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In this lecture, which is our 28th lecture, we are going to continue our discussion on the 

planar elasticity problem. In this problem, we had taken a domain omega. On this domain 

I would have some specified boundary conditions about which we are going to talk in 

detail today. Some parts of the boundary are completely fixed, some parts of the 

boundary may be on rulers and some parts will have a traction specified. In the interior 

there will be somebody forces acting on the body given by a distribution of the body 

force by the vector f as a function of x and y. 
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This could be either a plane stress or a plane strain problem. By this we understand that 

the state of stress and strain do not change with the thickness. That is, in the transverse 

direction there is no variation of the stress and the strain. Also, if it is a plane stress 

problem then the state of stress is given by sigma xx, sigma yy. Let me draw the co-

ordinate system: this is x, this is y and normal to all this is z. In the z direction there is no 



variation of the state of stress, that is, displacement strain and stress are assumed to be 

independent of the z co-ordinate. In this case of plane stress problem, we said that sigma 

zz, tau yz, tau xz are all zero. In the case of plane strain problem we had Ezz
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 is equal to 

gamma yz, which is equal to gamma xz and this is equal to zero. In general, if you look 

through a book on mechanics, these problems can be given as a two-dimensional 

boundary value problem, which is given as follows. 

 

We had sigma xx comma x plus tau xy comma y plus f1 is equal to zero; tau xy comma x 

plus sigma yy comma y plus f2 is equal to zero; in omega. This was the differential 

equation from which we had obtained, in the last lecture, the weak formulation by taking 

an admissible virtual displacement vector v, given by components v1 and v2. Remember 

that this is now a vector. That is, it will have a component in the x direction, it will have a 

component in the y direction and these are both functions of x and y. Given this vector 

which we had obtained by following the usual procedure of integrating, of multiplying 

the equations, first one by v1 and second one by v2 and then integrating and adding the 

two equations, we had obtained sigma xx del v1 divided by del x plus tau xy del v1 by del 

y plus del v2 by del x plus sigma yy into del v2 by del y whole thing integrated over the 

area was equal to integral f1 v1 plus f2  v2 two integral over the area plus on the boundary 

which is denoted by gamma on the other domain T1 v1 plus T2  v2 ds. The last part is a 



boundary integral and if we look at this expression, del v1 by del x is nothing but the 

strain Exx for the vector v. The quantity del v1 by del x corresponds to this strain for the 

virtual displacement. This quantity corresponds to the shear strain due to the quantity v. 

This quantity corresponds to the strain Eyy

What does this expression actually represent? It says that the virtual work done by the 

given virtual displacement field against the external forces, which is given by either the 

body force which is f

 for the virtual displacement field v.  

1 and f2 and the boundary tractions T1 and T2
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 is balanced by the 

internal virtual work done, that is, the work done by the strain due to this virtual 

displacement against the existing stress. In the language of mechanics this is called 

principle of virtual work.  

 

By starting with our weighted residual form, by taking the strong form of the equations or 

looking at the differential equations and multiplying with virtual displacements and then 

doing integration and deviation by parts in order to transfer derivatives from the actual 

stress part to the virtual displacement part, we obtain what is popularly known as the 

principle of virtual work formulation. Here, there are two questions. 
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What kind of boundary conditions can we have on the boundary of a domain? 
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Let us take for simplicity, a simple domain with an edge crack. This domain is loaded by 

some traction on this face. I could also, at the same time, say that I am going to fix this 

part. How does this translate to the kind of boundary conditions that are possible for this 

problem? In the one-dimensional case we had said that our weak formulation or the 



principle of virtual work formulation is going to give us the effect of the boundary 

conditions naturally. That is, what kind of boundary conditions can we specify?  
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If I look at the second part of the integral on the right hand side, I have T1 into v1 plus T2 

into v2 and v has to be admissible. What does the admissibility of v imply?  
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v admissible implies the vector v = 0, wherever the displacement u is given. That is, on 

the boundary or at points where u is specified, v has to be zero. That is, it is a geometric 

constraint on v. If I take this part of the boundary, we are saying that the components 

here, the vector u is equal to zero, that is, both components u1 and u2 are zero and this 

need not be the only boundary condition possible. If that is so, then on this boundary, we 

want v also zero.  
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The part of the boundary where displacement is specified is called the dirichlet boundary. 

