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In the previous lecture, we have talked about the classical plate theory. 
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As an example of a problem which leads to a fourth order partial differential equation 

which we had said that if we work things out it will be this is in the area A where w as the 

transverse deflection, D is the flexure rigidity constant and q is the applied distributed 

load on the top or bottom surfaces of the body. This led to a variational form which was 

in terms of the second derivatives of w. Since, it is in terms of variational form, in terms 

of the second derivatives of w, we require these derivatives of w to be defined. We need 

continuity of w del w del x and del w del y. So, this is what we had required as far as 

continuity and we said this would lead to just analogous to what happened in the Euler 

Bernoulli beam theory in the 1D case to C one continuity requirement in two dimensions. 

We had said that we will look at certain ways of constructing these C one continuous 

elements. 
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One way of doing it is let us say I have a rectangular domain, I will take only a few 

elements; so, this is size a, this is size b, let this be our x and y direction, so these are all 

rectangles. So what we want is at the interfaces of these rectangles with each other 

including these end points, I should have continuity of del w del x, w and del w del y. If I 

can construct basis functions which can satisfy continuity of these quantities then we are 

in good shape. There were several attempts to make such elements and various versions 

of triangular, here we are not considering triangular; triangular and rectangular elements 

have been reported in the literature, various types of such elements. The major problem 

here is to satisfy these constraints exactly in the general case. 
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Let us take the simple case and look at an example that let us say this is my element, 

rectangular element. This is my rectangular element with the nodes x1 tau, y1 tau, here x2 

y2 and here is x4 tau and y4 tau (Refer Slide Time: 04:42). What is the basic idea in 

constructing such an element? We say that w as a function of x and y is equal to, a0 plus 

a1x plus a2y plus a3x square plus a4xy plus a5y square plus a6x cube plus a7x square y 

plus a8xy square plus a9y cube plus a10x to the power of 4 plus a11x cube y plus a12x 

square y square plus a13xy cube plus a14

We will call them w, this is essentially theta y, theta y is the rotation about the y axis 

which is given by del w del x and theta x is rotation about the x axis. I am not bothered, I 

am not taking here the positive or negative signs that one can find out; this is equal to del 

w del x. This is del w del y and this is del w del x. So these 3 quantities are specified at 

the each of these nodes. There are 12 quantities which are specified at all the 4 nodes 

combined for this element. I need to have a polynomial which has at least 12 coefficients. 

But, here we said if we look up to the cubic in 2D, it has 10 coefficients - unknown 

coefficients. We have to do more than that; so, we go to the fourth order. When we go to 

the full fourth order there are total of 15 unknowns. We need only 12 coefficients, so 

y to the power of 4. Why did I take this whole 

polynomial? Because if I would like to have continuity of w, del w del x, del w del y at 

these 4 points of these 4 nodes of the element. I will have to have w, del w del x, del w 

del y as the variables at each of these nodes. 



 
 

what do we do? Out of the fourth order we retain only the so called symmetric terms, this 

term and this term (Refer Slide Time: 07:43). While, we drop off from the fourth order 

polynomial these terms. What we are left with is the whole cubic plus now I will rename 

this, I will call it a10 here and I will call it as a11

(Refer Slide Time: 08:24) 

. This is the polynomial that we are going 

to fit to these values. 

 
But how do we do it? Again the idea is simple that our function w (x, y) in the element is 

in terms of 12 coefficients such that the value of this function w at the nodes xi tau, yi tau 

then thetay at the node xi tau, yi tau, thetax at the node xi tau, yi tau which we are going 

to call by a new name; this I am going to call as wi, this is thetayi, this is thetaxi. The 

value of this function equals the coefficients at these nodes. So we have w at xi tau, yi tau 

is equal to a0 plus a1xi tau plus a2yi tau plus up to a11xi tau yi tau cube. Similarly, thetayi 

at xi tau, yi tau is equal to del w del x at the node xi tau yi tau. This would be equal to a1 

plus, a2 would not be there, 2a3xi tau plus up to a11yi tau cube. 



