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In the previous lecture, we had looked at the principle of virtual work for the model one 

dimensional problem that we had introduced. We had also introduced concept of the variation of 

the function, where ‘u’ was our displacement function and corresponding to ‘u’ we defined the 

variation of ‘u’ as del of u. 
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We had also introduced a new concept of a functional, which if you remember was defined as the 

function of a function; that it would take a function and give us a number. For different functions 

we get different numbers. From the definition of this functional we reposed our principle of 

virtual work as minimization of a functional and that functional we got corresponding to the 

model problem of interest turns out to be the total potential energy corresponding to the system. 



We had said that the corresponding equations in the integral form could be obtained by taking a 

first variation of the functional that is del of pi and setting it to 0. That is, we are looking for the 

function u which minimizes the functional pi. 
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After we have done all these, we had also introduced the RITZ method as one of the techniques 

to get an approximate solution to the problem of interest. The question is why do we want an 

approximate solution? As we have shown that most of the boundary value problems that we may 

be interested in will not have a readily available exact solution. That is getting a close form 

solution may be almost impossible. In that case we would like to obtain an approximate solution 

to that problem and in the one dimensional setting we would like to introduce all the concepts 

that are needed in order to obtain a good approximate solution using the method of our choice. 

Given this introduction what we will do is develop the RITZ method that we introduced last time 

in greater detail. And we will apply it to some typical examples corresponding to the model 

problem that we have introduced and we will show how good or bad the RITZ method does with 

respect to the solution of these model problems. 

Essentially we are creating an artificial situation where we would like to gauge how good the 

RITZ solution does or how bad it does. Let us see how we can improve the accuracy of the 

solution, and what can be the causes of the solution being bad. 
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Remember that our model problem was this bar problem where the cross section of the bar was 

non-uniform and it is subjected to a distributed body force f(x) constrained at the point x=0 that is 

a displacement is set to 0 at the point x=0 and at the point x=L a force P is applied. Under the 

action of this force P this distributed load f(x) 
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and the constraint at the point x equal to 0, I would 

like to obtain the solution to this problem. 

 



Corresponding to the model problem that we have introduced let us rewrite the functional that 

we are interested in that is I (u) is equal to pi of u which is equal to integral we will take from 

x=0 to L, 1/2 in front EA u comma x whole squared dx minus integral x=0 to L f u dx minus P u 

evaluated at x=L; this is our functional. What we had said as far as the solution to the problem 

was concerned; the solution u corresponds to a minimum of this potential pi. We said variation 

of pi of u is equal to 0 equal to as we have defined, the operation of variation for functions and as 

well as for functionals this will be equal to EAu, x variation of u, x dx minus integral x=0 to L f 

variation of u dx minus p variation of u at x=L. 

Remember that we had said the variation of this quantity 1/2 of EAu, x2
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 was as if I have taken 

the derivative of this expression with respect to u, and so we end up getting - the 1/2 goes and we 

will get integral of EA u, x the variation of u, x dx. 

 

Given this variation what we will do in the RITZ method as we had said earlier. We are going to 

look for an approximate solution of the following form, I will call it by the name u(N) (x). This 

will be equal to sigma i=0 to N ai phii of x, where we had said these ai’s are the coefficients 

which are to be determined and phii’s are the so called basis functions that are used to define this 

series solution. What do we want? If we remember from what we had said last time that the u(N) 

(x) has to satisfy the geometric boundary conditions or the essential or the dirichlet boundary 



conditions. Which means that we want this one to be at the point x=0 to be =0 that is it is equal 

to specified displacement at the point x=0. This has to be satisfied by the u(N) of x. Let us choose 

a particular set of this function phii
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 of x the things that we are used to. 

