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In this lecture we are going to continue from where we left in the previous lecture. We were 

doing the planar elasticity problem. For that problem, we had derived the weak formulation. Let 

us put everything into perspective again, the weak formulation corresponds to what. I make a 

very simple mesh here. Let traction be specified on this edge. This is traction vector T is equal to 

Tx
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 into i plus 0, because it is the extraction. I could have displacement here fixed to 0, that is, u 

here is equal to 0.  

 

Let us say, in a very simplistic situation, I am using linear elements to solve this problem. That 

is, piecewise linear approximation is used to solve this problem. These would be the nodes 1, 2, 

3, 4, 5, 6, 7, 8 and 9. And we had said, just like we had done in the one-D problem or in the 

single variable problem, I will have the basis function defined such: phii is such that it is 1 at a 

node and it falls up to 0 at the neighboring nodes.  



This for example, is phi5. With this understanding, we had said that we are going to define our 

finite element solution, uFE, of which the components are: u1FE and u2FE and they are given by 

sigmai is equal to 1 to n. I may have n nodes in the domain and n is equal to 9 in this case. The 

way we have defined them is, alpha2i minus 1 phii was u1FE. And, u2FE was alpha2i phii, where 

we had said, corresponding to every node, there are two degrees of freedom. That is, alpha 1, 3, 

5, 7, 9 and so on correspond to u1FE and alpha 2, 4, 6, 8 and so on correspond to u2FE

For example, the total number of nodes n is equal to 9. I will have the degrees of freedom 1 and 

2, 3 and 4, 5 and 6, 7 and 8, 9 and 10, 11 and 12, 13 and 14, 15 and 16 and 17 and 18. The total 

number of unknowns becomes twice the number of nodes, which is 2i, because, we are talking of 

a problem which has two unknown functions. Here is 2N number of unknowns. So our job is to 

try to setup the 2N equations that we have to solve in order to get the 2n coefficients alpha

.  

i

This is what we had started off with and we said that in order to construct this equation, we look 

at the equation corresponding to phi

. This 

is of size 2N.  

5 or phii in the general case. How did we do it? We chose the 

w that is a test function in a weak formulation. Our weak formulation was integral over the area 

sigmaxx (due to the finite element solution) into uFE into Exx due to the test function w plus 

sigmayy due to uFE into Eyy due to w plus tauxy (due to the finite element solution) into gammaxy, 

due to w, the whole thing integrated over the area is equal to integral over the area of f1w1 plus 

f2w2 dA plus, on the Norman boundary gammaN, T1w1 plus T2w2 ds. We are going to choose w 

of two types.  
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Corresponding to phii, i equal to 1 to N, choose vector w is equal to phii, 0. We claimed that this 

w satisfies all the geometric constraints that are required by the w to be satisfied. I am taking the 

w2 component to be 0, w1 component to be phii and put this in the weak form that we have 

obtained to get the equation, which we had stopped at, as the 2i minus 1th equation. We said this 

was first choice. Choice b was: choose w equal to 0, phii

What were our 2i equations? The equation 2i minus one was given by the strain due to the choice 

of w is equal to phi

 and when I put this, this is also an 

admissible w, when I put this in the weak formulation I will get the 2ith equation. In this way, we 

construct all the 2N equations, which are required in order to solve the problem.  

i,x, Eyy will be equal to 0 (because here I have taken w2 to be 0) and 

gammaxy, due to this w, is going to be equal to phii,y. That is, del wy del y. This is the state of 

strain. I put it in the weak form. So I will get integral over the area sigmaxx due to the finite 

element solution into the strain due to this, which is, phii,x plus sigmayy into the strain due to this 

displacement which is 0, plus tauxy into the strain due to this w which is phii,y into dA. This is 

equal to integral over area of f1 into phii into dA. F2 will do no work because we have taken w2 

to be 0, plus integral over the boundary, T1 phii ds. Let me call this equation a. This is the first 

equation. We said that 2i minus 1th equation is set, where sigmaxx and so on will come out of the 

representation of uFE.  
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Let us now talk of the 2ith equation. I will get integral over the area. For the 2ith equation, I have 