 
 

(Refer Slide Time: 11:03) 

 
Similarly, we can give thetaxi is equal to del w del y at the node xi tau, yi tau; so this 

would be equal to a2 plus up to a11 into 3xi tau yi tau squared. We can write the thetaxi, 

thetayi, and wi at each of these 4 nodes which have coordinates xi tau, yi tau in this 

expanded form. How many values we have? We have 12 values; it is a twelfth order, 

there are terms in this expression. We can write it as, this whole thing wi, w1 thetay1, 

thetax1, then w2, thetay2, thetax2 up to all the way down to w4, thetay4, thetax4 this is 

equal to this matrix A into the vector of this coefficients a0 to a11. What are the entries of 

this matrix A? It is essentially one xi, yi depending on the expression for thetaxi, thetayi 

and wi in terms of the xi’s and yi’s, so then implies we can get a is equal to A inverse into 

y where this y is this vector. I can find the coefficients of this polynomial expression for 

w in terms of the values of w, thetax, and thetay and the nodes and all we can do is 

essentially, define the finite element solution in terms of these nodal values of w thetaxi 

and thetayi. This expression can be easily obtained once it is obtained then this is known; 

now we go ahead and do the same job for all the elements and we have the representation 

of the solution in the element and also globally. 
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This way we can construct wFE. What will happen is wFE

(Refer Slide Time: 14:01) 

 is nonconforming in this case. 

 
What do we mean by nonconforming is that, it does not strictly satisfy the constraint of 

continuity of value and derivative on each of this faces on each of this edges of the 

element from this side and from this side (Refer Slide Time: 14:00). The two elements 

sharing this edge will have on this edge it can be shown continuity of w and the 

tangential derivative of w. Not the normal derivative, the normal derivative here from the 

two sides is not continuous. For example, on this face on this edge del w del y will not be 

continuous but del w del x will be and w will be. This is the problem because, we 



 
 

required a weak solution to have a minimum continuity condition of all these derivatives 

and w but we are violating it, because of this violation finite element solution suffers. In 

many cases we get pretty decent solutions and this can be used. Can we improve it? Yes 

we can improve it and where does the improvement come from? 

(Refer Slide Time: 15:24) 

 
This is the rectangular element, so here this essentially the x direction, this is the y 

direction of the element. In this direction in the x direction, what if I took this hermite 

cubic function as we had created in the case of the beam analysis? If I take this one this is 

what we had as N1 hermite cubic as a function of x. This one (Refer Slide Time: 16:20) 

would be N2 hermite cubic as a function of x. Similarly, I can create the other hermite 

cubics; this will be N3 and N4, this will be N3 hermite cubic as a function of x and this 

will be N4

What does the hermite cubic do? If I have another element here and I have the same 

hermite cubic here also same definition, it ensures continuity of the derivative also in this 

direction which is essentially the x derivative del w del x. Similarly, I will define now the 

hermite cubic with respect to y in this direction. so the hermite cubic with respect to y 

would be this function (Refer Slide Time: 17:20). These functions, so I will call this N

 hermite cubic as a function of x. 

1 

hermite cubic with respect to y, this is N2 hermite cubic with respect to y, this is N3 

hermite cubic with respect to y and this N4 hermite cubic with respect to y. These are our 

hermite cubics, so this is N4, N3, N2, and this is N1 so we have this hermite cubic in the x 



 
 

and the y direction so in tensor product family, for the quadrilaterals same thing we can 

do here. How many functions we can create now by taking products of these hermite 

cubics in the x and y direction? We will create 16 functions because they are 4 in the x 

direction. There are 4 in the y direction and these functions if we remember, will now be 

given in terms of nodal values of some quantities. 

It turns out that it will be in terms of nodal values of w del w del x, del w del y and del 

2w del x del y. These 4 nodal values in terms of these 4 nodal values I can define the 

hermite cubic. One thing has happened; this also enforces an extra constraint that we are 

asking for this cross derivative of w that del two w del x del y to be also continuous in 

this case. Nevertheless our basic requirement is satisfied of this w del w del x, del w del y 

being continuous; so how can I construct this hermite cubics? At every node we have wi 

this we had said theta yi, this was thetaxi and this will call it has kappa x yi

It is very easy to construct this functions, so I will call my N

. Essentially, 

we will get the values the representation of w in terms of these 4 values at the node that is 

total of 16 values. 

