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Introduction 

In this lecture, we are going to talk about other problems in two dimensions where we 

will have either a single variable problem or a multi variable problem. Specifically, here 

we are going to talk of something called the axisymmetric problem.  

(Refer Slide Time: 00:36 min) 

 

This problem is essentially concerned with a domain of a very special type; a domain 

which is obtained by revolving a plane about a particular axis. You have a domain of 

revolution; so we can think of this as formed by revolving this plane about the z-axis. 

For such a domain, we are going to use a cylindrical coordinate system, which is a 

departure from the coordinate systems that we have been using till now, which was the 

Cartesian coordinate system. In the cylindrical coordinate system, we are going to write 



the variables in terms of the radius vector r, the angle theta and z; where radius vector r, 

this is my r for any point and this is the angle theta. (Refer Slide Time: 02:40 min). 
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In a more expanded form, if I take a section out, take a point here, let us say this is my 

theta equal to 0 line. Then with respect to this line, this is the angle theta and for this 

point p this is the radius r. Depending on where I am with respect to the z, that is where I 

decide to cut, the height z from the bottom, that gives me the z coordinate. (Refer Slide 

Time: 03:35 min) This is the coordinate system that we are going to use and we will have 

a variable let us say a function u, which is now a function of r, theta and z. 



(Refer Slide Time: 04:02 min) 

 

A particular problem which can be posed over this domain is a problem of steady state 

heat conduction.  

(Refer Slide Time: 04:02 min) 

 

In this problem, the variable u is the temperature. So if I write the conservation law for 

the heat conduction problem in terms of the cylindrical coordinate system, then I will 

have to first define the heat flux. A heat flux is a vector q defined in this coordinate 



system which has components in the r direction, in the theta direction and in the z 

direction; where this (Refer Slide Time: 05:15 min) is my unit vector in the r direction, 

this is the unit vector in the theta direction and the one going upwards is a unit vector k in 

the z direction. 

I have an orthogonal coordinate system here also with er, etheta and k as the unit vectors 

and qr, qtheta, qz are the three components of the flux vector in these three orthogonal 

directions. Once I have this coordinate system, now we have the constitutive relationship 

for the flux quantities. So this transpose is will have qr is equal to minus del u del r. Why 

this minus? Because, as we know, the heat will flow from a region of higher temperature 

to a region of low temperature. So it goes from the negative gradient direction. Similarly, 

qtheta

Given the components of the heat flux vector, I can define the conservation law.  

 is equal to minus 1 by r del u del theta and q of z is equal to minus del u del z. These 

are our components of the heat flux vector.  

(Refer Slide Time: 04:02 min) 

 

Essentially, it is a conservation of energy or the heat conduction problem. Conservation 

principle given as minus 1 by r del del r of r qr minus 1 by r del qtheta del theta minus del 

qz del z plus some source term is equal to 0. So, this is the differential equation governing 



the heat balance; the heat flux again plus the part which is developed by a source term is 

equal to 0; the total part. 

Given this differential equation, now you see that this differential equation looks 

significantly different from the kind of differential equations that we had been dealing 

with; because, this 1 by r(s) are sitting there.  

Let us now make a further simplification. We assume that u is independent of theta; that 

is, u does not depend on the angle of orientation theta. Similarly, the q also becomes 

independent of theta. All the derived quantities out of the temperature become 

independent of theta, which means, that in this expression I can knock of this quantity. 

(Refer Slide Time: 09:16 min) 

So, I am left with the differential equation minus 1 by r del del r of r qr minus del qz

Now the question is how do we go about solving this problem using the finite element 

method? In order to obtain the solution to this problem, the first step is to obtain the weak 

formulation. How do we obtain the weak formulation? 

 del z 

plus q equal to 0. By making this assumption, which is generally, actually thought of as 

the axisymmetric problem, I have now reduced this problem in terms of the two variables 

r and z. This becomes a two-dimensional problem in the rz plane; that is, I come back to 

this plane that I have here. I am solving the problem over this plane, any arbitrary plane 

that I take. 



(Refer Slide Time: 10:43 min) 

 

For the weak formulation, what do we do? We do exactly the same thing that we had 

been doing till now; that is, take v as a function of r and z to be a test function or you can 

think of it as a virtual temperature function; multiply the differential equation that we got 

in the previous page; multiply this differential equation (Refer Slide Time: 11:38 min); 

let me call it by the number 1. Multiply 1 by v and integrate over the area; over the whole 

volume actually, because, that is my body over which I have to solve the differential 

equation.  