 

Let us take phii of x is equal to x to the power of i for i going from 0 to N. When we take this and 

substituted in our expression we will end up getting u N of x is equal to sigma i is equal to 0 to N 

ai x to the power of i. We want u(N) at 0 to be equal to 0 which is equal to… what do we get by 

substituting 0 for x to the power of i? We will get a0; so what we end up getting is a0=0. This is 

the constraint that we have enforced. What we end up getting after enforcing the constraint at the 

point x=0? We will get the series i is equal to 1 to N ai

Because a

 x to the power of i. 

0 has been determined from the boundary condition, once we get this expression now 

the question is how do we obtain these coefficients? Let us go back to our variational 

formulation. Here if you see we have ux and we have this variation of u, x. What we are going to 

do is instead of u of x, we are going to substitute this with u(N) of x and the variation of u will 

then become variation of u(N) of x. 
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Let us now define what is the variation of u(N) of x. This will be equal to variation of sigma i=1 

to n ai x to the power of i. This function x to the power of i are given to us; what is going to 

change in order to get the variation is the coefficient ai. The variation of u(N) of x will become 

summation 1 to N variation of ai x to the power of i. Once we have obtained this expression for 

the variation of u(N), let us go and put it back in our variational formulation. When we put it back 

in a variational formulation we will get delta of pi of u(N) is equal to summation of i=1 to N EA 

which is a function of x u(N),x and here we will end up getting variation of ai

What we have done? We have substituted instead of variation of u

 and d dx of x to the 

power of i. 

(N) in expression this 

summation. Then will also get minus integral x=0 to L summation, take a summation out any 

way I will put it here, variation of ai into f multiplied by x to the power of i the whole thing dx 

and finally will get the term minus p x to the power of i evaluated at one at the end. This is the 

whole expression that we will get by substituting for variation of u(N) in our variational 

formulation. 
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Let us again rewrite the whole thing; we will get - implies summation of i going from 1 to N 

variation of ai into, we put the big brackets, integral x=0 to L EA u(N),x d dx I am going to 

replace xi by phii. One should understand that in our example we have taken x to the power of i 

is our phii dx minus integral x=0 to L f phii dx minus p into phii evaluated at the point L whole 

expression is equal to 0, next what? How do we get the equations using which we can determine 

the unknown coefficients ai? That is our goal. Then we look at the variation of ai

The variation is in a way an abstract virtual displacement that I am giving to the structure which 

is already in equilibrium. I can choose what kind of variation i gives; so in a way what I am 

saying is that we can vary each of these a

; this is 

something that is under our control. 

i’s independently - i these are independent coefficients. 

That is variation can also be done independently. Let us take for example that I decide to choose 

variation of a1 =1 while variation of all the other aj=0 for j is equal to 2 to N. Let us put it back in 

this expression. When we put it back into the expression the summation gives as what?  
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It gives us by putting the value of the variation of a1 =1 in all the other variation is equal to 0. 

We will get integral x=0 to L EA u(N),x I will write phi1,x dx minus integral x=0 to L f phi1 dx 

minus P into phi1 evaluated at x=L =0. Remember what we have done we have taken the 

variation of a1 =1 all other variations we have set to 0. That is one choice of the variation that we 

have taken. That is we have taken del u(N) of x is equal to 1 into phi1 of x. When we substitute 

this choice we get this equation. Let us now expand this equation in terms of the coefficient ai. 

What will do when we put it there integral x=0 to L EA sigma j is equal to1 to N aj p j,x P 1,x dx 

minus x=0 to L f P1 dx minus P into P1 x at x= L. 
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Let us now take the summation out we will write summation of i=1 to N let us put j aj integral 

x=0 to L EA what will we get phij,x phi1,x dx is equal to, by taking the other part to the right 

hand side, integral x=0 to L f phi1 dx plus P into phi1 evaluated at x=L. I have taken the other 

part to the right hand side simply because you see that f is known, phi1 is known, P is known and 

phi1 at x equal to L is also known, because we know the expression for phi one which is nothing 

but x. The x evaluated at L we know so all the known’s have been brought over to the right hand 

side. What is the unknown? Unknown is aj which remains on the left hand side. Now look at this 

expression; this is a number because EA we know, phij we know because we have chosen the 

phij and phi1

This number we are going to give a name; we will call it K

 we know we put all of those into the expression of the integral these will turn out to 

be a number. 