1 hermite cubic as a function 

of x and y will be equal to the first the hermite cubic corresponding to this line and this 

node it is N1 hermite cubic due to x and hermite cubic which is one here, value one 

corresponding to this line so it will be N1 hermite cubic y. Similarly, N2 hermite cubic xy 

will be equal to, let us say I will take the same value one here and the derivative one here. 

It will be N1 hermite cubic in this direction x. Let me take derivative in this direction, 

value in this direction so I will take N2 hermite cubic with x, N1 hermite cubic with y 

similarly, N3 hermite cubic with respect to x y is equal to I will have N2 N1 hermite cubic 

with respect to x and N2 hermite cubic with respect to y. N4 hermite cubic with respect to 

xy becomes N2 hermite cubic with respect to x and N2 hermite cubic with respect to y. 

We have essentially the 2 hermite cubic in each of these directions which are non zero 

which have some meaning here which are non zero at this point. Either in the value or in 

the derivative with respect to those hermite cubics, products of those hermite cubics we 

construct the 4 functions here. N2x into N2y will correspond to this cross term that is 

product of the 2 derivatives. While, the value here will correspond to N1h hermite cubic 

will correspond to the value wi and the others will correspond to the slopes in one 

direction or the other direction. 



 
 

I can say that this will correspond to wi, this will correspond to thetayi, this will 

correspond to thetaxi, this will correspond to kappa x yi. At every node so I can define 

this hermite cubics with respect to the non zero hermite cubics . I will have the N1, N2, 

N3, N4 here then I will have N5, N6, N7, N8
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 in terms of the hermite cubic which are 

active here and so on. This way I can create all the 16 hermite cubics and now I have so 

called conforming approximation over the rectangular elements. Whether, for this kind of 

a domain if I make a mesh of quadrilaterals, I make the mesh of the quadrilaterals 

something I will do here. In this mesh of quadrilaterals whether, this hermite cubics do 

satisfy the continuity of x and y derivative on these faces. If they do then they are actually 

conforming in all cases. If they do not, then they are not but for the rectangular domain 

they will satisfy conforming condition; we check here this is an assignment problem 

which you can work out and check. 

 
Plate theory: since we are in the topic of plate theory is that, we have dealt with now the 

Kirchhoff plate theory was for very thin plates where the shear effects could be 

neglected. 
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Let us go little further, so we can have a plate theory which is called Reissner-Mindlin 

plate theory which is an improvement of over the plate theory that we have discussed 

which led to the fourth order differential equation. The idea behind this plate theory is 

this kind of a representation of the displacement field in terms of the transverse 

coordinate. Here I will have this has theta y, v (x, y) should be a function of z also, z is 

equal to v0(x y) plus z theta x and w (x, y, z) remains w (x, y). What this theory does? It 

assumes that ezz

What happened in the case of Kirchhoff plate theory that we said these things were 0? 

Because these things were 0, this theta y and theta xx came out as minus del w del x and 

del w del x and del w del y. These are essentially free or independent variables so in this 

problem we solve for u

 is still equal to 0. This means gamma xz, gamma yz are constant While, 

from our standard strength of materials we know the gamma xz and gamma yz is actually 

parabolic across the in the in terms of z. Nevertheless, this is an approximation which is 

made. I am not going to dealt too much into this plate theory as such but let us bring out 

an important aspect of it. 

0, where is u0, v0 coming from, if I have in plane loading? So u0 

v0, if I do not have in plane loading then we can ignore these two parts where z is with 

respect to again the centre line of the plate. So u0, v0, w, theta x and theta y these are the 

5 unknown functions that have to be solved for in order to construct the full solution. 



 
 

This is one feature that we have further Reissner-Mindlin plate theory as compared to the 

Kirchhoff’s theory where we only needed to solve for u0 v0 and w3 

(Refer Slide Time: 27:05) 

functions. 