I take now 1 into v, which is a function of r and z equation 1, integrate over the volume of 

this solid of revolution, dv this has to be equal to 0. When I integrate over the volume, 

what do I get? Now how do I define dv? dv will be obtained as a variation of theta from 0 

to 2pi; if I come back here, theta will go from 0 to 2pi.  



(Refer Slide Time: 12:40 min)  

 

So dv will be in terms of, p is here multiplied by dz. This is going to be our dv. So, dv 

will be actually, if you see the size of this edge is rd theta, the size of this one is dr and 

size of this is dz. So r d theta dr dz, this is my dv.  

(Refer Slide Time: 04:02 min) 

 



What I am going to do is I am going to take one which is minus of 1 by r del del r of r qr 

minus, I have knocked off the theta term del qz

Similarly, my r will go from 0 to big R of z and z will go from 0 to L. So I come back to 

my original figure (Refer Slide Time: 14:24) and specify this is z equal to 0 line and this 

is z equal to L line. For any location, this is my outer radius r which is a function of the z, 

depending on the profile of this solid of revolution. 

 del z, whole thing into v. Now dv was rd 

theta dr dz. So then, I have the integral for theta going from 0 to 2pi. 

This is quite easy; once I have this, now what do I do? Actually, in this integral I should 

switch that is ok; whatever I have done is ok. First, I should be integrating with respect to 

dr and then with respect to dz. (Refer Slide Time: 16:17 min) We have this integral, plus 

I have something more which I have to add, plus the same integral Q v r d theta dz dr this 

is equal to 0.  

What was the next step that we did? The first step was to weight our differential equation 

by a test function and integrate it over the whole volume of the body of interest. The next 

step was to do an integration by parts. Why do we have to do that? Because, you see that 

here, qr involves the first derivative of u with respect to r; similarly, qz

So del q

 involves the first 

derivative of u with respect to z. 

r, del r and del qz, del z involves second derivative of u with respect to r and z, 

while v sitting as such; so, we would like to weaken the smoothness requirement on the u 

by doing an integration by parts, by which we shift one of the derivatives from u to v. So 

what do we do next?  
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Next is we see that 1 by r del del r of r qr v is equal to 1 by r del del r of r qr into v plus 1 

by r qr into r del v by del r. This is what we had; if I go back, our expression was in terms 

of this quantity: 1 by r del del r of r qr

Now, we would like to replace this by this quantity and we will see why we want to do it. 

This implies 1 by r del del r of r q

. 

r into v is equal to 1 by r del del r of r qr v minus, here 1 

by r will cancel so minus, I will have qr

Similarly, let us go back to our next expression this one: del q

 del v del r. This is our first substitution that we 

are going to do; this I will call it as 2a.  

z del z into v. This one we 

will say that del del z, this we have already done many times before qz v is equal to del qz 

del z into v plus qz del v del z; which implies that del qz del z into v is equal to del del z 

of qz into v minus qz

You see what we have done. We have transferred through this the derivative from q

 del v del z; this is my second expression 2b. 

z to v 

the second expression. Now, what do we have when we go back and substitute this in our 

differential equation, in our weighted residual form that we have written, what we will 

get is minus integral, I will rearrange this properly; theta, this is our z, this is our r. 
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We will get 1 by r del del r of r qr v plus del del z of qz v; we will say this is d theta dz dr 

plus I will get integral over theta, integral over the z, integral over the r because minus, 

minus has become plus here qr del v del r; it will be into r d theta dz qr del v del r plus qz

Now, this quantity here (Refer Slide Time: 22:56 min) is nothing but divergence of q into 

v; so divergence of vector q into v. Now the Gauss divergence theorem will give me this 

part, can be have written as integral over the surface delta v, outer surface of the body of 

qv dotted with n into dA. This becomes now by Gauss divergence gives us a surface 

integral.  

 

del v del z whole thing into r d theta dz dr plus integral over theta, integral over z integral 

over r Q v r d theta dz dr is equal to 0. Who ever can, check if we have made any 

mistakes; this was a weak form; a weighted residual form; here we have substituted the 

next part 2a and 2b to get the form that you have written here; this was my expression; let 

us call it 3. 

So these are essentially the building blocks and see that barring this a little bit of 

complication handling the r and the z derivative, the whole approach is the same as what 

we have been doing till now. 
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Then we will rewrite this thing as integral of theta going from 0 to 2pi, integral z going 

from 0 to L, integral r going from 0 to outer radius r of z of qr del v del r plus qz

Now what do we mean by the outer normal n? If you see the surface, outer normal will be 

the unit normal on the outward face. It will be like unit normal on this outward face of the 

given surface. Here it will be something along this face; here it will be actually in the z 

direction if it is a flat cut and so on.  

 del v del 

z into r d theta dz dr is equal to integral theta going from 0 to 2pi, integral z going from 0 

to L, integral r going from 0 to r of z of Q v r d theta dz dr. I will put minus sign here. 

