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In the last lecture, we discussed a little bit about how to handle curved boundaries and 
curved elements and what we have said is we can handle them through appropriate 
mapping of the curve domain. 
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Let me re-enforce this point through a simple example. Let’s say I have a domain which 
is like this. It has all this curved edges and I want to make a mesh of 4 quadrilateral 
elements on this domain. What will I do? If I make the mesh as a figure I will make of a 
mesh of straight edges, let me do the following I will take this and this. What are my 
nodes, nodes will be this, this, this, this, this. If we have given bilinear map here, then 
bilinear map lets say this is my node 1, node 2, node 3, node 4, 5, 6, 7, 8, 9. Remember 
let my approximation be of order P, the mapping of the geometry from the physical to the 
master is through a bilinear map. In that case if I take the bilinear map, then I will get 
edges will be joined by these straight lines.  
 
You see that the computer sees a domain, because why this way is because we have taken 
a bilinear map that is in each element I am giving the x is equal to sum of in the element 
tau. Let it be any generic element tau, i is equal to 1 to 4, xi tau and Ni. I would say 
bilinear hat as a function of sine eta. Similarly for y term, the x and y is given in terms of 
only these 4 corner coordinates of the 4 corner nodes of the elements. The domain that 
the computer sees is not the actual curve domain, but this domain. What we have 



obtained by the mesh and you see that there is a tremendous discrepancy in the 
representation of the domain itself. 
 
The geometry is wrongly represented and this will lead to errors in the finite element 
solution that you obtain, because you are solving for a different domain. We would like 
to minimize the error in representing the geometry of the domain in order to control the 
error in the finite element solution. The error in the finite element solution will have 2 
parts. One is due to the geometry, error due to the representation of the geometry and you 
will have the error due to the approximation. Remember that. In most of the problem that 
we have done till now in fact all the problems for us the geometry that we have taken was 
polygon. It consisted of straight edges. The error in the representation of the geometry 
was 0, we didn’t bother about this. While this error was what we bothered about and we 
discussed how to do mesh refinement and so on in order to control this error. What will 
happen in this case this error will be dominant, will be significant need not be dominant, 
but it will be significant. How do you control this error? One way of controlling this error 
is to say fine let me refine this mesh. Can I take a finer mesh? 
 
What we are doing? In taking a finer mesh we are not going to take these points of the 
finer mesh out of the previous mesh; we will have to move these points to this term. We 
will be taking the finer mesh in such a way that I have these as my edges. We see that the 
error in the representation of the geometry also has gone down, as well as the 
approximation error because as we had said that when the approximation is of order P. 
We refine the mesh the error goes as h to the power of p, the energy norm of the error or 
the square root of the strain energy of the error goes as h to the power of p, but here also 
we have improved the representation of the geometry and so the representation of the 
geometry is better and we can get better solutions. The question is do we have to refine 
the mesh, because when you refine the mesh, the cost of the computation goes up number 
of unknowns goes up. Why not control the error in the representation of the geometry by 
doing a better representation of the geometry. That’s what we had been talking towards 
the end of the last lecture.  
 
In doing that what did we do? We said that we will use a higher order representation not 
the bilinear map, but something more and we said okay let us take a serendipity quadratic 
map. If you take the serendipity quadratic map for the same domain, then how will I 
make the serendipity quadratic map for the same domain?  
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I will have my domain is like this. We had been made this mesh to start of 1, 2, 3, 4, 5, 6, 
7, 8, 9 these are the nodes used to represent the vertices of the elements, not for 
approximation. We said that let us now go to serendipity, serendipity quadratic.  
In this case if I take a generic element tau here. What we are going to do, we will write 
our x in the element tau as sum of I serendipity quadratic as 8 nodes xi tau Ni

 

 serendipity 
quadratic hat as a function of psi eta. Similarly y term, in doing this what do we have to 
do? We will have to put additional nodes in the element. What we will do? We will put 
these nodes somewhere in the middle of the edges. You can put it anywhere, but if you 
put too close to any of these nodes, one of these existing nodes then the mapping has a 
problem.  