 
If I do this, then let us see now we should able to tell me that exx is actually equal to u0 

comma x plus z thetay,x, eyy is equal to v0,y plus z thetax,y, ezz is equal to 0 gammaxz is 

equal to w comma x plus thetay gammayz is equal to w,y plus thetax and gammaxy is 

equal to u0 comma y plus v0,x plus z theta y comma y plus thetax, x. This is the state of 

strain at any point given in terms of u0 v0 thetay and thetax and w. In this strain terms the 

first derivatives of w u0 v0 and thetax thetay are sitting. Only first derivatives, so if I now 

write the strain energy that is I write the stress in terms of the strain so the stress will also 

are in terms of the first derivatives of all these quantities. The product stress into the 

strain sigma xx into exx will be in terms of the first derivatives of u0 v0 and so on. 
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The strain energy definition as we had written strain energy is integral over the volume of 

half of sigma ij e ij dv, ij going from 1 to 3. This expression would be product of at most 

first derivatives of u0 v0 w thetax and thetay. It is quadratic in terms of the first 

derivatives of all these unknown functions. If I look at the strain energy for the strain 

energy to be finite we only want these to be defined. We only want this first derivative of 

u0 v0 with respect to x and y thetax, thetay and w all with respect to x and y to be defined 

which means that here if I want to now construct a basis function to do the approximation 

we need to use only C zero. I can use the standard C zero elements that we had talked 

about in a very detailed way earlier when we started the 2 dimension problems. Those 

elements those basis functions like we had the linear quadratic, cubic, triangles the tensor 

product, quadrilaterals, the serendipity quadrilaterals all those things can be used for the 

approximation of u0 v0 thetax thetay and w in terms of x and y. This problem can be 

solved very easily using the machinery of the shape function generation and integration 

and all those things that we had developed earlier. This way we can essentially use the 

tools available to us in a judicious manner. This model it is not to say that this model will 

do better than the Kirchhoff’s plate model or it will do verse. This model has its inherent 

problems which can be corrected to take care of things. This one should read the books 

and enough of material is available. 
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There are also higher order plate models which go beyond this expression of u in terms of 

z theta y z theta x and we add more terms in terms of higher powers of z. We would have 

z square, we will have some other quantity which is a function of x and y plus here also z 

square more. This way we can construct so called higher order shear deformable theories. 

In those theories shear stress or strain will be non zero and the higher ones will also give 

a non constant shear stress. We will use sufficient number of terms to get a parabolic 

variation of shear which is when we take cubic terms that is celebrated higher order shear 

deformable theory. What is known as, HSDT due to Reddy and lots of other people have 

done this. Avery good reference is on this plate theory is papers by g n Reddy papers by 

Tarun khan from IIT Bombay and from Szobo, Actis and Babushka on a different 

approach to creating this plate models. 

I will not deal with those things in detail. I think we are in a position to deal with all these 

plate models and the refinements, if we need them and how to handle them? Let us go 

little ahead with what we are doing? Let us now talk of a more interesting problem in 

common practice now a day, because computational tools have improved tremendously. 

We can get dual processor machines with very high speeds 3GHz -3.4 GHz sitting on a 

desktop, at a very affordable price even here. 



 
 

In that case, the capabilities have improved and because of that our desire to do more 

refines modeling of the physical problems. If we see the beams, the plates, the bars these 

are all idealizations of a 3D situation, we do 3 dimensional analysis. 

(Refer Slide Time: 34:17) 

 
I will briefly touch upon 3 dimensional analysis and how it is done? The language the 

procedures are direct analogous extension of what we had in the 1 and 2 dimensional 

cases. Let us say that here we have a 3 dimensional domain, I will take a cubical domain 

for simplicity let us say the volume of the domain is v and the surface is given as delta v. 

Over this domain, I would like to find the response of this structure when let us say on 

this phase, I am going to fix my displacement completely fix this phase and on this phase 

partially I want to apply a transverse load. This looks like a bending problem; now if it is 

a long slender member we will see that what we get out of the beam analysis will be 

closed. If it is flat and both dimensions are similar plate analysis will do a good job but 

that is for us to see. Here we would like to do an honest 3 dimension analysis with the 

load is applied here. 