Exx is equal to 0, because we have taken w is equal to 0, phii. Eyy is equal to phii,y and gammaxy 

is equal to phii,x. When I put this in the weak form, this will give me sigmaxx into Exx, which is 0 

plus sigmayy into Eyy due to w which is phii,y plus tauxy into gammaxy which is due to this 

choice of w, phii,x. This dA is equal to integral over the area of f2 phii dA plus integral over 

gammaN, T2 phii

If I write a and b together, that is, the two equations corresponding to phi

 ds. So this is going to be the 2ith equation. Let me call it b.  

i, what will I get? Then 

I will get integral over the area, the first equation will be given by something here into the stress 

vector sigma dA. This is equal to integral over the area f1 phii f2 phii dA plus integral over 

gammaN, T1 phii T2 phii. Let us look at the first equation. What will I have? Sigmaxx into phii,x, 

sigmayy into 0, sigmaxy into phii,y

Similarly, as far as this one is concerned for the second equation, I will have 0 into sigma

. 

xx phii,y 

and phii,x. So these are the two equations I have written in matrix form. I write all these 

equations corresponding to the various ‘i’s. What do I have for sigma here? Sigma, if I go back 

to what I have done in the previous lecture, is given as C B alpha. Alpha was the vector of the 

2N unknown coefficients. This is what I will get. Now I start writing these equations one below 

the other, corresponding to i equal to 1, 2, 3, 4, 5, and 6. Here, I will have phi1,x phi1,y phi1,y 



phi1,x and then I will have phi2,x
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 and so on. If I write all of this one below the other, if I do the 

whole job all the way down to the 2N equations, this will be nothing but B transpose. This is 

exactly B transpose. One can work it out. It is going to be easy, the algebra will not be tedious. 

 

I will end up getting integral over the domain B transpose C B dA. This is a matrix into the 

vector alpha is equal to vector F.  
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What is F? The first entry of f2 i minus 1 will be f1 integral phii plus integral of T1 phii and f2 i 

will be integral over the area of f2 phii plus integral over the Norman boundary of T2 phii

(Refer Slide Time: 16:08) 

. So 

this is the generic representation that we are going to get if we write the whole equation.  

 

What is this then? This is now the global matrix K, which is of size 2N by 2N. This is into 

alpha2N

It should be relatively easy to convert this to the element pieces, which could be assembled back 

to get the global equations. I can now write this as integral over elements 1 to number of 

elements over the area of the element L of this piece. So this will be this term. Similarly, I can 

write F as summation over the elements of F due to the element l. Now it is just a matter of 

obtaining these integrals. Obviously, in order to obtain these integrals, we convert it to the 

element notation. That is, we write everything in terms of the element shape functions instead of 

the global basis functions because we are looking at the restriction of the basis functions to the 

element. Similarly, the load vector will also be written in terms of the element shape functions. 

The integrals will be done as we have done till now for the one-D and the single variable 

 and this is F, which is of size 2N. So the global stiffness matrix comes out of the integral 

over the area of what we call as the B T D V matrix. D is generally used as the material matrix 

instead of the C that we have used. That is just a naming convention. So I could do this integral 

and then I am done. That is, I have the global stiffness matrix. 



problem in two-D. Integrals will be converted to an integral over master element because that is 

where we can do the numerical integration and then evaluate it on the computer. So as far as 

numerical integration and those aspects are concerned, we are not going to get into that now 

because we have done enough of that part. Let us now go and look at the element calculations. 