1j why do we call it 1 j? Because you 

see that everything this phij,x is multiplied by phi1,x. So for different phij’s we are always 

multiplying with phi1, x. This is the first index and the second index comes because of this phij’s. 

If I write it now in this index form I will get implies summation of j=1 to N K1j aj is equal to 

look at this now on the right hand side. This f is not going to change if you change the phii’s. 

This f will remain fixed as the function, f into phi1 integral over x=0 will be a number 

corresponding to phi1. Similarly p into phi1 at x equal to L will also be a number corresponding 

to phi1. We are going to call this as F1. This is one equation that we get. Then what we can do is 



similarly choose the other delta ai’s one by one equal to1 and keeping the other ones 0. That is 

we’ll say that we will say delta ai
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 for a particular i is equal to one and for all others for j not 

equal to i. This will be a particular choice of these varied parameters for this particular choice. 

 

If I go now to the equation, then we can generalize what we have done corresponding to the phii 

or the delta ai that we have taken; sigma j is equal to 1 to N aj integral x=0 to L EA phij,x phii,x 

dx this is equal to integral x=0 to L f phii dx plus P phii evaluated at L. Again you see this 

expression; here the j is going from 1 to N that is summing over the j’s but this i is fixed. What 

we can write here is we can replace this by coefficient Kij. This integral becomes the coefficient 

or a number Kij. Similarly this one where corresponding to the choice of delta u(N)equal to 1 into 

phii will get this one else f in to phii integrated plus P into phii

We will call this by a name F

 at L. 

i which is again a number. What will get as the equation j=1 to N 

Kij aj = Fi; now for i going from 1 to 2, to…N. That is for each of these I will get an equation. 

What we have is a system or linear equations or simultaneous equation in terms of the unknown 

coefficients aj. 
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This we can write in matrix form as matrix k operating on the vector a is equal to vector F. We 

look at this matrix K. This matrix K is of size N by N for the problem that we have taken. This is 

the vector of size N that is it has N coefficient a1 to an this is the vector of size N. This matrix as 

we will see can be called the so called stiffness matrix. This vector we are going to give it a 

name called the displacement vector. And this vector will be called the load vector. We have this 

matrix problem Ka=F which if it can be solved will give as the unknown coefficient a. Once I 

obtain the unknown coefficient a then I know the expression for u(N)

Lets us look at this matrix; what are the entries of this matrix? So k

of x. 

ij if I look at elements of this 

matrix that is the element sitting in the ith row and in the jth column will be equal to integral x=0 

to L EA phij,x phii,x dx. Now I ask you the following question: tell me what is the element sitting 

in the jth row and the ith column? That will be obtained by bringing this here and bringing that 

there. The expression is not going to change because the integral the integrant remains the same 

so what we get for this case is that this thing is equal to Kij. 
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What does that mean in terms of the matrix notation? It means that the matrix K is symmetric 

that is nkij is equal to kji we have K is equal to K transpose. Secondly, if we look at the following 

expression 1/2 of a transpose K a; let us say I give you 1/2 set of the coefficients a and then I 

would like to evaluate this expression. What is it equal to? This will be equal to from what we 

had already defined 1/2 of integral x=0 to L EA in to u bar N, x whole square dx. Where I am 

going to call u bar N as a function of x is equal to summation i is equal to 1 to N ai phi i of x. 

Tell me this integrant is always greater than 0 when these coefficients ai

This means that when this function u

 are not equal to 0. 