How do we solve this problem? First of all we are talking of 3D elasticity as an example 

of a 3D problem and for 3D elasticity we would like to develop the variational 

formulation and then suggest how to go and create the basic functions or the shape 

functions which can be used to solve the problem. Some things that we should keep in 

mind before we proceed, we see that here I deliberately applied the load in only part of 



 
 

the domain. This we should keep in mind and the boundaries now of this 3 dimensional 

domain are surfaces that also we should remember, we will have surfaces, surfaces will 

have edges and the corners. These are phases, these are edges and these are corners. 
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Let us do to write the 3D equation of equilibrium for the theory of elasticity sigma xx,x 

plus sigmaxy,y plus sigmaxz,z plus fx is equal 0. Similarly, I have sigmaxy,x plus sigmayy , y 

plus sigmayz,z plus fy is equal to 0. Here I am assuming that the stress tensor is symmetric 

that is sigmaxz is equal to sigmayz, sigmaxy is equal to sigmayx so on and sigmaxz,x plus 

sigmayz,y plus sigma zz,z plus fz is equal to 0. This quantity I am going to call as r1, this is 

r2, and this is r3 that is these are components of the residue vector. As we have done in 

the 2 dimensional case, let us take w with components w1, w2, w3 as an admissible 

displacement, this is an admissible displacement, virtual displacement. While, we will 

have the vector u with components u1, u2, u3 when each of these components u1, u2, u3, 

w1, w2, w3 are functions of x y z; this is the unknown displacement field. 
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What we had done earlier? We had said that we will take the weighted residual 

formulation that is we will take the volume take r dotted with w and integrated over the 

volume because r was zero this will come out to be zero. Against any w is any admissible 

virtual displacement, admissible means it should satisfy the geometric constraints 

wherever u is specified. From our, let me jump the gun and say what we want our w to do 

in the standard situation. 
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We have not yet done integration by parts; we will do it is the w2 should satisfy the 

constraints this one and this one. 



 
 

(Refer Slide Time: 40:01) 

 
Out of this I am not going to write the long expression, I will do integration by parts 

once. By doing integration by parts an end of getting this expression sigma xx into exx due 

to w plus sigmayy into eyy due to w plus sigma zz into ezz due to w plus sigma xz gamma xz 

due to w plus sigma yz gamma yz due to w plus sigma xy gamma xy due to w this whole 

thing dv will be equal to here f1w1 plus f2w2 plus f3w3
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 plus integral over delta v, I will 

explain what is this traction vector t dotted with w dA. 

 
This is that traction t what is traction t given as, if we remember t1 is equal to sigma xx nx 

plus sigma xy ny plus sigma xz nz t2 that is the component of a traction vector in the x 



 
 

direction t2 is the component of the traction vector in the y direction this will be nx sigma 

yy ny plus sigma yz nz and t3 is equal to sigma xz nx plus sigma yz ny plus sigma zz nz this 

is standard, if we do this integration by parts and use the green divergence gauss, green 

divergence theorem we will get this in terms of that expression. We will get this, now we 

see what are these nx, ny, nz
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 these are the components of the unit outward normal on the 

area; so here lets come back to our problem. 

 
The unit outward normal is the vector n here, in this case since these are all parallel n will 

be equal to 0i plus 0j plus k so it has only the component nz which is equal to one on this 

phase. But in the general align phase we will have all the 3 components nx, ny and nz .we 

will have all the components of n. If we see that where does the t become non zero only 

on this part of the boundary area and in this case we see that t1 is 0 because I have drawn 

these as vertical forces t2 is 0, here t is equal to vector t is equal to minus t3 e3 unit vector 

in the third direction. 
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I will put this expression for the t in the expression here and I will essentially go ahead 

from here now again coming back to what we drawn there. 
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Now I am done the weak formulation the one I had written in the last expression is the 

weak formulation, the weak formulation tells us that sigma xx due to the u into exx due the 

w so on, have to be defined in order for this integral on the left hand side to be finite 

which means sigma xx is in terms of the first derivative of u and first derivative of v and 

so on. Similarly, for ex, ey and so on is all in terms of the first derivative of u, v and w 

with respect to x, y, z. 
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Our weak form now requires only the first derivatives of the vector u and vector v and 

vector w to be defined which means that in this case, we need with respect to what we 

have done as far as the approximation is concerned, we need to construct a C zero 

approximation in three dimensions that is we only want the value of this functions u1, u2, 

u3 and similarly for the test function w1, w2, w3
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 which is the virtual displacement to be 

continuous, derivatives need only to be defined. We now define continuous shape 

functions first of all, how do we discretize the domain? Let us take our domain of the 

previous figure and let us make a mesh here. 

