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In the previous lecture we elaborated on how to use various types of elements and the families of 

shape functions defined over these elements in a two-dimensional finite element computation. 
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We had talked about a rectangular domain as an example, where we had chosen either to make a 

mesh of triangles or a mesh of quadrilaterals. In this case it would be rectangles. The convention 

we had followed was: this is the edge 1 boundary, boundary edge 2, boundary edge 3 and 

boundary edge 4. Let us say that I would like to do a quadratic approximation in either of the 

cases. So here I will use quadratic triangles and here I will use quadratic serendipity. If I do 

quadratic triangles, I will do the numbering in the particular way, 1, 2, 3, 4, 5, 6, 7, 8, and 9.  I 

will call the mid side ones 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 and 25. As 

discussed last time, the corner nodes of the elements of the domain, the vertex nodes will be 

given the degrees of freedom first. That is my convention and it has its advantages. After that we 

will name the side degrees of freedom element by element.  



First, I go to the first element number, the degrees of freedom corresponding to that element, 

then the second one and so on. Here I have twenty-five degrees of freedom. If I use the 

serendipity, I will have these nine corner ones and will start numbering the edges. In this 

element, I will have edges 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 and 21. So, in the case of 

serendipity, we have a total of 21 unknowns and in the case of triangles, we have 25. 

Let us talk about the boundary conditions. I could have edge 4 as u specified and may be edge 2 

will have some variation of g, which is the flux. So these are the boundary conditions that I may 

have for the problem. Given these boundary conditions, given the domain data, do I know what 

the smoothness of the solution is? So the exact solution to the problem is u. The question is how 

smooth is it? By how smooth we mean how many x and y derivatives of this function u 

derivatives are going to be bounded. That is, they have finite values. It turns out that the 

smoothness of the solution not only depends on the body source term r and the boundary flux 

term g or the boundary displacement u bar, but it also depends on the domain and the way the 

boundary conditions switch.  
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Let us say in this case the solution is smooth, that is, u is smooth. We will be interested in 

knowing how well is the finite element solution performing as compared to the exact solution. So 

we will be talking about u minus u finite element, which we are going to call error. This is error 



in the current finite element solution. I have put a mesh, taken one approximation, solved for the 

finite element solution and now what is the error? This error is represented as e.  

How are we going to measure the size of the error? The size of the error will be measured in 

terms of square root of some factor into the strain energy of the system. We are more familiar 

with strain energy kind of terms. Here we define B (u, v) from our variation formulation of the 

weak form, which is the integral over the domain omega of (k11 del u divided by del x plus k12 

del u divided by del y) into del v divided by del x plus (k12 del u divided by del x plus k22

I can define what B (u, u) is. Similarly, I can define what B (u

 del u 

divided by del y) into del v divided by del y into dA. We are defining the bilinear form. We 

should remember what we had done earlier in terms of this quantity, which is nothing but the 

right hand side of a weak formulation.  

FE, uFE
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) is. We see that the integral 

over the omega will be understood in terms of sums of integrals over each of the elements. 

Similarly, by element sums, I can define B (e, e) and we had said that we would define the size 

of the error in terms of the energy norm of the error. Let us give it by e within two lines defined 

over the whole domain.  

 

This is the domain omega. It is defined over this whole domain.  
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This thing is equal to nothing but square root of B (e, e). We are going to define this quantity, 

which is energy norm of the error. Why are we calling it energy norm? Because it is in some way 

related to what we know as the strain energy. Though this is not a problem of mechanics, but we 

define it like this. Once, we have this energy norm defined, the question is, with respect to this 

quantity, what do I expect?  
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When u finite element tends to u, it implies error tends to 0, which implies the energy norm of 

the error should tend to 0. This is what we mean by conversions. I refine the approximation in 

some way and when I refine the approximation, the error should go down to 0. We measure it 

with respect to the energy norm. 