This is displacement given. The part of the boundary where the force is given is called a 

Neumann boundary or the boundary traction is specified. This is traction given. Imagine 

there is a part of the boundary segment where I have put the displacement equal to zero, 

this is a dirichlet boundary; and a part of the boundary where I have given the tractions or 

the distribution of the traction vector is a Neumann boundary.  
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If I go back to a previous figure, we see that, this part of the boundary is a traction 

boundary. What about this part? If we see this part of the boundary, there is no traction 

applied. This is a traction free boundary, which means that, in a way here traction is 

specified and the traction is set to be equal to zero. Neither am I putting geometric 

constraints, nor am I applying any forces. This is also a Neumann boundary. What about 

this? This also is a Neumann boundary. These two faces are also Neumann boundaries 

and this face is also a Neumann boundary. If I look at this figure, this whole part of the 

boundary is now gamma N and this part of the boundary where I have specified 

displacement is gamma D. The total boundary can be broken into the part that is a 

dirichlet boundary and the part that is a Neumann boundary. 

We know that at a point on the boundary, we cannot at the same time specify the force in 

a particular direction as well as the displacement. We specify either the force in a 

particular direction or we specify the displacement. If we specify the force, then v is 

unconstrained and if we specify the displacement, v is forced to be zero in that particular 

direction, at that particular point. There are other possible boundary types.  
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For example, I have roller support on a part of the boundary. As far as this boundary is 

concerned, (let us say this is a part of a domain, I can make some domain from this edge) 

we are constraining a displacement in the transverse direction to be equal to zero and as 

far as the tangential direction is concerned, this member can move in a transverse 

direction. That is, there is no constraint in the transverse direction. I will have, in the 

transverse direction, the traction specified. It could be zero or non-zero, depending on 

what we have. As far as the normal direction is concerned, we have the displacement 

given and as far as the tangential direction is concerned, we have the traction given. So 

we can have this kind of a mix of boundary conditions. In general, if we have a curved 

surface, then on the curved surface we will talk in terms of the normal direction and the 

tangential direction. This is a tangential direction and this is the normal direction.  

Talking of a point here, we either specify the normal displacement or we specify the 

component of traction in the normal direction and either we specify the displacement in 

the tangential direction or the traction in the tangential direction. To make it more 

general, we have either un or Tn here AND either ut or the tangential component of the 

traction. We see that this AND is very important, we have to give two conditions at this 

point on this boundary. First condition is, we either specify the normal component of the 

displacement or the normal component of the traction, and we specify either the 



tangential component of the displacement or tangential component of the traction. If the 

normal component is specified it implies vn here is zero. If this is specified, vn is 

unconstrained. If ut is specified, we mean vt
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 has to be equal to zero. That is, the 

tangential component of the virtual displacement has to be zero. If this is specified, then 

the tangential component of the traction is given and tangential component of v is 

unconstrained. Thus, we have lots of possibilities of having boundary conditions on the 

edges. 

 

Let us be a little specific and assume gamma d implies u is equal to specified u bar, that 

is, both components. And gamma n implies both components of traction are given. If I 

rewrite the weak form, our weak form will now be integral over omega sigma xx with u 

(due to the actual displacement) into Exx due to v, plus tau xy due to u, into gamma xy 

due to v plus sigma yy due to u, into Eyy due to v, integral over the area. This is equal to 

integral over omega f1 v1 plus f2 v2 dA plus integral over gamma n T1 v1 plus T2 v2

We see that carrying this expression is a bit laborious. So what I would like to do is to 

write it in a more terse form. 

 ds. 

This is because the way we have chosen the specific case, gamma d implies displacement 

is given. Both components of v are zero and so that part of this integral is knocked off. 
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This implies, the bi-linear form for the vector u and v is equal to linear functional due to 

the vector v.  
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The bi-linear form here is this. This is B due to the vector u, vector v and this is the linear 

functional F due to v. It is quite easy to show that it is bi-linear because it is linear in each 

of u and v. 
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For the model problem that we have taken, it is also easy to show that B (u, v) is equal to 