From a previous expression, I will get a plus integral over delta v; I will get vector q 

dotted with outer normal vector n into v dA. 

Now what? Now you see that here, if I look at this expression, this is an integral over the 

surface. How can I write it? I can write it as this is this integral is equivalent to theta 

going from 0 to 2pi integral over the outer surface s; I will say outer contour gamma; we 

will define what this gamma is: qn

What we mean is that if I take this outer surface (Refer Slide Time: 27:49 min), I take a 

thin strip around this outer surface, this strip this is dimension ds. So, the total area is ds 

 v into R at that particular z ds d theta. 



into the length of the perimeter of this circle. Perimeter of the circle will be nothing but 

integral of theta from 0 to 2pi or we can say 2pi or at that particular z into ds; this is the 

area. So that is what we are writing. You see from here, this part can be easily knocked 

off, the integral over theta could be eliminated out of this. So what we are left with finally 

is, if I am allow to erase here I will be left with this expression (Refer Slide Time: 29:11).   
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This is the expression that we have as far as this particular problem is concerned and you 

see now that we are only playing with z and r being our variables of interest. So use a 

function of z and r; how did I get this qn? qn is actually let me do it from first principles q 

dotted with n this is equal to qr er plus qz ez dotted with nr er plus nz ez; that is, the 

components, if I take this face, the components of the normal, this is my normal n, its 

component in the r direction and its component in the z direction; this is nz; this is nr

This dot will give me, this is equal to q

 and 

this normal has size 1. 

r nr plus qz nz; ez

Now the question is what is the given data and what is not the given data? First of all, 

what do we mean by this gamma?  

 is nothing but k; so this is how 

we define q. 



If I go back to this figure here that we have (Refer Slide Time: 31:03) simply [poach] this 

figure.  
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Now say, that since this problem is independent of theta, I take that plane, that particular 

plane like this, I may have the surface like this; this is the line, I will say that this is my z-

axis and I can say this is my r-axis. 

Here, if I take this plane, this surface (Refer Slide Time: 32:01 min) is the outer surface 

gamma; this I can call as gamma1; this I can call as gamma2; this I can call as gamma3 

and this one I call as gamma4

I have these now in the rz plane, the outer surfaces of this rz plane, not the outer surfaces 

now this is contour; the outer contour of this surface is given by gamma

.  

1, gamma2, 

gamma3, gamma4

Now the question is what are the knowns? The heat source term is the known and on part 

of the boundary, I may be given what is the heat fluxing in to the body or out, from that 

particular boundary or on part of the boundary I may be given the temperature. (Refer 

Slide Time: 34:48) 

 or the total is 1 [on this ] gamma.  



For example, let us say here on this boundary, I want to say that my u is a known, u bar; 

on this boundary I want to say that qn is equal to qn

So as far as taking the full plane, if I took the full cutting plane here, this whole plane 

(Refer Slide Time: 34:05 min), then the solution would be symmetry with respect to r. 

Since the solution will be symmetry with respect to r, the derivative with respect to r at 

this point will be 0. So along this surface I will have the q

 bar which is a known; this could be 

coming out of conduction, convection or radiation boundary conditions. On this 

boundary, again, I can say that u is equal to u double bar. On this boundary, for this 

particular problem, you see that because the solution is independent of theta, so from the 

solution on this side of the r equal to 0 line and on this side are the same. 

r is equal to 0. So on this 

surface qr is equal to 0. Now, once I have qr

(Refer Slide Time: 35:03 min) 

 is equal to 0 on this surface and this is from 

symmetry I have the boundary conditions given on each of the four edges of this 

particular two-d domain in the rz plane.  

 

So if I have this boundary conditions given; so let’s go back to our weak form and you 

see here that which is our force type of boundary condition or the natural boundary 

condition or the Neumann boundary condition, it is qn.  



If the normal flux is given on the edge, we call it a Neumann condition. Similarly, if the 

temperature is given on the edge, then that edge has so-called essential boundary 

condition or the Dirichlet boundary condition. 
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So, on the edge we will have here that I can have Neumann boundary condition qn

You see that everything is exactly the same as what we have been developing till now; 

only thing is now we are talking of a problem in a cylindrical coordinate system. Once 

we have this, then essentially, we have formed the full weak form of this particular 

problem. Now we go and substitute for q, our q

 given. 