(N) is not the trivial function that is u(N)x=0 everywhere then 

this expression has to be greater than 0 integrant because I am looking at u bar comma x whole 

squared. When this integrant is greater than 0 what do we have? In that case this expression itself 

is ½ a transpose KA is greater than 0, for I will say non trivial. What does that mean? That if I 

give you any choice of this set of coefficients a I can guarantee that if these a’s are not all equal 

to 0 then this expression 1/2 a transpose KA is greater than 0. 
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This means that this matrix K is positive definite. The definition for positive definite for matrix 

is that if I give you any set of these vectors a which are non trivial then a transpose K a has to be 

greater than 0. And if we look back to the expression that we have taken then the integral that 

corresponds to this expression a transpose K a is nothing but twice the strain energy of the 

corresponding to the displacement given by u bar N. And for the structure we know that the 

strain energy cannot be 0 or negative unless the structure is subjected to a rigid body motion. 

Here we don’t have any rigid modes so which means that any a, which is non-trivial this is not 

greater than 0. Why do we need for this positive definitive for the matrix? Positive definiteness 

ensures that this matrix K is invertible. This was not obvious by looking at symmetry. A matrix 

can be symmetric but may not be invertible; it could be singular. By this we prove that yes 

indeed for our Ritz formulation module problem that we have taken this matrix K is a positive 

definite; which means that whatever be the end we can always invert the matrix K. 

Why is it important? Because if we cannot invert K then we cannot get the solution vector a 

which is given by K inverse F. So once we guarantee invert ability of the matrix then the solution 

vector a can be obtained. 



(Refer Slide Time: 28:41) 

 

Once we have obtained the solution vector a then now we put it back in our expression for the 

solution which is at least in our example it is ai phii of x where ai’s are now known. This is how 

we construct a typical Rayleigh - Ritz or Ritz solution to given boundary value problem. There 

can be interesting off shoots to this problem; this is not the only module problem that we may be 

interested in; let us say that I want to solve this problem. Let us say I want to solve this problem. 

There is the bar subjected to a constraint u at 0 is equal to 0 and a constraint u at L is also equal 

to 0. This could be a problem of interest. Now in this case how do we go about constructing the 

Ritz approximations? We see that in the earlier case it was very easy to in force the geometric 

conditions at the point x=0. We have to in force the geometric conditions both at the points x=0 

and x=L. How are we going to do this job? We will take again u(N) of x; we will say it is equal to 

something called phi0 bar of x plus summation of i equal to 1 to N ai phii of like this, phi0 bar has 

a job of satisfying both these n conditions and the phii’s will be such that phii at 0=0 and phii

What we are going to do is, we are going to choose the phi

 at 

L=0. 

i’s and such a way that this satisfies 

the 0 conditions at both ends. While phi0 bar takes care of the zero displacement conditions at 

two ends. We see that in all problems you may not have the zero displacements condition, you 

may have this one as some number delta 1, this one as some number delta 2. In that case phi0 bar 



at 0 has to be equal to delta 1 and phi0 bar at L has to be delta 2 while the phii
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’s will satisfy the 

conditions of 0 value at two ends. 

 

In this case let us say that my u at 0 is equal to delta 1 and u at L is equal to delta 2. Then how do 

we construct this function phi not of x? Very easy, you take it to be delta 1 into 1 minus x by L 

plus delta 2 into x by L. If we look at this expression what happens at x=0 will get x by L=0 and 

this other expression is equal to 0, so at this is going to give me phi0 at 0 is equal to delta 1 and 

phi0 bar at x equal to L. If we substitute then this expression is going to go to 0 what we are 

going to get here is 1. This will be equal to delta 2. So phi0 bar satisfies the given geometric 

constraints exactly at the two points. Then the question is how do I choose the remaining phii’s? 

In the expression of the u(N) of x phi0 bar is completely known; we have to get this phii

So one option if you remember that phi

’s. 

i has to be 0 at x=0 and at x=L for this particular case that 

we have taken. In this case what choice can be made for phii? The first function phii can be it has 

to be quadratic. Because quadratic is only function which is going to minimum order polynomial 

which is going to vanish at the two ends. This can be made x minus 0 into L minus x. So I can 

make phi1 of x is equal to x into L minus x; these are all choices that we can make. Similarly phi2 

x will be now cubic. It could be a function going like this. I can take it to be, I am just choosing 

things according to my wish, L 2 minus x into L minus x. 