Let’s decide that we will put it somewhere close to the middle of the edge. Middle of this 
edge, middle of this edge similarly here, we will do it for all the elements, will create 
these nodes which are in the middle of the respective edges. I will call this nodes by 
remember that these are only for representation of the geometry here 13, 14, 15. We have 
21 such nodes. If I am talking of this element in which this is my element 1, this is my 
element 2, 3, 4, then actually in element tau is element 2 the way I have shown, we’ll 
have the x of 2, x of 11, x of 3, x of 13, x of 14, x of 5, x of 16, x of 6. Let’s give a 
numbering pattern and this goes gets mapped to the master square. How will it map? This 
will be my in the master square 1, 2, 3. We will call it 4, numbering is something that is 
up to us 6, 7, 8.  
 
You see that the 2 here in the physical element becomes a 1 in the master 11 here 
becomes the 2, 3 becomes the 3, 13 becomes the 4, 14 becomes the 5. 5 becomes the 6, 
16 becomes the 7 and 6 becomes the 8 and these nodes are now in the middle of the 
edges. This has co ordinates -1, -1. This will have co ordinate 0 -1, this will have co 
ordinate 1 -1.  You see that this mapping takes us back to the same master square that we 
had earlier for the linear map of the bilinear mapping. Remember this that we have this 



kind of a feature for the mapping and we will say mid side. If I do this kind of a fit where 
I am taking more point’s lying on the curve in order to represent the geometry of the 
element, then we should do better than what we have done earlier and you we will see 
that you will get a very good fit as far as these edges are concerned.  
 
There can be error, there will be errors if this curve is not a perfect quadratic curve with 
something else then there will be some errors, but that error will be small. So our 
representation of the geometry that is the geometry that the computer sees is much more 
accurate then the geometry that we had earlier with the bilinear map. That’s why we 
should use a higher order map, need not be always isoparametric for example If I am 
using ath order approximation I need not use an ath

 

 order map, but we have to use some 
sufficiently higher order map. It could be which is a parametric or it could be 
isoparametric if my P equal to 2 for the approximation, P=2 here will do the job.  

That is the idea. That is each geometry has to be controlled and you see here something 
curious that in doing what we have done, we have ensured that the mapping is 
continuous. What does it mean that if I look at these edges, the common edges between 2 
elements there after the mapping I do not see a gap between the 2 elements? That is it 
should not end of giving me a gap that is a spurious space in between in the 2 elements. 
And how is it ensured? You see on this common edge the mapping is the same from both 
sides, it uses the same information it gives me the same line on the common edges, same 
curve on the common edge. This is one feature that we have to maintain the mapping 
from both sides on this common edge, so naturally there will be no gaps. This mapping is 
invertible also, but finding the inverse that is sine terms of sine eta in terms of x and y is 
not so easy when it comes to higher order mapping but one can do it. 
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These are some of the features of the mapping, let me take an example to demonstrate 
this, how am I going to do it. Let say this is my domain with a centrally located circular 



hole, in the mesh I am going to make is like this. This is the centre this, this. This is the 
kind of a mesh, we can make mesh of a quadrilaterals. Let us say this inner one, the co 
ordinate system is fixed like this, x and y. This point is located at r (, 0), this point is 
located at big R, 0. If I see that these are our initial nodes that we have created in the 
basic mesh. Let’s look at the mapping of this element. If I take that element out so let’s 
first fix the corners, then we will bother about the rest. 
 