How will I do this? In order to do this, let us go back to our original figure.  
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Let us give some names to these elements. Let me give this as element 1, element 2, this is 

element 3, 4, 5, 6, 7 and 8. So these are our 8 elements that we have taken for this simple 

problem that we are considering here.  
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The number of elements for the example problem is 4. Now let us go and do the following.  
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I have a generic element. I will do it with the piecewise linear only. This can be extended to the 

higher order ones, where these are the global nodes I, J, K. This is the generic element l. So this 

is the global node I, J, K. Similarly, if we are talking of the higher order element approximations, 



then we will have global interior nodes, the mid side nodes, volume nodes and the area nodes, 

depending on the order of approximation. So these are the global nodes I J K. 

When we go to the element convention, this I will correspond to 1. This J will correspond to 2, 

this will correspond to 3. So in the element, I am giving a new naming convention. This is the 

node 1, 2 and 3. Corresponding to this node, I had phii globally. In the element, I will call it N1 

of the element l. Here I had phij globally and here I will call it as N2 of element l and here I had 

phik globally, which is the same as N3 of the element l. So what would the finite element 

solution in the element look like? Vector uFE in the element l would be given by sum i is equal to 

1 to 3 alpha2i minus 1 of the element l, Ni

Similarly, the second component of the displacement or the v component will be alpha

 of the element l. 

2i of the 

element l, Ni of the element l. Corresponding to alpha2i I will have the global degrees of 

freedom, alpha2I minus 1 and alpha2I. Here, it will be alpha2J minus 1 and alpha2J and here it will be 

alpha2K minus 1 and alpha2K. This will correspond to alpha1 of the element l. This will correspond 

to alpha2 of the element l. This will correspond to alpha3 of the element l, alpha4 and alpha5 of 

the element l and alpha6

Once we have this, we know we have to establish this local to global enumeration. How will we 

establish this? When we do the degrees of freedom creation and numbering, that is where we 

establish this relationship. It is called the connectivity matrix, connectivity information. It is not 

difficult to create this for the mesh. Once I have this, what it tells us is that, the finite element 

solution in the element is given in terms of these. When we talk of B in the element or the matrix 

B that we have created, B will have non-zero entries only corresponding to the basis functions, 

which are non-zero in the element. B will have a non-zero entry for the element corresponding to 

only phi

 of the element l. We have done a counter-clockwise enumeration of the 

degrees of freedom, that is, we went from here to here to here and not from here to here to here. 

(Refer Slide Time: 23:24) This is our choice. It is not that I have to make this node 1. I could 

have made this one 1, but it is naming convention that we choose at the element level. The 

bottom line is, it should be counter clockwise. The node should be numbered in a counter 

clockwise manner.  

i, phiI, phiJ and phiK. All other phi will have zero entries. But now we write these in 



terms of N1, N2, N3

What is the B matrix at the element level? The B matrix at the element level for this case, a 

piecewise linear problem, will be N

 of the element. We can write the B transpose CB matrix at the element level 

and understand where to put them in the global matrix. That will do the job. 

1 of the element, x, 0, N2 of the element, x, 0, N3 of the 

element, x, 0. Similarly, I will have 0, N1 of the element, y, 0, N2 of the element, y, 0, N3 of the 

element, y. Here I will have N1 of the element, y, N1 of the element, x, N2 of the element, y, N2 

of the element, x, N3 of the element, y and N3
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 of the element, x. This is B for the element l. This 

is now, in the case of linear approximation, 3 by 6 because there are 3 basis functions. By the 

same token, if we have elements of order P, then how many unknowns will I have in the 

element? I will have P plus 1 into P plus 2 divided by 2 numbers of nodes into the number of 

degrees of freedom per node. That is, it will be P plus 1 into P plus 2. So this quantity would be 

P plus 1 into P plus 2. If we see for the linear, we had P plus 1 is 2. This one is 3. 2 into 3 is 6. 

This is going to be the B to the power l matrix that we have created at the element level.  

 

Similarly, it is rather easy to define the element stiffness matrix, that is, a part of B transpose CA, 

that is going to come out of the element. This is integral B power l transpose C B power l dA. 