B (v, u). That is, this is symmetric. The bi-linear form in this case is symmetric. We will 

carry on with this notation as far as our construction of various things are concerned. We 

have our weak formulation. Obviously, one would say that we are used to looking at the 

total potential energy.  
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If I have the total potential energy for this problem, what will the total potential energy 

be? 
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Total potential energy for the problem would be a function of the displacement, this 

would be equal to the integral over omega, half of: sigma xx due to u Exx due to u plus 

tau xy due to u into gamma xy due to u plus sigma yy due to u into Eyy due to u dA 

minus integral over omega f1 u1 plus f2 u2 dA minus integral over gamma N, T1 u1 plus 

T2 u2 ds. (And there is a half in front). This is a standard representation of the total 

potential energy for the system. Is our weak form that we have derived on the principle of 

virtual work derivable for these problems from the total potential energy? The answer is 

yes, provided we talk of the linear elasticity problem. It is linear elasticity problem in 

which the strain displacement relationship is linear and stress strain relationship is also 

linear. In this case, if I took the first variation of pi as we said for the minimizer of the 

total potential energy, this is equal to zero. 
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We will see that this implies integral over omega of sigma xx due to u into Exx due to this 

vector delta u (this is the perturbation or the variation of u), plus tau xy due to v into 

gamma xy due to delta u plus sigma yy due to u into Eyy due to delta u dA. This is equal 

to integral over omega f1 delta u1 plus f2 delta u2 dA plus integral over gamma N T1 

delta u1 plus delta u2

If I put delta u is equal to the virtual displacement v, because it could be that delta u is a 

candidate virtual displacement, because delta u satisfies all the conditions that the v has 

to satisfy. That is, on the geometric boundary, the boundary on which u is specified, the 

delta u has to be zero. I see that if I replace this with v, I will get exactly the same 

formulation that we got using a principle of virtual displacement. This one is called the 

variational formulation. The variational and the weak form are the same. We have shown 

that either I come from minimization of the total potential energy or I come from the 

weighted residual formulation and get to the principle of virtual work. Both ways we end 

up getting the same weak formulation. We are interested in the weak formulation in order 

to get our finite element solution for this problem. As we had already talked, this problem 

is in terms of the two unknown functions u

 ds.  

1 and u2, the two components of the 

displacement vector.  
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Let us look at the finite element formulation. Till now we did not really bother about the 

finite element formulation, we were only looking at getting the weak form, which is also 

true for the exact solution or for the continuation of this. How do we go ahead and do the 

finite element formulation? As far as the finite element formulation is concerned, we are 

going to make a mesh of triangles or quadrilaterals in this domain. Let us say I have 

linear approximations, that is, I put these nodes, then in terms of these nodes and the 

basis functions corresponding to these nodes, I will define the uFE vector which will be 

equal to u1FE u2FE where u1FE and u2FE are both equal to sum over one to number of 

degrees of freedom as many nodes, of alphai phiI

This will be equal to sum over i going from one to NNDOF the same number of degrees 

of freedom, beta

, which are a function of x y. 

i phii as a function of x and y. I could take higher order approximations 

also. That is, the basis functions, the definition of which are independent of whether I am 

talking of a single variable problem or of the two variable problems, that is, either the 

heat conduction or the elasticity problem. These basis functions are going to remain the 

same. Why?  



(Refer Slide Time: 30:33)  

 

Because, from our weak formulation, all I need is the first derivative of components of u 

to be defined, that is, del u1 del x del u1 del y del u2 del x del u2 del y and also for v. For 

those to be defined, I need C0 continuity for the basis functions. C0

(Refer Slide Time: 31:14) 

 continuous basis 

functions are what we had already created for the heat conduction problem. We are going 

to use the same basis functions here.  

 



We have these basis functions and likewise, their element wise representation. That is, 

the element shape functions for each individual element in terms of these basis functions.  

We write each component of the displacement vector. If we have written it like this, then 

what can we do next?  
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We can write this as vector u is equal to phi1, zero, phi2, phiNNDOF, zero, zero, phi1, zero, 

phiNNDOF, zero, this into the vector alpha1, beta1, alpha2, beta2 and so on alphaNNDOF, 

betaNNDOF. This is how I am going to rewrite this vector and we will see it will be exactly 

equal to u1FE, being equal to some alphai phii, u2FE equal to betai phii

This one we will say, is equal to the array phi, by which we understand, each component 

given by this into vector alpha, where we understand the components of alpha

. If there is NNDOF 

number of nodes, we see that the size of this matrix will be two rows into twice NNDOF 

columns. Number of columns is two into NNDOF and number of rows is 2. This vector 

will be of size two NNDOF. 