This angle is some angle theta, which can be obtained from this geometry. This is point r, 
0, this is point big R, 0, this is point r cos theta, r sin theta. This one is point R and here it 
will be the other co-ordinate, we can easily obtain as if it is a square, let say it is a square 
so this distance is R we will keep this distance is also R. This is point (R, R). Let say this 
is point R, R. The height has to be obtained has to be given. Let say this is distance R, 
this is also distance R and this is distance R and this is distance R. We have these 
coordinates, now we have to put these middle points. The middle point here is nothing 
but r plus big R by 2 zero, middle point here is R and R by 2, middle point here is R plus 
r cos theta divided by 2, R plus r sin theta divided by 2 and the middle point here. What 
will the middle point here be? If this angle is theta, let we take this angle is this will be 
theta by two, this angle will be theta by two.  
 
This will be nothing but r cos theta by 2, r sin theta by 2. This is how we can create the 
local co ordinates, I will call this local 1, local 2, local 3, local 4, local 5, local 6, 7 and 8 
and using these co ordinates we can go and construct the mapping.  
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Then after we have constructed the mapping then the rest is the same that is we need 
from our computation point of view, we need to obtain del x del psi, del x del eta for the 
matrix of the transformation del y del psi and del y del eta and in order to compute the 
jacobian. We compute this from the expressions for the x and the y in terms of those sin 
eta that is in terms of the shape functions that have been used to represent the geometry 



and once we have that then we can obtain these expressions as functions of sin eta and we 
are in business. We can find the Jacobian, we can do everything else that we need. This is 
how we are going to handle a curved geometry.  
 
Let me (18:20) let me harp on another issue lets say that I have this kind of a domain. 
Lets say this is what under some loading, let say I have some loading acting on the 
structure, some constraints somewhere lets say I am fixing it and I would like to solve 
this problem, find the state of stress everywhere in this domain under this loading and this 
constraint. How do you do it? And let say this is planar problem. In terms of the meshing 
its better to break the domain up into smaller pieces or sub domains and then do the 
meshing. One thing you can do is break it like this. We can right away break this domain 
into smaller pieces and do the meshing by pieces or meshing by sub domains. Why do 
you do that? Because this will give you a quitter nice looking uniform mesh and it is not 
always possible to make the mesh by hand, you use something called an automatic mesh 
generator which takes the domain, the controls of the domain given by you and gives you 
a mesh.  
 
In these we have the feature of finding sub domains and most of the standard automatic 
mesh generators and there we define a sub domains and then do the meshing by sub 
domains to get a uniform mesh with a good looking uniform mesh such that the 
continuity is maintained that is the nodes from the 2 sides should overlap. On the 
common edges the nodes should overlap. Like here on these edges common edges, these 
nodes should overlap and in doing this we can construct a fine mesh where we need the 
mesh to be fine. We can construct a course mesh in the region where not much is 
happening. We can play around with the meshing and create a non uniform grid or mesh 
which is in somewhere economical and also accurate in terms of getting to the solution.  
 
Automatic mesh generator, writing is very difficult. It is not an easy job there are various 
procedures by which one can write an automatic mesh generator there are methods like 
yank piving and your advancing front method and so on all those things. There are course 
which are available on the net, free of cost which can be downloaded which can do a very 
good job of automatic mesh generation in 2d. For two dimensional domains it can be 
done. You can go and download there are some course, which is based on de launay 
triangulation. The concept of de launay triangulation, some which are based on the 
advancing front method and so on.  
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You can get these course, download them use it for your problem and the documentation 
also for this is available some of those course I can take the name one is by jonattan 
sourchak and the other is called anganer. These courses are quite nice they can be used. 
Lets now shift gears and go from this problem to a little bit of a different issue, that is till 
now we have been talking about approximation or meshes where the nodes are 
overlapping. That is we had ruled out such situations this kind of a situation was ruled 
out. Why? Because you see that here if I simply take bilinear here you have a node here 
which does not have counterpart from this side. This is called a hanging node.  
 
This was ruled out in what we did. We said that well this has to be taken care of either 
you do this and keep on doing it to fill up the thing or you just cant do it. It terms out that 
it is not very difficult to have this kind of a situation and still I am sure that your 
approximation is continuous. How do you that? You do that by constraining these node, it 
is called what does it mean? I will tell you that is the approximation form this edge looks 
like this. If it is a bilinear, the approximation from this side would look like this, because 
of this node being present.  
 