What I want this function to do is it should vanish at point x=0, at the point x=L by 2 and the 

point x=L. I get a cubic expression x into L by 2 minus x in to L minus x and so on. I can keep 

on constructing these phii
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’s which are functions of increasing order polynomials by choosing 

appropriate points where they vanish. 

 

Once I have done this construction then I will put it back in my expression for u(N) of x to get u(N) 

of x will be equal to phi 0 bar plus 1 to N ai phii of x. Now our job will be again to find this 

coefficients ai. We will substitute this back in our variational formulation; only thing you should 

observe is this variation of u(N) of x will be actually equal to variation of phi0 of x plus, 

summation i=1 to N variation of ai phii of x. This phi0 of x is a known fixed function that is we 

know what it is. The variation of phi0 of x is 0. What we will end up getting is variation of u(N) is 

nothing but summation from 1 to N variation of ai phii of x. So by putting it back in the principle 

of virtual work for variational formulation that we have made and by varying choosing particular 

values for this delta ai’s we will get now N equations in terms of the n unknown coefficients ai. 

Exactly the way we have done earlier. The only difference will be the u(N) will carry this 

expression. 
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Let me just write it down to make things clear. The ith equation I will just write; that will be 

summation of j=1 to N aj integral x=0 to L EA phij,x phii,x dx is equal to integral x=0 to L f phii 

dx plus P phii evaluated at x=L plus a part which will come (you are u(N) of x which was equal to 

phi0 comma x) plus the remainder part this part is a known. This will also go not as a plus but as 

a minus. We will get minus integral x=0 to L Phi0 bar comma x in to phii,x in to EA dx. This part 

is coming from the known functions phi0 bar, which satisfies the given boundary condition. This 

is the additional correction that we have to do to our variation formulation in order to account for 

this phi0 bar of x. We have the N equation again in terms of N coefficients this expression will be 

nothing but Kij 

We go ahead and solve this problem and get the solution that is the coefficients a

and this whole thing on the right hand side will be our F of i. 

i. This is how 

you would construct the Rayleigh - Ritz solution for our rating of our problems with different 

boundary condition, different load vector and different material coefficients using a polynomial 

approximation. Nobody tells us that we should use a polynomial approximation. 
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We can also use the sine cosine functions. For example we could have chosen phii of x is equal 

to sin n pi x by L. Very easily we could have done this though our phi0 of x would have remain 

equal to delta 1 into one minus x by L plus delta 2 into x by L. But this phii
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’s for i=1 to N i could 

have chosen this in terms of this functions which are trigonometric functions we could have 

again obtained the series solutions by following the same procedure. 

 



Let us now look at an example with which we will demonstrate how this Rayleigh - Ritz method 

is used and what is the solution that we will get. Let us take this problem: bar again with an end 

load P=10 and subjected to a distributed load of uniform intensity that is will say f of x=1 and we 

will say EA is equal to 1. In this case if we look at differential equation at becomes minus d2 u 

dx2
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 =1 for x line between 0 and 1. We have taken the bar to be of the length 1. And we will say 

that u at 0=0 at the end x=1 will have EA du dx where EA now is 1 so you will have du dx at the 

point 1=10. 

 

So corresponding to this one if we now go and choose our phii’s as we have done earlier is equal 

to x to the power of i and we will take two terms solution let us take N=1.Then our u two of x 

will be equal to a1 into x plus a2 x2. So going back to our virtual formulation and writing the 

final matrixes I will get K into a is equal to F where K will have entries 1, 1, 1, 4 by 3 you should 

all evaluate this entries will convince yourself a1 a2 this is going to be equal to the load which is 

equal to 31 by 3 and 41 by 4. 
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When we solve this we will end up getting a1 a2 = 127/12 and -1/4. So our u(2)

Similarly if I now take 3 terms that is I would like to have u

 of x will be equal 

to 127/12 x-1/4x squared. This will be our (ralaridge) solution taking 2 terms in the polynomial 

expansion. 