The question is how do we refine the approximation?  
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In refining the approximation, we could do two things. We could either decide to refine the 

mesh, that is, break the existing elements into uniform smaller pieces. This will be the new mesh, 

which will have four into 4, 16 elements. So out of a mesh of 4 elements here, we have 16 

elements. If I have to do it for the triangles, I will break the existing triangle into four equal 

triangles. I can keep doing it and the mesh is getting refined. Like in the one-D case, we have to 

define a mesh size. We will take this horizontal length h. So for the smaller mesh, the mesh size 

is less than the bigger mesh, in fact, it is half of that of the bigger mesh. So h new is equal to half 

of h old. This is what we mean by enhancing our approximation using mesh refinement.  
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As discussed in the one-D case, we are going to be specifically talking about the h version of the 

finite element method, where improvement in the solution is achieved by keeping the P, that is, 

order of approximation fixed and only refining the mesh. If the mesh is getting refined, we will 

like to have the measure of this energy norm of the error in terms of a function of h, the mesh 

size, and we expect that as the size h goes to 0, this should also go to 0. When I use smooth, it 

turns out that this quantity goes as some constant into h to the power of P, where P is the order of 

approximation and h is the mesh size. This is similar to what we had obtained in the one-D case. 
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What happens when the solution is unsmooth? We have been so far only talking about polygonal 

domains. Let us take a polygonal domain, which is like this. I am fixing it here and here. Here I 

am giving a flux condition and here also I am giving a flux condition. I may also have a flux 

condition here in this part, while here I am fixing the solution. u bar is equal to 0. Here also u bar 

is equal to 0 and here g is specified and here also g is specified. How do I solve the problem over 

this domain? I could make a mesh of triangles or quadrilaterals. Let us make a mesh of triangles. 

It doesn’t matter whether we have a mesh of triangles or quadrilaterals.  

The mesh size is the maximum of the length of the edge of a one of the triangles, because here 

the sizes of each of the triangles may be different, because I have an irregular domain. In this 

case, I have these interesting points. If I look at it as a problem of elasticity and fix displacements 

here and have this kind of a corner, I expect stress concentrations to happen. Similarly, at these 

points ABC (C, because here the boundary condition is changing and suddenly switching), I have 

a flux condition and suddenly I am fixing the displacement. At these points, I would expect stress 

concentration to happen. Similarly, for the single variable problem also, I would expect the flux 

or the derivatives to become high in the vicinity of these points. In fact, they are not only going 

to become high but they are going to become infinite. That is, they are going to have singularities 

in the derivatives. That is, here, in the vicinity of these corners, I am going to have singular 

behavior of the solution and then the singular behavior will very quickly die away. It is localized 



in some vicinity of these corners. Because of this, the question is can we characterize the 

singularity? Yes, in the vicinity of these corners, I can characterize the singularity. Let us take a 

generic corner. 

(Refer Slide Time: 18:07) 

 

This is the generic corner O. I fix an axis with respect to this. For a given point P in the vicinity, 

I will measure this angle theta and the length r. That is, I am using a local polar coordinate 

system in two-D. The solution in the vicinity of the point O will be: u is a function of r and theta 

in the vicinity of point O which is equal to a constant into r to the power of alpha into a function 

of theta. This is how the solution in the vicinity of this corner is going to look like. This is 

obtained from an asymptotic expansion. In fact, this expansion is not only one term, there is an 

infinite series in terms of many of these alpha i. We are taking the first term that corresponds to 

the smallest alpha because that is the one that dominates the whole behavior. When this angle 

omega is greater than or equal to 180 degrees, then alpha is less than 1. If alpha is less than 1, del 

u divided by del r will be A1 alpha into r to the power of alpha minus 1 into function of theta. del 

u divided by del r is now r to the power of alpha minus 1, where alpha minus 1 will now be less 

than 0. As r comes down to 0, this quantity shoots up, that is, this becomes singular at r equal to 