What will you do? You force this approximation to exactly match this one that is you 
overlap, this guy here you overlap this guy here and force this one to get its value from 
here. That is on this side the approximation is given in terms of this nodal values that is 
alpha1 N1 plus alpha2 N2. These N1 N2 are the shape function from this side. It will be 
like this. From this side the approximation is given in terms of you will have alpha1 bar, 
N1 bar plus alpha2 bar I will call it N2 bar plus alpha3 bar N3 bar (24.50). This could be 
your N1 bar this is your N2 bar and this is your N3 bar. You force this is going to be u on 
the edge, the force the u on this edge from the negative side to be equal to u on this edge 
from the positive side. This gives me a constraint on these degrees of freedom alpha1 bar, 
alpha2 bar, alpha3 bar, in terms of alpha1 and alpha2 so this is called a constrained 
approximation.  



What is the advantage of it? Advantage of it is let say I have a crack here or a singular 
vertex here, then I can zoom in the approximation towards this without propagating this 
refine meshing elsewhere, the cost of computation goes down. It is much more 
economical because I know here the solution is unsmooth, I will have to take care of it 
locally so I keep on doing this kind of local refinement to capture that unsmooth behavior 
and I am done. While the mesh elsewhere remains continuous. You can see this in the 
literature there is a very nice paper I think published in 1989 by Oden, Westernmann and 
Otal the computer methods in applied mechanics and engineering this journal. You can 
see this paper, it is very nicely describes how to do this job.   
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Let us get down to again more classical things. Till now we have been discussing second 
order problems, where the highest derivative occurring in differential equation was the 
second derivative, partial derivatives. We talked of problems in terms of one variable 
which was an example was the steady state heat conduction problem, the temperature was 
the unknown or the torsion problem where the (27.08) function was the unknown. While 
we also talked of planar elasticity problem, where we had a system of unknown that is 
two unknowns which are the in plane displacement u and v. 
 
Let us look at a problem which is the fourth order problem, this is what we know as the 
one example of it is the classical plate theory. It is an attributed to Mr. Kirrchoff this is 
called the Kirchhoff plate theory also, sometimes the Kirrchoff (28.00) in name is also 
added. This is a direct extension of the Euler Bernoulli beam theory in one dimension.  
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How do we take care of what do we do here? The idea is simple let us take a very simple 
problem that is I have a rectangular plate, plate means the depth direction is much 
smaller, depth dimension is much smaller as compared to the in plane dimensions. That is 
here if this is my width b, this is my length, I will put my co ordinate system accordingly 
so you will put this as a, this is b. Then this one, this dimension here is t, we will say that 
t by b, t by a is much smaller than 1. Lets now as you saw that there is a difficulty in 
writing things let’s fix a coordinate system. A coordinate system is such that I have this is 
my x direction, this is my y direction and this is my z direction. We assume the thickness 
is uniform, t is uniform everywhere that is it does not change with the x and y location, 
and it is a rectangular plate. 
 
If you see this co ordinate system is such that this height is t by 2. This is in the middle of 
the thickness of the plate. On top you have t by 2, on bottom you have t by 2. What we 
will assume further is that this plate is loaded by only a distributed transverse load. Under 
the action of this transverse load and suitable boundary conditions, what are we going to 
do as far as the boundary condition is concerned, we are going to constrain the transverse 
movement of the plate on the edges that is we are going to force the transverse 
displacement on this edge to be zero. It is an extension of the pin support in one 
dimension. You will have the w, the transverse displacement w is equal to zero on the 
boundary, that’s it. This is what we have has our and there are no other loads applied on 
the structure, the transverse load we have w is zero on the boundary this is what we are 
going to take. For this problem, let us see how are we going to get the solution? There is 
a standard way what we call as a semi inverse method or in the strength of material way 
you try to figure out what is going to be the deformation pattern.  
 