(3) of x=a1 x+a2 x2 + a3 x3
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And again we go through the same exercise we will get the matrix a K as 1, 1, 1, 4/ 3 1 6/ 4 9/5 

6/4 also has to be here because it is symmetric. This in to a1 a2 a3=F1 F2 F3 here F1 F2 F3 can be 

evaluated from the integrals. We will end up getting coefficients a1=10.5 a2=0 and a3= -1/6. So 

our u(3) of x will be equal to 10.5x -1/6 x3 and you will see that this is exact solution of this 

problem. The exact solution of this problem turns out to be a cubic polynomial and by taking 

three terms in the series expansion we have exactly captured that which had to happen. There is 

no other thing we could have obtained because we have said that this phii’s should be able to 

completely represent the highest order polynomial. That is in this case, the linear combination of 

the three phii

If we get 10.4x minus something you answer is wrong then you should go back and check your 

calculation. This answer should be correct to the last decimal digit. 

’s should be able to exactly capture cubic polynomial and here exact solution was 

the cubic polynomial which we have captured. 

Let us look at the plots of this expression both the two terms solution and the three term solution 

that we have obtained. Whenever we obtain an approximate solution we should again look back 

at what is the goal of this whole computation. The goal is to obtain the response quantities of 

interest to sufficient level of accuracy. 
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Let us look at this graph that we have plotted of the displacement of a two terms solution and for 

the three term solution as a function of x. 

You see that here you can hardly see a difference the two graphs almost overlap with the exact 

one. 
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Let us now see what happens when we look at the derivative information. When we look at the 

derivative information obviously with the three term solution will over lap the exact one because 

it is the exact solution while the two term solution does not do a great job with respect to the 

derivative. Though it is not very far if we look at the end value you will get an error if we look at 

this point, error in the range of 1% 2% in the value of the derivative. But still if we look at the 

derivative information that it is inferior to the accuracy of the value itself. This is going to be a 

feature of all the approximation methods. That is if we see good accuracy with respect to 

function itself, if we go and taking higher and higher derivatives, the accuracy is going to 

decrease. That is we are going to pay the penalty by taking the derivative of the less accurate 

function. 

Once we have seen that this Rayleigh - Ritz method seems to be doing a great job for the 

problem of interest then why go to anything else. We can stick to the Rayleigh - Ritz method and 



solve all the boundary value problems using the Rayleigh - Ritz method. Let us see an example 

of a boundary value problem where the Rayleigh - Ritz method may not do well. 
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Let us take a very simple problem; again our actual bar. This is our fictitious example that we 

have created with an end load 10; this is our bar of length 1. At the point x=1/2 I am going to 

apply a concentrated load f =20 units. This is at the point x=1/2. 

If I write total potential energy corresponding to this problem what will we get, again putting 

EA=1? We will get pi of u=1/2 integral x going from 0 to L u, x whole square dx minus 10 u 

evaluated at x=1-20 into u evaluated at x=1/2. So work done by the external forces is nothing but 

the work done by these point loads at applied at the point 1/2 and 1. So if I do the variation of pi 

u will again get integral x=0 to L u, x variation of u, x dx-10 variation of u evaluated at the point 

x=1-20 into variation of u evaluated at the point x=1/2. 
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Let us now use the same approach that we had taken earlier that is will take phii of x to be equal 

to x to the power of i. We can again take two terms solution N=2. What will get u(2) of x=a1 

phi1+ a2 phi2. Substitute back in our variation formulation and get the equation corresponding to 

a1 a2 by what we have done. What we will end up getting is 1, 1, 1; that is the same stiffness 