What will happen to the load vector? The load vector will be: for i is equal to 1, 2, … (P plus 1) 

into P plus 2 divided by 2, I will have F from the element 2i minus 1 that is, it corresponds to the 



choice w is equal to phiI, 0. This will be equal to integral over the area of the element, integral f1 

in the element into Ni in the element dA plus; if the element shares an edge with the Norman 

boundary, that is, let this element have an edge with its Norman boundary, it could be that this is 

the node 1 of the element, node 2 and node 3, this is going to be the edge 1, this is edge 2 and 

this is edge 3, this edge is common with the Norman boundary; we will denote the boundary of 

the element as gammal intersection the Norman boundary of the domain, T1Ni

Similarly, F

l ds.  

2i of the element will be integral over Al f2 Ni of the element, dA, plus integral over 

gammal intersection with gammaN, T2Ni
l ds. This is going to give us the load vector for the 

element. Note very carefully that this is an integral over the area. This f1 Ni

This has to be done as a separate loop in each element over the three edges of the element and we 

have to carry the information about, which edge of the element lies on the domain boundary and 

which does not. For an edge which does not lie on the domain boundary, like here, these internal 

edges, I do not do anything. For an edge which lies on a domain boundary with zero 

displacements or zero traction conditions, I do not do anything because those integrals on the 

right hand side become zero. Only for the case where the traction conditions are given, the 

traction boundary conditions are non-zero. In those cases, I have to do these integrals on the 

boundary and put them in the load term. Here we are doing things concurrently. The Neumann 

boundary condition is taken care of simultaneously with the load calculations. In the one-D case, 

we very easily handled the two end points separately. Here we do not because we do not have 

that luxury. We do it right away.  

l dA is an integral 

over the area of the element. Area of the element is this. So for that we will have to use the 

integration points defined over the area of the element. While this quantity and this quantity are 

defined, these are integrals obtained over the edge of the element. Edge is a line. So this is a one-

dimensional integration. So in order to do this integration, we have to transform this edge, from -

1 to +1 edge and then do the integral. We should be able to do the transformation very easily. 

Take this edge to this edge, get the integration points because this is where I know the integration 

points are and do the integration by summation. 
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Again if I go back here (Refer Slide Time 19:06), if I look at these elements, we see for element 

1, I do nothing on any of these three edges, because on these three edges, either zero traction 

condition is given or no boundary conditions or these are internal edges.  

If I go to element 2, here the displacement is zero on the third edge of the element 2, on this edge 

of the element 2. So as far as this element is concerned, again I do nothing, as far as the integrals 

on the boundary are concerned. In element 3, I come to the second edge. Let this be edge 1 for 

the element 3. Here I have to do these integrals on the boundary, while on the other two edges, I 

do nothing.  

Similarly, for element 7, I have to do the integral on this edge, do nothing here and for all the 

other elements, I do nothing. Finally, I am going to go and enforce the displacement boundary 

conditions explicitly just like we did earlier. That is we have to force, in this problem, alpha1 

alpha2

Similarly, I have to force alpha

 is equal to 0 because the vector u is 0 on this edge.  

7 alpha8 is equal to 0 and alpha13 alpha14 is equal to 0. So this 

way, I can construct the element, load vector entries, and the element stiffness entries.  
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Once we have done this, then we go back to this connectivity information (Refer Slide Time 

19:49) and simply assemble the entries of the element stiffness matrix and the load vector in the 

corresponding entries in the global stiffness matrix and the global load vectors. Here we will be 

doing things two at a time because corresponding to each phii there are two unknown 

coefficients alpha2i minus 1 and alpha2i. This is how one would go ahead and do the element 

calculations, assemble and setup the problem to be solved.  