So, on an edge where the normal heat flux is given, I cannot specify the temperature; its 

either or. A Dirichlet edge is one on which u is given; on the Neumann edge, v is free; v 

is allowed to be anything; on the Dirichlet edge v is equal to 0. 

r is equal to minus kr del u del r; qz is 

equal to minus kz

Now as far as the mesh generation, what is the mesh that I am going to form? I am going 

to now, make a mesh over this rz plane. 

 del u del z. I go and substitute it back in my expression here and I go 

ahead and solve the problem. This is what we have to do as far as solving this problem is 

concerned.  
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So I could make a mesh of any type: it could be a mesh of squares or triangles or 

quadrilaterals, whatever, I wish; that is my choice. I will make my mesh, solve the 

problem exactly the way that we have being doing till now and I have my solution to the 

axisymmetric problem. So we substitute this and we solve this particular problem and 

that is it. 

(Refer Slide Time: 38:14 min) 

 



Next what we are going to look at is the problem of planar elasticity. This is another 

problem of great interest in mechanics. 

Here we have some domain which has an area A and it has a boundary. I will call it 

gamma as a boundary. In this case, what is given to us is that there is a distributed body 

force, vector F. So the body force is given by the vector F. On part of the domain, I could 

be given the tractions; traction is given by the vector T. On some part of the domain I 

may fix the displacement; on the rest of the domain I could have a traction free condition. 

So, this could be the situation for a planar elasticity problem. In the planar elasticity 

category, we have two types: plane strain where the components of the strain in the 

transverse direction become 0 and from there we have a reduced constitutive relationship 

or I have a plane stress. 

Let us say this domain lies in the xy plane; that is, the components in the case of plane 

strain my Ezz is equal to gammaxz is equal to gammayz; gammayz is equal to 0. Here I 

would have sigmazz is equal to tauxz this is equal to tauyz

 (Refer Slide Time: 41:202 min) 

 is equal to 0. So these are two 

different situations that we are going to consider here.  

 



For the planar elasticity problem, the displacement field is now a vector field u; it is a 

function of x and y, because it is a planar problem we do not take it to be a function of z. 

This is a vector given by u1 which is a function of x and y and u2

For this displacement field, now we have a corresponding strain. The definition of strain, 

I will write the strain in the engineering notation; strain is written as a vector this is equal 

to E

 which is a function of x 

and y. 

xx Eyy gammaxy. This is del u1 del x del u2 del y del u1 del y plus del u2

(Refer Slide Time: 44:10 min) 

 del x, this is 

the definition of the strain. This is called the strain displacement relationship. This is for 

small deformation theory; remember that, we are not talking of large deformations; here 

we are talking of small deformation theory. Further, we will have what we know as the 

constitutive relationships, which tell us what are the stresses in terms of strains. 

 

Then I will write here - stress again I am writing as an engineering vector notation - it is 

sigmaxx sigmayy and tauxy. Stress is assumed to be symmetric; not true all the time, but 

we are assuming that there are no distributed body movements. So the stress tensor is a 

symmetric tensor. This will be equal to some material matrix C into the strain vector psi; 

where C has components c11, c12, c16; c12, c22, c26; c16, c26, c66; this is the elastic or the 



stiffness matrix, material matrix. We are talking of the problem of linearized elasticity. 

So stress is a linear function of strain given by this material matrix C. 
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Now for this problem, the equilibrium is written in terms of angular momentum, 

conservation of linear momentum, conservation of angular momentum. Conservation of 

angular momentum has for these problems given as stress symmetry; conservation of 

linear momentum is what is left to us.  

If you remember, it is given in terms of sigmax star, sigmax, sigmay star, sigmay, tauxy 

star, tauxy star and tauxy

So if I take this piece, this infinitesimal piece out of my domain, look at the equilibrium 

of this piece under the action of these stresses, of the forces on these faces, essentially for 

a static problem I will get (sigma

 and here is a contribution due to f; f delta A; delta A is delta x 

delta y. 

xx, x) plus (sigmaxy, y) were I am using tau. So let me 

use tau here; (tauxy, y) plus f1 is equal to 0. Similarly, you will have (tauxy, x) plus 

(sigmayy, y) plus f2

Now, you see certain features of this problem: it is two unknown variables; variables u

 is equal to 0; all this in the area A.  