For this plate it can be shown when it is thin, that sigmaxz, sigmayz, sigmazz are 
essentially zero. That is they can be ignored or neglected with respect to sigmaxx sigmayy 
and sigmaxy that is the magnitude is much smaller as compared to those. We further have 



an assumption here that the transverse straining is much smaller as compared to the in 
plane strain, that is Ezz

 

 is on top of this assumed to be zero. This gives us the plane stress 
assumption and this is the additional assumption that we make for the classical plate 
model.  
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Let us assume that we have an isotropic material with young’s modulus e and poisson’s 
ratio mew. If I go ahead and expand what we have made as our assumptions out sigmaxz 
in this case equal to zero implies the engineering strain gammaxz is also equal to zero, 
sigmayz is equal to zero this implies the engineering strain gammayz is equal to zero, Ezz

 

 
is equal to zero, this will imply that del transverse deflection, del w del z is equal to zero, 
which is what we are going to make, the w is only the function of x and y. This is the first 
outcome of this assumption. 

This will imply that del v del z plus del w del y equal to 0. This will imply del u del z 
plus del w del x is equal to zero. This assumption will lead to v as a function of x y z is x 
y minus z del w del y and u as a function of x y z is u0

 

 x y minus z del w del x. Where did 
these things come from? These assumption say that a plane perpendicular to the middle 
plane remains perpendicular to it after deformation just like we have done in the beam 
that the line perpendicular to the middle line remains perpendicular to it after 
deformation. And that line does not stretch in length. These assumptions give us the 
representation of the displacement field.  

It can be further shown that in this case for the isotropic plate the values of v0, the 
functions u0 and v0 will be 0 everywhere, because they will be governed by a the planar 
elasticity problem. It terms out because of these being a bending dominated problem. 
That the only displacement you are going to have is w and due to the w, the u’s and the 
v’s will come. In this case for this kind of loading we will have only w being non zero, u0 
and v0 will be 0. If I had an in plane loading along with this transverse loading then yes 



we would have u0 v0 also. If I had anisotropic material then also u0 v0 will be present. So 
remember in this very special case u0 and v0 
 

become 0 functions. 
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We can write what is the strain, Exx will be del u del x, which is equal to minus z. I am 
going to write everything now in short form w, xx which is del to w del x squared Eyy 
will be equal to del v del y which is going to be equal to minus z w, yy and gammaxy. 
These are the only strains which are non-zero in this model, this is equal to del u del y 
plus del v del x this is equal to minus 2 z w, xy, because you see from here. We will get 
minus z w, xy from here you will get minus z w, 

 

yx; both y x and x y are the same. This 
is the state of strain.  

What about the state of stress? State of stress will be sigma xx, because it is plane stress 
problem, because of the assumed state of stress you will get e by one minus mew squared 
into E xx plus mew Eyy. This I can write as e by one minus mew squared into Exx will be 
minus z w, xx minus mew z w, yy.  Similarly I have sigmayy is equal to e by one minus 
mew squared Eyy plus mew Exx which is equal to e by one minus mew squared into 
minus z w, yy minus mew z w comma xx and sigmaxy which is sometime written as tau x 
y is equal to g into gammaxy

 

 this is equal to E by two into one plus mew into minus two z 
w comma xy. So we have the state of strain and the state of stress for this problem known 
to us. 