 



 
 

How will I make the mesh? For the mesh I have to honor the boundaries of the load 

profile boundaries of material differences, so wherever my material has a change that 

boundary will have the nodes and the edges and the vertices nodes and phases of 

elements sitting there. What kind of element should I need? In this case, life is a little 

simpler so I will make this kind of a partition, very simple partition we see here I will 

make with the different colour so that we can see the effect. Similarly, in the third 

direction I will make the partitions like this. If we see, what we have done? We have 

constructed elements which are actually cubical in shape okay elements which are cubical 

in shape. Well the sides could have different lengths so these are called in the language of 

finite elements brick elements. There are other types of elements we can make but I am 

not going to discuss them here. 
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This is the brick element, so let us do a very simple job of constructing a finite element 

basis functions or here we will concentrate only on the element so the shape functions 

which are C zero continuous now for the brick element. Let us say co ordinate system is 

this is x, this is y, this is z, x y and z. I will call this for the element, let us say this is my 

generic element, this is my generic element tau, this is the node 1 of the element tau node 

2, node 3, node 4, node 5, 6, 7 and 8 so this will have co ordinates x1 tau, y1 tau and z1 

tau similarly all the other nodes so the mapping now we will take this and I am going to 



 
 

go straight away to the master element this will map to the master element which is the 

master cube. 

We make a master cube like this; this will be my psi direction, this will be my eta 

direction and this will be my zeta direction such that this point is at psi eta zeta minus 1. 

This point is at psi zeta eta 1 just like we had the 1D element master element then the 2D 

master element; now we have the 3D master element. So, this point will have essentially 

psi your zeta will be 1 psi will be plus1 zeta will be minus1 eta will be minus 1, zeta will 

be minus1 so this will be plus1. So here my psi will be minus1 zeta will be psi will be 

minus1, zeta will be minus1, eta will be minus1 and zeta will be plus1. So this way we 

can construct the 4 nodes. We want to define the basic functions or the shape functions 

with respect to these master nodes such that they are such that the shape function is 

defined with respect to this node is 1 here, 0 at all other nodes, 0 at all other master 

nodes. How do we define? Very simple; we now take tensor of product of the 1D shape 

functions that we had created C zero shape functions in the direction. N1 here, N1 hat as a 

function of psi eta zeta will be equal to N2 with respect to psi N1 double hat with respect 

to eta N1 double hat respect to zeta and that is all so I will take the tense of product as if 

this is my psi direction minus minus1 to plus1, this is the eta direction from minus 

minus1 to plus1 and this is my zeta direction from minus1 to plus1 so my confusion was 

because my psi direction is positive in x direction. Here this shape function was non zero 

with respect to psi with respect to eta, with respect to eta this term will be non zero with 

respect to zeta, this term will be non zero, so for this zeta, this is the first one this is N1 

double hat eta this is N2 double hat psi this is N1

In terms of this 1D shape function we can construct these 3D shape function and we see 

there will be 8 of them. They will satisfy completeness linear independence and all those 

properties in this way. Putting them together we can construct the global basis functions 

remember that the basic functions will be piecing together these shape functions from all 

the elements which share this node and then we can construct the 3 dimensional finite 

element solution for each of these components u

 double hat zeta. 

1, u2, and u3 solve using the weak 

formulation that we have done and we are now in a position to solve the 3 dimension 

problem, but remember that here applying the boundary condition is a tricky. 
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Because we have to do integral of the given loads over the area of the phases, in general 

for the general 3 dimensional domains defining the domain meshing the surface of the 

domain, meshing the interior of domain is not such an easy job. For that we need 

sophisticated mesh generators which have to be used to construct the mesh on the surface 

of the outer surface and the internal volume. With this I will stop my brief foray into the 

3 dimension problem, before which we have discussed the plate problem which was 

essentially in between the 2D problem and the 3D problem. Before that we talked of the 

honest 2D problem which is the planar stress problem and planar strain problem as well 

as the 1 dimensional heat conduction problem. 

Next we are going to develop methods for a different class of problems. Problems which 

relate to Eigen value problems at the continued level. For example, the free vibration 

analysis or the buckling analysis, how do we solve those problems using the finite 

element method? 