matrix that we had obtained for the previous example because the material has remain the same 

and phi’s are also the same. There is no reason why the stiffness matrix should change. This will 

be equal to the load vector. Load vector is what? If you remember it will be P into phi1 evaluated 

at 1 plus F into phi1 evaluated at half, and here it will be p into phi2 evaluated at 1 plus F in to 

phi2 evaluated at 1/2. 
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We will get again if I rewrite 1, 1, 1 4/3 intoa1 a2 =P into phi1 evaluated at one is ten plus F in to 

phi1 evaluated at 1/2. So x evaluated at 1/2 is 1/2 so 10+10. Second one, P into phi1 phi2 

evaluated at 1 so phi2 at 1=1. I will get again 10+F into phi2

phi

 evaluated at ½. 

2 is x square evaluated at 1/2 is 1 4. So ¼ into 20 will give us 5. This will be 20 and 15. Out of 

this, the coefficients a1 and a2 will come out to be equal to will be equal to 35 and -15. That is 

u(2) of x=35x-15x squared. Can you tell me what is the exact solution to this problem? The exact 

solution to this problem will be obtained in two parts. 
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I am just drawing the bar here; this is F and this is P. What will you get if you cut any where here 

from our standard mechanic solids? We will get EA du dx in this region up to this point 

x=1/2=10 implies du dx here is equal to 10 which is the constant. I will call this part as part with 

the solution 2. So u(2) of x will be equal to I will write it as a2+b2  into x-1/2 I could always write 

it as linear because the slope is the constant where b2 will be equal to 10. Similarly if I look here 

in this part I will call the solution as u1. So u1 of x will be such that I will get the slope equal to 

what? Slope will be equal F+P which is 10+20 which is 30 30x. If I impose at condition at 0=0= 

a1.So u1 

We have to obtain a

will be equal to the function of x - 30x. 

2. How do we obtain a2? By enforcing the continuity of the displacement at 

the point x=1/2 that is u1 at ½ = u2 at ½. So this is going to give us 30 into1/2=a2 which is equal 

to 15. So a2 becomes 15+10 into x-1/ and u1

 

 becomes 13x. 
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Now if you plot this function as a function of x; in the first part the slope will be 30 up to the 

point x=1/2 and beyond the point x=1/2 the slope will be 10. So up to the point x=1. If you now 

take the solution that you obtained using Rayleigh - Ritz method it will do something like this. 

This is the EXACT and this is Ritz two terms. If you take three terms it was still do this. That is 

what we are going to get as a solution is a polynomial. At this point x=1/2 you will not be able to 

capture the change in the slope using the Rayleigh - Ritz solution whatever we do. Your function 

will make them close in terms of the values at the point but the derivative will be completely 1/2 

at the point x=1/2 because this function is going to get change in slope at the point x=1/2. 

So as an engineer that is a cause of worry because this will be one of the points where I would 

like to know what is the derivative that is I would like to know what are the stresses such that I 

can decide whether this point is going to be safe or not. But our Rayleigh - Ritz solution is not 

going to give us the derivatives very accurately here; we will end up getting bad information 

regarding the state of stress at the point x=1/2. The question is why Rayleigh did - Ritz method 

go wrong here? The answer is quite obvious that in the Rayleigh - Ritz method we are trying to 

fit the polynomial over the full domain. 

While the solution as you have seen is a piecewise polynomial that is in the region x=0 to ½ it is 

the polynomial, which in this case as a region and it is the region ½ to 1 it is also the polynomial 



with of the different slope which is also linear. So somehow in our approximation, in the choice 

of phii’s we have to build in this kind of an information that we should choose pi which can 

reproduce the function which are piecewise define, that is the motivation of using a finite 

element method. I would say one of the motivations. In the next class I am going to highlight this 

point little further, elaborate on it, and make a case for using the finite element method where we 

will say what we do in order to rectify these kind of problems. 