0. This is the nature of the solution in the vicinity of these corners for which angle is greater than 

180 degrees. These corners are called re-entrant corners.  
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Let us go back to the previous figure. Corresponding to each of these corners we put a local polar 

coordinate in the vicinity of the corner and do expansion of the solution in the vicinity of the 

corner. I will have for each of the corners a corresponding exponent of that r to the power of 

alpha term. Here also we will have r to the power of alpha c. I will have all these exponents.  
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Alpha is equal to the minimum of all of these: alpha A, alpha B, up to alpha E. If I do a mesh 

refinement for the given domain in terms of alpha, it will turn out that the error is of the type c h 

to the power of mu, where mu is equal to minimum of P and alpha. The rate of convergence is 

now driven by the smoothness of the solution, that is, by the exponent of r to the power of alpha 

term in the vicinity of the re-entrant corners. The domain may have multiple re-entrant corners 

because we face this kind of domains all the time. These are quite common in engineering 

practice to have this kind of domains. So we are going to have this and then it does not matter 

what P we use. The rate of convergence is always going to be minimum of P and alpha. If I use 

higher alpha P, I will still get the rate of convergence alpha, if alpha is less than P, which is now 

a sub optimal rate, because raising the P has not helped us. Then the question is how do I do a 

better job?  
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To do a better job, let us go back to our problem. It is quite obvious that here we are not able to 

capture the singular behavior because of these large element sizes. We should do a proper 

refinement of the mesh in the vicinity of this corner, so that I can capture the singular behavior of 

the solution. It will not be captured by just raising the P, but by a refinement of the mesh. 
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We are going to do a geometric refinement of the mesh in the vicinity of corners.  
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Let us go back to the domain that we have made. I will make this domain again. The problem 

areas are these points. We are going to take these rings in the vicinity of these points. They need 

not be rings. They could be approximated by polygons. Let us say this is of size initial h. Now 

we make smaller rings inside this ring. That is, I am going to make a smaller ring such that if this 



is at distance h from the singular point of interest, then this is at a distance hq and this at a 

distance hq square and so on. I can have n rings, where the nth ring will be at a distance hq to the 

power of n, where q is generally taken to be 0.17 or 0.15.  

If I do this, then I can make these rings in the vicinity of these corner points, then in this rings, I 

can now make the elements. I can make the elements in the rings and as I said the rings need not 

be circles. They could be approximated by polygons. I make these triangular elements and then 

extend the mesh outside and so on. I will be getting the mesh like this. In the vicinity of the 

corners, I make these geometrically refined meshes. Once I do that I can put large elements 

outside these corners. I make a non-uniform mesh.  
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If I take sufficient number of rings, then the energy norm of the error will now go as c N to the 

power of minus P by 2, where N is the number of degrees of freedom. This is now optimal for 

the h version of the finite element method. I can use a combination of h and P. That is, I start 

raising the P.  
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In the vicinity of the corner the solution is singular. If I take the refined meshes and a low P and I 

keep raising the P such that the solution away from the corner is smooth. Solution is only 

unsmooth in the vicinity of the corner. Using large elements with high P in that region will give 

very good accuracy and that is exactly what we should do. Use large elements here with high P, 

small elements with low P, and we can get exponential accuracy.  
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When we do hp version of the finite element solution then I can get exponential accuracy.  
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In real life structures or components that we have, we will never have these corners. We will 

have a fillet here. The corners will be rounded off. But when we make a mesh to represent this 

domain, the domain is discretized. It is represented in terms of a mesh that we put and the 

approximation that goes with the mapping that we use. This corner represents the fillet when we 



put a mesh, that is, when we use linear mapping. Even though the actual problem does not have a 

singularity per say, though it has a stress concentration, the problem that the finite element 

formulation sees is a problem with a singularity, and that is what it tries to solve. For that we are 

still going to get the same problem as we have outlined. 
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This was about various ways of controlling the accuracy of the approximation.  
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Another issue that can crop up is when one is interested in a region that is far away from the 

boundary from any of these singular corners because that is what may be the region of interest. 

For example, I may have a cutout here. I may be only interested in the vicinity of the cutout. The 

question is when do we have to do the refinement and all other things to get an accurate solution? 

In principle, from the point of view of physics, it looks like the effect of the singularities is local 

and this effect dies off very fast. Away from the singularity, the solution is smooth and 

everything should be fine.  
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I will draw a domain with 1 re-entrant corner. I am interested in this region. Let us look at how to 

measure the accuracy of the solution here. I will talk again of energy norm of the error, now in 

this sub domain or the region of interest omega naught. This error goes as c h to the power of 

mu2, where mu2

If P is less than 2alpha, then as far as accuracy is concerned, it goes at, what I got for the global 

optimal rate. But what if 2alpha is less than P? I have used high end of P and in most of the 

engineering problems, this is always true even for P equal to 1, because for the domain, I have 

shown, alpha could be two-third, one-third and so on. For the one-third, 2alpha is always less 

than 1. So in that case, the effect of the singularity dominates the accuracy of the solution here. 