(Refer Slide Time: 35:28) 

 

This is nice. Cannot we do this in a more explicit way? This B transpose C B approach is 

something that is commonly available in all the books and this is what people follow. But here 

something which I do not like personally is that here we are dealing with matrices. We have to 

store these matrices for every integration point because this integral will be written in terms of 

summation over integration points. At each integration point, I have to go and compute the 

values of the shape functions and the derivatives. Construct this matrix B to the power l and do B 

to the power l transpose C B at each integration point and then put it in. Cannot I do this 

explicitly? That will reduce the cost of computation, because, if we can do this job explicitly, it is 

quite easy.   
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So if I go back to our element equation, if I look at the 2i minus 1 equation, I will have integral 

over the area sigmaxx N, I am dropping the l, Ni, x plus tauxy Ni,y dA. This is going to be the row 

corresponding to alpha2i-1 in the element or corresponding to Ni in the element. Sigmaxx is 

actually by what we have done, C11 Exx plus C12 Eyy. Tauxy is equal to C66 gammaxy. I know that 

uFE in the element is given by the representation, we have done already. This is going to be equal 

to sigma i is equal 1 to the number of unknowns in the element. Here we have taken 3, 

alpha2iminus1 in the element, Ni, x. Similarly, this one will be sigma i is equal to 1 to 3 alpha2i in 

the element, Ni, y and similarly, this one will be sigma i is equal to 1 to 3 alpha2i-1 in the element 

Ni, y plus sigma i is equal to 1 to 3 alpha2i in the element Ni, x. What am I trying to get? 

Corresponding to choice w is equal to Ni of the element 0, I can explicitly get the stiffness 

entries in terms of the derivatives of the Nis and the Njs. How will I do it? Corresponding to 2i 

minus1, for row 2i-1, take columns, column will go from 1 to 6 in this case or in the general 

case, 1 to P plus 1 into P plus 2.  
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Let us now look at the column 2j-1. So for the row 2i-1, the column 2j-1 will have contributions 

due to, we see alpha2i-1 will be this one and it will be this one. I will get this as C11 Nj, x into Ni, x 

plus C66 Nj, y into, if I go back, I will have Ni, y, into Ni, y. Integrate this quantity over the area. 

This will give the column 2j-1. Similarly, remember for the row 2i-1, so column 2j will be the 

remaining part. It will be integral over the area of C12 Nj, y Ni, x plus C66 Nj, x into Ni, y.

Where did this come from? I got this one from this part and this part. So very easily I can get 

these entries explicitly. I put it in the loop for the integration, loop of the integration points and 

compute these quantities.  

  

Similarly, for the row 2i for the element, this will correspond to integral over the area sigmaxx 

part will be 0, sigmayy Ni, y plus tauxy Ni, x dA. This part, I can again write in terms of the 2j-1th 

column and the 2jth column. So I do column 2j-1. This will have integral over the area of C, if I 

go back to the material matrix for sigmayy, it is C12 into Exx, so C12 Nj, x Ni, y plus C66 Nj, y Ni, x 

integrated over the area. Similarly, column 2j, this would mean I will do integral over the area of 

C22 Nj, y Ni, y plus C66 Nj, x Ni, x. So it is very easy to write these expressions and in someway this 

is explicit operation of doing this B transpose DB, has been written in terms of the expanded 

expressions that we would have obtained. One can check it that this is exactly what we will get 

out of the B transpose DB and we can write it in a loop over the integration points and get the job 



done. This will give me the element stiffness matrix. Similarly, we can handle the load vector 

entries and do the assembly to get the global system. Then in the global system, I explicitly 

impose these boundary conditions for alpha1 alpha2 alpha7 alpha8 
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and so on and solve the system 

to get the solution. There are one or two important issues that we should also look at. 

 

Let us take for example a boundary, which is like this and let us say (again, I am doing it with a 

very simple mesh) that this is node 1, node 2, node 3, node 4, and node 5. I am solving it with 

piecewise linear approximation. We could do the same thing with the higher order ones. Let us 

say traction conditions are given like this here on this boundary. T is equal to Tn into the normal 

in the n direction. What is the normal? This is the normal in this n direction, the unit vector in the 

normal direction. If I am given the end load like this, how do I handle it? In this case, it is again 

very easy. We know that we had written our traction vector as T is equal to T1 e1, where this is 

the x and y direction or this is the 1 and 2 direction plus T2 e2. This is also equivalent to writing 

as Tn en plus Tt et. And how is Tn given? This is angle alpha. So en will be obtained quite easily. 