We are going to use the total potential energy we need to write the total potential energy 
expression in terms of the state of stress and the displacement given to us, w is not known 
but we will write it in terms of w and then how are we going to obtain the equations of w 
by saying the solution w is the minimizer of the total potential energy. We are using the 
approach of the variational formadation. We could have used the principle of virtual work 
or we could have used the differential equation to get to the v form. 
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We will write the strain energy u equal to 1 by 2 integral, let’s go back to our figure that 
we had earlier we will call this whole plate is said to have a volume v and this face if you 
look at the projection of it, this area will be set to have an area A. 
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For the area we will have the contour, the bounding edges which will be given by delta 
A, such that this bounding edges are arranged in a counter clockwise manner. This is the 
naming conversion we are going to follow, the whole volume of the plate is v the 
projected area of it is A, this is the same through the depth, and the bounding contour of 
the area is called delta A. 
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In this case u becomes integral over the volume of sigmaxx Exx plus sigmayy Eyy plus 
sigmaxy gammaxy d v. This if you write will be equal to 1 by 2, we can write it has this 
integral over the area, you see that the volume becomes essentially integral over the area 
into integral for z going from minus t by 2 to plus t by 2 of sigmaxx Exx plus sigmayy Eyy 
plus sigmaxy gammaxy

 

 into dz dA. We can say we will put those within the brackets, 
because why are you doing this because we know the expansion of the u v w in terms of z 
explicitly.  

You would like to eliminate that dimension, which in terms of a mechanics means that 
we are looking at equilibrium or the responses or the forces not in terms of stresses, but 
as in terms of its stress resultants which are the moments, the shear forces and so on. This 
integral here we will get as this is equal to 1 by 2 integral over the area integral over z, 1 
by 2 we will have E by one minus Mu squared into sigmaxx Exx. From the previous one 
we will have Exx squared plus Mu Exx Eyy plus from here Eyy squared plus Mu Exx Eyy 
plus G gammaxy
 

 squared.  

It will not be G here, if you go back to what we have done this will become one minus 
Mu divided by two into this because e into one minus Mu by whole squared I have taken 
it out as common. This will be E by 2 into one minus Mu squared integral over the area 
integral over z. Lets expand this thing, it will be z square w, xx whole squared plus Mu in 
fact two Mu z square w, xx w, yy plus z squared w, yy whole squared plus one minus Mu 
by two into two. If I go back to the expression for my gammaxy

 

 it is actually equal to two 
z w comma xy. We will have by two into four z squared w comma xy whole squared d z 
dA.  

You see that here through all these things we have the z square sitting in each one of 
these expressions, the integral of z square and the rest of them are all functions of only x 



and y. The w, xx, w, yy 

 

w, xy are all functions of x and y so they are functions in terms 
of the area only.  

We can explicitly integrate out the part corresponding to the z so z square integral from 
minus t by 2 to plus t by 2 will be z cube by 3 evaluated from minus t by 2 to plus t by 2 
which will be equal to t cube by what will you have t 

 
cube by 12. 
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T cube by 12, u will be equal to actually E into t cube by 2 into 12 into one minus Mu 
square integral over the area w, xx whole squared plus w, yy whole squared plus two Mu 
w, xx w, yy two into one minus Mu, because of this last expression four divided by two is 
two, two into one minus Mu into w, 

 

xy whole squared dA. You see now we have 
integrated out the effect of the part of corresponding to z to get this expression over the 
area. In terms of the function w which is the function of x and y only. If you look at this 
expression here, this is given a name D which is called bending rigidity. Essentially it 
tells us how rigid is the plate in bending? How much it resist bending action?  

We have this expression for u, similarly v is equal to the minus of the work done by the 
external forces so here the work done by the external forces is integral over the top area 
which is nothing but the projected area itself, because we have said that in the depth 
direction the cross section or the profile does not change. This will be equal to q (x, y) 
into w (x, y) w is constant with z, it doesn’t change from the top to the bottom, Then our 
pi as a function of w this is a function null will be u + v.  
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And the solution to the problem so the goal is find w which minimizes pi, that is has we 
have done earlier the first variation of pi is equal to zero, which is then equal to the first 
variation of u plus the first variation of v. This if you work out you will be quiet easy. 
How do you work out the variation? Essentially is like taking the differential or 
derivative of these quantities, we will end up getting delta one pi is equal to integral over 
the area D into w, xx del w, xx plus w, yy del w, yy plus two nu w, xx del w, yy plus two 
nu w, yy del w, xx plus 2 into one minus Mu w, xy del w, 

 

xy dA minus integral over the 
area q del w dA, this is equal to zero.  