This is called pollution effect. That is, numerically, the penalty that I pay for whatever mistake in 

 is equal to minimum of P and 2alpha.  



representing the solution in these unsmooth regions, that penalty I have to pay everywhere also. 

That is why this 2alpha comes into play. Even if I am interested in this region, I will have to do 

the mesh design near the corners in such a way that this influence of the singular term becomes 

small here. So the refinements have to be done and this is one of the drawbacks of what is known 

traditionally as global local methods, where this was traditionally ignored and mesh at singular 

points that were far away from the region of interest were not refined. But we have to do it 

because it directly affects the numerical solution. We can use mesh refinement in order to get 

better approximation, better quality solutions.  

(Refer Slide Time: 35:02) 

 

In the P version, when the solution is smooth, that is, I do not have these singular points etc., I 

get exponential rate of convergence. When it is singular, what do we mean by the P version? It 

means I fix the mesh and raise the order of approximation. Then the error is lesser than or equal 

to c N to the power of minus alpha by two. If I have equivalence with the h version, then error is 

h to the power of alpha. Here again, in the P version, the error does not do better than what we 

have for the h version. Only thing is that the constant may be small. This is how we do the mesh 

design and control the accuracy of the solution.  
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I have now solved the problem. I would like to now obtain the flux information or the derivative 

information out of the solution of the finite element problem. In that case, we will have to talk 

about post-processing of the solution. Given the mesh, given the domain, let us say I am 

interested in the values of del u divided by del x, del u divided by del y in this element. How do I 

use the finite element data to get a better value with respect to the exact solution? Because, the 

finite element solution as such will have jumps in these quantities at the interface boundaries, 

while the exact one is nice and smooth. Therefore, obtain better information about this data at 

this point. 

Directly use data from gauss points which is especially true for the quadrilaterals, while for the 

triangles, if I have the region in the vicinity of the centroid, it can be used to obtain the better 

values of this derivative information; which is not always true but in many cases, this is quite 

good. This is just the use of the direct points from the mesh or from the element that we have in 

order to extract data at the so-called good points. This is not going to be true for the elasticity 

problem, but for this problem these points are good enough. Now I want to recover good values 

for the whole element. In the one-dimensional case, we had talked about the super convergent 

recovery techniques. That is, by fitting the finite element data over a neighborhood of the 

element of interest, we can extract seemingly better representation of the derivatives. We will 

take a neighborhood of this element, one element neighborhood which incidentally in this case 



turns out to be the whole domain, the whole mesh. We take all the elements that are connected to 

this element. That is, they share either a vertex or an edge with this element.  
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I can have a very simple fitting over these elements: del u star divided by del x with respect to 

the element of interest tau is equal to sum of aij x to the power of i, y to the power of j, such that i 

plus j is equal to 0, 1, 2 up to P. This represents the polynomial of Pth order - a polynomial, P+1, 

where P is the order of approximation. P+1 or P will do fine because the finite element solution 

del uFE divided by del x will be a polynomial of order P-1. For this, we take one order higher or 

even two orders higher and will take it as a polynomial of order of P. This is what we would like 

to obtain from the finite element data.  
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This patch of elements will be called Ptau. This is the element tau. All the elements, including the 

element tau, are called the patch Ptau

(Refer Slide Time: 42:20) 

. 

 

Over this patch, we will define J1 is equal to integral over the patch of del u star divided by del x, 

minus del uFE divided by del x whole squared into dA. I will find the coefficients aijs such that 



del J1 divided by del aij is equal to 0. That is, I find a minimizer of this functional that I have 

defined over the patch and these are the aij
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s corresponding to the element tau.  