The components of en will be cos alphai and sine alphaj. I can write it like this. So the work done 

when we do the work on gammaN T dotted with w ds could also be written as integral over 

gammaN Tn wn plus Tt wt ds.  



Now the question is, our approximation or the finite element solution is defined in terms of the 

Cartesian components, the xy components, so how do I convert it to the n and the t components? 

It is very easy. wn wt is equal to, (here I essentially want components in this coordinate system 

when I have components in this coordinate system. If I look at wn and wt, wn will be w1 cos 

alpha plus w2 sin alpha) cos alpha sin alpha. wt will be equal to minus w1 sine alpha plus w2 cos 

alpha So this is w1, this is w2. So it is minus w1 sin alpha, w2 cos alpha. This is in terms of w1 

and w2

I am talking about the function defined on this phase, which is this inclined phase. Now it is very 

easy that I put the boundary condition because here for example, the T is 0. Let us knock this off. 

w

. 

n will now be given as w1 cos alpha plus w2 sine alpha. We have defined our w in terms of the 

Cartesian coordinates, that is, in terms of the components w1 and w2. What will happen to the 

nodal equations? I will write Tn into w into cos alpha integrated against the phi corresponding to 

this one will give the first load term. Let us say corresponding to node 3, what will I get as the 

load contribution corresponding to phi3. It will be integral over this edge Tn into cos alpha phi3. 

This will go into equation F5

Similarly, the other one will have T

. It will go to the x component of the load vector. 

n sin alpha phi3 which will go to F6. If I go to the next one 

here, I will have Tn cos alpha phi5 integral will go to F9 corresponding to 2i-1 here and Tn sin 

alpha phi5 will go to F10. This way we can handle inclined boundary. What about an inclined 

displacement condition on an inclined edge? For example, if I have this edge and instead of this, 

I have displacement scales, let us say rollers, where the normal displacement is 0. That condition, 

that constraint has to be imposed. This means, in this case un is 0. un is given as a combination of 

u1 and u2 and u1 cos alpha plus u2 sine alpha has to be 0 on this edge. So we will do everything 

that we do in the standard way. Assemble the global stiffness matrix from the load vector and 

then go and impose this condition to eliminate one of the unknown coefficients. I can write here, 

from this edge, un is equal to alpha 5 alpha 5 phi 5 into cosine alpha plus alpha 9 phi 5 alpha phi 

5 3 cosine alpha plus alpha 9 phi 5 cosine alpha plus alpha 6 phi 3 sine alpha plus alpha 10 phi 5 

sin alpha is equal to 0. From there, I can write these alphas, that is, alpha5 cosine alpha plus 

alpha6 sine alpha is equal to 0 and from here, I will get alpha9 cosine alpha, cos alpha plus 

alpha10 sin alpha is equal to 0. This constraint has to be imposed on the stiffness matrix. I can 



eliminate one of them in terms of the other and then the equations also get properly modified and 

I will solve that system and get the solution to the problem.  

With this, I would like to conclude the part on the element calculation and the construction of the 

global stiffness and the load vectors for the planar elasticity problem. Everything follows the 

same line of attack that we had started in the first lecture. In the next lecture, we will talk about 

how to post process the stresses that we get out of the finite element solution, because we know 

that those stresses, by construction, especially for lower P orders are essentially discontinuous, 

while the state of stress in the actual case is continuous. So I will have to do some post-

processing just like we did in the one-dimensional problem in order to obtain a seemingly better 

or hopefully a better state of stress out of the finite element data and then we will go and look at 

some curve geometries. How do we handle curve domains? Here, we have not handled curve 

domains. In that case, what kind of an approximation for the geometry has to be done and how 

does it affect the scheme of things that we have? 