This is our virtual formulation. This is the virtual formulation that we are going to get out 
of what we are obtained here. I think the 2 will go away yes I have made a mistake here. 
Actually it will be 2 by 2. This two will go away, it will not be present there. This two 
will not be present there. I will only have the Mu is here. This one should also work out 
to see but I have made a mistake there. Once we have these formulation, then now we are 
in business we can solve the problem. In order to solve the problem we have not yet done 
any approximation here. We have simply posed what is the definition of the displacement 
or representation of the displacement from there, we went to the state of strain to the state 
of stress obtain the total potential energy. That is we wrote the functional from there we 
did minimization of the functional to get the virtual formulation, and this is the approach 
one has to follow in all the problems where we can easily obtain the energy expression. 
You need not always go from the weak formulation, you can go form the virtual 
formulation also whichever is convenient we use that.  
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You see the problem that we have an interesting thing is here w, xx w, yy w, xy is 
setting. What we have here, in this problem that we want w, xx w comma yy and so far 
del also comma xy should be defined. If they are not defined then the energy becomes 
meaningless, because it becomes infinite and the right hand side in the virtual formulation 
I would say this is the left hand side will also become infinite. This should be defined, 
which implies that we want that w, x w, y and so with del w should be continuous. That is 
we need C 1 approximation minimum for the representation of this w. Minimum 
smoothness required is C 1 

 

that is the first derivative of the w with respect to x and y 
should be continuous. 

Let me reiterate, if the place where w is defined what we know about del w at those 
places del w has to be constrained to be zero. Remember that in the places where w is 
defined del w has to be constrained to be zero. In this problem just like Euler Bernoulli 
beam, in the Euler Bernoulli beam we also had a rotation that is del w del x they could 
also be defined on the boundary. Similarly here we could have on the boundary, the 
slopes or the rotation del w del x del w del y defined in that case the delta del of delta w 
del x and or delta of del of delta w del y should be zero correspondingly, that is in terms 
of the slopes also, we will have geometry constraints just like we did in the Euler 
Bernoulli case.  
 
However for the problem we have taken, it is simply supported that is w is zero on delta 
A and on this edge when we go and do things properly this means, that we also have the 
normal component of the moment is zero and the tangential component of the moment is 
zero on the edge. This is the edge here this component of the moment is zero as well as 
this component of the moment is zero. This is m normal, this is M tangential. You see on 
the edge a bending moment and the twisting moment both are zero in this case. This is 
one of the so called simple supports. This is in fact also called soft simple support you 
would have hard simple support also and so on.  



What if this edge was free, if an edge was free on that edge your Mn Mt

 

 resultant moment 
bending and the twisting as well as the normal shear force v will also be zero. That would 
be a free edge, but the bottom line is in any of these all these cases the work done by the 
forces on the edge is zero. That is why, it didn’t come in our definition of the total 
potential energy. We could have moments and shear forces applied on the edge, and then 
we will have to account for it in the expression for the total potential energy.  

(Refer Slide Time: 57:44) 
 

 
 
In the next time onwards, in the last class what we are going to look at is how to construct 
the approximation. That is what are these basis functions are globally, which means what 
are the element shape functions. We will see that we can construct one family of the basis 
functions globally which will not be confirming in the sense that they will not ensure 
continuity of del w del x del w del y everywhere along the edges. That is if I take the 
plate and mesh it with rectangles, then along these edges del w del x del w del y will not 
be continuous they will only be continuous at the node points.  
 
This is actually violating our requirement, but it is shown that this does a fairly good job. 
We could however at least in this case construct a strictly confirming approximation that 
is use a extension of Hermite cubic polynomials from the 1d to the 2d, but for the 
rectangular mesh and then we will have the confirming approximation. We would look at 
both the cases not strictly confirming and the confirming in the next class.                      


