that we will have sum j is 

equal to 1 to N, alphaj into integral 0 to L EA phij prime phii prime dx. This is equal to omega 

squared sum 0 to L phij phii dx. This I will put again in the brackets. When w is equal to phi i 

that gives me the i th equation as we have done earlier. For the ith rho this corresponds to the ijth 

entry corresponding to alphaj here also corresponds to the ijth entry corresponding to alphaj. 

From basic dynamics we will know that this part which comes due to the EA is called the 

stiffness part, the part coming due to the rho. I will have the rho setting here, the part coming due 

to the rho is called the mass part so this is essentially component Kij of the so called stiffness 

matrix this is the component Mij where M, K is called the stiffness matrix and M is called the 

mass matrix. 
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We have here the problem K alpha is equal to omega squared M alpha where we have given 

what are the entries of the matrix K entries of the matrix M. This problem that we have written is 

called a generalized Eigen value problem because in general the standard Eigen value problem is 

in the form K alpha is equal to lambda alpha. This I can write as quantity lambda, omega squared 

is replaced with lambda look whether things are consistent or not. If I look at how we have done 

things? K is equal to K transpose that is K is symmetric. Similarly, M will be equal to M 

transpose that is M is also symmetric, the stiffness and the mass matrix in this case are 

symmetric. The mass matrix is diagonal not necessarily, but all we can say is mass matrix is 

symmetric. If these two things are symmetric then we say that the Eigen value lambda is going to 

be real for this problem which means that our omega squared is going to be a real number if it is 

a complex then we are in trouble because it makes no sense so this tells success looking at it that 

yes it is going to give us a real Eigen value. This matrix K will turn out to be K and M or going 

to turn out to be symmetric positive definite. They will turn out after imposing the boundary 

conditions to be symmetric positive definite so in this case your lambda will not only be real but 

it will also be positive. Everything is consistent implies omega squared is greater than 0, implies 

omega is greater is a real number which is greater than 0. It is a real positive number so this is 

the crux of what we have done and we see from the actual solution that exact solution that we 

had done omega was a number. It was a positive number so what are seen that here in the parallel 



 
 

problem that we have created omega or the omega or the lambda turns out to be positive 

numbers. Here the problem is an N by N system. M and N or N by N matrices where n is a 

number of unknowns in the problem. In the unknowns in the problem means the number of basis 

function which have been used to represent the solution u as the function of x. 
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We will have N by N problem which will imply we have N Eigen values which are given by 

lambdai, i going from 1 to N and corresponding to lambdai we will get a vector alphai. This in 

the matrix problem sense is the corresponding Eigen vector so corresponding to the i th Eigen 

value we have the corresponding ith Eigen vector alphai or we can talk of the Eigen pair lambda i 

and alphai

 

 from this Eigen value problem. 
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Solve for the Eigen values of this, I get lambdai put the lambdai back into this expression and we 

will get the corresponding alphai
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Given this alphai, a corresponding mode the i th mode Ui(x) will be equal to sigma i is equal to 1 

to N alphai phii so given this Eigen vector alphai, we can construct the Eigen function or the 

mode shape which is N by Ui(x). So this essentially is the crux of what we are doing with the 



 
 

finite element method here, some more features of what we get is that here if I look at the exact 

solution, the exact Eigen values or the Eigen vectors corresponding to what we have done here. 
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We can arrange this omega’s in the sequence such that omega1 is less than omega2 is less than 

omega3

 

. We have in this problem, we have so called distinct Eigen values in fact these are the 

Eigen values of the continuous problem or the distinct natural frequencies. 
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In the case of the problem that we have posed the matrix problem, we will get the lambdais are 

also distinct that is you have a different value of lambdai. Given this lambdai your omegai is 

equal to root of lambdai which is also distinct. These are distinct, in this case these are some 

things that we have to keep in mind that some features of the solution which may not always be 

true. Here we are talking of distinct Eigen values that is, an Eigen value is not repeated if the 

Eigen value is repeated which means corresponding to that Eigen value we have multiple Eigen 

vectors. That is the completely different situation which has to be handled in a different way, I 

mean we have to talk about it differently we do not handled it differently. Here we are only 

concentrating on problems where the Eigen values are distinct so I have this representation of 

ui

 

(x) and now pretty much we have the solution.  
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Here is the exact and here is the FE where from N term. The exact omega1 is this, omega1 FE is 

this. The first Eigen value corresponding to the finite element solution this is an approximation 

of the exact one. Here is the exact one omega2,FE is the approximation of the second Eigen 

frequency and so on we continue till omegan so the nth omega that we get from the finite 

element solution or n th Eigen values the square root of that is an approximation of the nth 

natural frequency because they are distinct so this is an approximation of the nth natural 

frequency. We will get here, this value will be very good depending on the mesh and as we keep 

on going further down that is go to the higher frequencies. The omega, as I go higher and higher 

omegai,FE will be a more and more inferior approximation of the actual omegai. This will be a 

deteriorating approximation of omegai. As i increases, this is very important that as the i 

increases the omegai that we get from the finite element solution becomes worse and worse 

approximation of the actual omegai

 

. So in most of the applications we are only interested in the 

first few natural frequencies, so in order to get those first few natural frequencies properly we 

have to use a mesh which is sufficiently fine and we see that here if I look at again I go back to 

what we had drawn, the Eigen functions have particular shapes. 
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The whole business of how well is the approximation doing depends on what is the 

corresponding Eigen function and how well can the finite element solution approximate the 

Eigen function? 
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There is a generalized result here which says that the approximation of omegai, the quality of it 

depends on how well ui(x) is approximated by our finite element representation. Further we will 

see another feature of it. I will stop this lecture with this particular feature that we will see that 

omegai finite element is greater than equal to the actual omegai

With this we are going to stop this lecture. In the next lecture we will continue a little bit further 

with these Eigen value problems and look at some more features of it. 

. This is the very important result, 

the frequency obtained from the finite element solution in this case is greater than equal to the 

frequency that we get from the exact solution as compared to the exact frequencies. 

 