1 

and u2. There are corresponding to these, now there are two equations, governing 



differential equations. You see that these differential equations are coupled; that is, you 

cannot separate the u1 and u2 out; both the equations are in terms of both u1 and u2

So, these are the two features of this particular problem and this is a deviation from what 

we have been doing till now; we have been looking at a single variable problem almost 

throughout the whole course till this time; now, we are going to a multi variable problem. 

Now, how do you handle this particular problem? So today, we are going to only look at 

development of the weak formulation. What is the basic idea? You have all done 

principle of virtual work in your mechanics courses, we will borrow from that.  

. 

So we will say that let this system be in an equilibrium. Now, I apply a virtual 

displacement v; a virtual displacement v, which is a vector which has components v1 and 

v1

So what will do now, as we had done earlier, we simply take both the equations and 

multiply by the corresponding component of this vector. So this I will multiply with v

. This is virtual displacement or this is the test function, but this is the vector node. 

1; 

this I will multiply with v2. Then what we had done? We had said earlier that we are 

going to integrate it over the area. So we are going to integrate both of these over the 

area. You see that each one of them, if I integrate will be equal to 0. So, if each one is 0, I 

am simply going to add the two. I will get now one expression in terms of an integral, 

that is integral over the area of v1 into (sigmaxx, x) plus (tauxy, y) plus f1 plus integral 

over the area of v2 into (tauxy, x) plus (sigmayy, y) plus f2 this is equal to 0. So this is our 

weighted residual form, when I sum this is the weighted residual. (Refer Slide Time: 

52:02 min). 
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Once I have this, then I will go and again now look at this expression. I have this 

expression v1 into (sigmaxx, x) plus (tauxy, y) plus v2 into (tauxy, x) plus s (sigmayy, y) dA 

plus integral over A f1 v1 plus f2 v2 dA is equal to 0; where f1 f2 are the components of 

the body force. Now again, you see, that if I go back and look at my expressions for the 

stress in terms of the strain, stress is a linear in terms of the strain, strain is in terms of the 

derivatives of u, as we have here. So in our expression here actually second derivative of 

u is sitting and similarly, v is sitting without any derivatives. So we want to now weaken 

the requirement of smoothness on u1 u2 

In the integration by parts again the same thing we can do that del del x of v

by transferring a derivative to v. So now we do 

integration by parts. 

1 sigmaxx is 

equal to sigmaxx del v1 del x plus v1 (sigmaxx

Similarly, I can do for the others and then what do I see that integral over area of this 

quantity would have been let me do it, del del x of v

, x). I transfer this thing from here to here 

with a negative sign, that will be this one in terms of this minus this. 

1 sigmaxx minus sigmaxx del v1 del x 

dA. 



Now look at this expression (Refer Slide Time: 54:52 min) this is the partial of a given 

quantity, of a given expression. That again, I can use the Gauss divergence theorem to 

give me this. This expression is actually equal to integral over the boundary of v1 sigmaxx

(Refer Slide Time: 56:00 min) 

 

into the normal component in the x direction; the x component of the normal on the 

particular edge into ds. 

 

If I do this process for each of these components here – this, this, this, this, I will end up 

getting integral over the area sigmaxx del v1 del x plus tauxy del v1 del y plus tauxy del v2 

del x plus sigmayy del v2 del y whole thing dA plus integral over the area, this will be 

minus integral over the area f1 v1 plus f2 v2 dA plus integral over gamma. You will see 

you will have sigmaxx nx plus tauxy ny into v1 plus v2 into tauxy nx plus sigmayy ny

Now from basic mechanics we know that on the boundary sigma

 whole 

thing ds; ds integral over the edge. This is equal to 0; this is the weak formulation that I 

was talking about (Refer Slide Time: 58:48) 

xx nx plus tauxy ny is 

equal to the x component of the traction vector on the boundary; sigmayy ny plus tauxy nx 

is equal to the y component of the traction vector on the boundary. 



So these things can be given in terms of the x component or one component of the 

traction vector, y component or two component of a traction vector. I will call this also 

T1, this is also T2

Now on the boundary either the traction is given or the displacement is given so we will 

have to talk about what are the possible boundary conditions that can be applied for this 

particular problem, in terms of the displacements or in terms of the given traction forces 

on the boundary, but what we have obtained here in this expression is the complete weak 

form; I go and substitute the expressions for sigma

  

xx tauxy and sigmayy

Notice one more thing that here, these are all in terms of del v

 in terms of the 

strains, strains in terms of the displacements, I will get the weak form in terms of the 

displacements. 

1 del x del v1 del y del v2 

del x del v2 del y and not in terms of the strain. This we will talk about in the next lecture, 

that how it gets converted to the strain for this particular type of problem and then will 

work from there. 