1 beta1 

alpha2 beta2 up to alphaNNDOF betaNNDOF. If I have this, then what do we have? We can 

then write the string.  
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String is going to be equal to the strain vector Exx Eyy gamma xy, which is equal to (I am 

going to write it in a form which is going to be useful to me) del by del x, zero, zero, del 

by del y, del by del y, del by del x of u1FE and u2FE. This strain, for the finite element 

solution, can be written as this. This will be equal to del u1 del x, del u2 del y, del u1 del 

y, plus del u2

We are going to write this quantity as phi operating on alpha. Then our strains will be 

equal to this thing operating on phi into the vector alpha. This operating on phi will be a 

very interesting form. I will get phi

 del x - that is exactly the definition that we want.  

1,x, zero, phi2,x, zero, phi3,x, zero and so on. For Eyy I 

will get zero, phi1,y, zero, phi2,y, zero, phi3,y and so on. For gamma xy I will get phi1,y, 

phi1,x, phi2,y, phi2,x, phi3,y, phi3,x, into the vector alpha. The strain can now be written in 

terms of the derivatives of the basis functions operating on the vector alpha. This is called 

the matrix B and we see that this is going to be three rows into two NNDOFs columns. 

This vector is two NNDOFs columns. So this will give me a vector, which is three by 

one.  
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We can, in a simplified way, write the strain vector is equal to the B array operating on 

the vector alpha. I am not trying to break it up into the element wise contributions and so 

on. I am simply trying to look at it in terms of what happens with respect to the global 

basis functions. We have to keep in mind that what we are approximating is always in 

terms of this globally defined function. How we do it in terms of implementation on the 

computer comes later and we are in the process of building up the case for making it 

easily implementable in a computer program. I have this definition of the strain in terms 

of the derivatives of the basis functions operating on this vector alpha. 

If I have this, then how can I write the stress vector in the engineering sense? This is 

sigmaxx, sigmayy, tauxy. This will be equal to the C matrix operating on their size and 

vector. So we have the stress which we have written as a stress vector, given in terms of 

the material matrix C, operating on the strain vector. We have already given the 

components of C. That is, this will be having components C11 C12 C16 C12 C22 C26 C16 

C26 C66. It will have these components. In specific cases like for isotropic elasticity, this 

will be much simpler. That is, it will have only C11 C12 C22 C66. C16 and C26 will be zero. 

We see that C is also a symmetric matrix. 



Once we have this, then I can write this stress for the finite element solution, in terms of 

the representation of the finite element strain, in terms of the basis functions, which is 

easy. This implies sigma is equal to [C] [B] operating on alpha. The finite element stress 

at a point can be written in terms of C operating on B, which operates on alpha.  
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Similarly, we can write the strain due to the weak. We have the Exx due to the virtual 

displacement v, Eyy due to the virtual displacement v, gammaxy due to the virtual 

displacement v. How can we write this one? This can by written in many ways, let us do 

it in a in one particular way, that this is going to be equal to B operating on some other 

vector chi, where (remember that v has the same form as u), the vector v is equal to phi 

operating on chi or v1 is equal to chi1 phi1 plus chi3 phi3 and so on plus chi2 NNDOF or 

minus one into phiNNDOF. V2 is equal to chi2 phi1 plus chi4 phi2 plus up to chi2NNDOF 

phiNNDOF. V1 and V2

Our question is, how we choose the v such that we get two NNDOF numbers of 

equations in terms of the two NNDOF number of unknown coefficients alpha, given by 

the vector we have written here. How do we do that? 

 could be chosen as this. How do we choose this virtual 

displacement vector v, such that, we get two NNDOF linearly independent equations in 

terms of the two NNDOF unknowns alpha. 
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We will say that choose v equal to phi1 zero. If I choose v equal to phi1 zero, this implies 

strain due to v will be equal to phi1,x, zero, phi1,y. I choose this strain due to the v in the 

virtual work formulation or the weak formulation that we have obtained to get our first 

equation corresponding to the basis function phi1.  