 

Similarly, I am going to define another functional J2 is equal to integral over the patch Ptau of del 

u star divided by del y, minus del uFE divided by del y whole squared into dA and find the aijs in 

this case, where del u star divided by del y over the element tau is equal to sigma i plus j is equal 

to 0, 1 and so on, up to P, of bij x to the power of i, y to the power of j. It will have the 

expression b0 plus b10x plus b20x squared plus so on plus b11xy plus b01y plus so on. It is in 

terms of all the monomials of order up to P. We want the bijs to be such that del J2 divided by del 

bij for the element tau is equal to 0. This will give the equations in terms of these coefficients bij.  
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Similarly, the previous one will give me the equations in terms of the coefficients aij
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. Solve these 

two at the element level and this is going to be a very small problem. The size of it is going to be 

simply (P+1) into (P+2) by 2 for each element.  

 

These small problems can be easily solved and I will obtain the set of coefficients aij for the 

element tau, bij for the element tau. Using these set of coefficients, now I will go back and 



construct the del u star divided by del x in the element. I am doing this projection over the whole 

patch, but I use the data only in this element.  
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Now if I have to go and do it for the next element, let us say I am interested in this element, then 

the patch for this element will contain all these elements. I will do the same job for the next 

element by taking this patch and constructing these coefficients aij bij and out of that I get del u 

star by del y and del u star by del x for that element.  
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I can use this information del u star divided by del x in the element tau and del u star divided by 

del y in the element tau as recovered derivatives and in terms of these derivatives, I can define 

the flux quantities q1 star in the element tau as k11 del u star divided by del x in the element tau 

plus k12 del u star divided by del y over tau. This is a simple recovery procedure with which we 

can expect to get better flux quantities. In general, for measures that are not too distorted, 

elements that do not have very small or very large angles, this does a pretty decent job of a 

recovered stress field. This is one of many methods that are available to do this kind of a post-

processing. It is a patch recovery approach. We can define various other definitions of J1 J2. We 

can do recovery of the flux terms directly. That is, we can write q1 star, q2

With this, we are now pretty much in a position to solve a finite element problem for this model 

problem that we have taken which is the generalized parson equation, which is applicable to the 

steady state heat conduction problem. It is also applicable to the torsion problem where we talk 

of the prandtl stress function problem, which could also be written in terms of a parson or a 

laplace equation, depending on the boundary conditions we use.  

 star in terms of 

polynomials and get the recovered quantity of interest.  
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So all those problems can now be solved using what we have discussed. For example, if we talk 

of the torsion problem, then we may be interested in this kind of a cross section. For such cases, 

when we talk of the shear flow and so on, we know that there is going to be a stress 

concentration. How do we compute the stress function zeta and the j, which go into the modulus 

of the torsional rigidity GJ? We can use our finite element method. Solve this problem, which is 

a Poisson problem: minus delta zeta is equal to 2 with zeta equal to 0 on the boundary, on 

gamma. Solve this problem and we are done and from where we can get J.  

Here again, there is a singularity in the vicinity of these corners for one of the very popular 

domains that we have and this can be handled by doing mesh refinement in the vicinity of this. 

Another section we are interested in is the ‘i’ section. Here again, we will have these corners and 

so on. Thus, we have a tool with which we can solve all these problems for polygonal domains.  
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Next what we talk about is the case when the domain is not polygonal. For example, I may have 

a domain, which has a cutout, say, a circular or an elliptic cutout; or I can have a domain, which 

has a curved profile. In this case, as far as mapping the geometry is concerned, if we do what we 

have been doing till now, that is, we take the linear map and then make a mesh, I will only be 

approximating these curves by straight lines. Let us say I make a mesh of triangles. I will be only 

approximating these curves by straight lines. This is a bad idea because it depends on how coarse 

or how good the mesh is. If the mesh is coarse, I will be making a lot of error in representing the 

geometry of the domain. We would like to have a better representation of the geometry of the 

domain. So in that case, the linear mapping will not do and we will have to use a higher order 

mapping that is mapping in terms of higher order polynomials. We will be talking of sub 

parametric, isoparametric and superparametric maps. I will also indicate some special methods 

with which we can have exact representation of the contour of the domain, if I know the 

parametric representation of the contour of the domain.  

So this is what we are going to discuss in the next class and from there we are going to proceed 

to some other special problems like the elasticity problem, which is what is of great interest to 

many of us. For the elasticity problem we will be talking of two variables, u and v and the two 

planar displacements because we are talking of planar elasticity u and v.  


