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Module – 8 Lecture – 2  

In the previous lecture we had stopped at the discussion of tensor product family of shape 

functions to be used with quadrilateral, square or rectangle type of elements. In defining 

the shape functions, we had looked at the Pascal triangle and we found that this tensor 

product family gives us representation of more monomials than the numbers, which are 

required to give a complete representation of a polynomial of a given order P. 

Can we, without compromising on completeness, cut down some of these extra terms and 

what would be the advantage? 
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In the earlier case, in the tensor product family, there were nine nodes in the bi-quadratic. 

That is, I will have nine shape functions in an element for the tensor product family. 

Which means that, in order to represent the finite element solution in this element, I need 



nine unknown coefficients to be determined. If I can in some way sacrifice one of the 

unknowns without compromising on completeness, then my computational task actually 

becomes smaller without compromising on accuracy. That is why we will talk about the 

serendipity family. What I am going to do today is talk of one type of element of the 

serendipity family, which is the quadratic serendipity element.  

As far as the linear is concerned, the linear is the same as that we have for the tensor 

product. For P = 1, I have the same representation as that of a tensor product. Let us do 

the quadratic. In the quadratic the master element is always in terms of psi and eta. This 

is the psi line, this is the eta line. I have the four nodes at the corners and we add four 

more nodes. That is, from the previous one I remove the interior node for the tensor 

product. I want to define the shape functions using the Lagrangian definition, such that, 

they have a value one at one of the nodes and become zero at the other nodes. There is 

zero on this edge.  

Let us number the nodes in this fashion: 1, 2, 3, 4, 5, 6, 7 and 8. I am numbering the 

corner or the edge vertices first and then number the internal one. The question is, how do 

I construct this shape function? Let us say this is N1
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 in the master element, it is one here, 

zero here, zero here and zero in other places. Let us now do the construction. 

 



In order to do this construction, we have nodes. We now talk of these lines.  
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From the previous figure, in the psi eta coordinate system, this line is a line, which joins 

the points psi equal to plus one, eta equal to zero and the point psi equal to zero and eta 

equal to plus one. This is the line psi plus eta is equal to one. 
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So this is the line psi plus eta is equal to one. Similarly, this line is psi plus eta is equal to 

minus one. Because this is the point which has coordinates psi equal to zero, eta equal to 

minus one and this is the point which has the coordinate psi equal to minus one eta equal 

to zero. Similarly, these two lines are perpendicular to these and will have the 

representation of these two lines as: psi minus eta is equal to one. (At eta equal to zero, 

psi is equal to one; when psi is equal to zero, eta equal to minus one). Similarly, the 

equation of this line is psi minus eta is equal to minus one. What are the equations of 

these four lines? Equation of this line is psi is equal to plus one, equation of this line is 

psi is equal to minus one, equation of this line is eta is equal to minus one, equation of 

this line is eta is equal to plus one. Given these definitions of these lines, can I now 

construct the shape functions?  

Let us say I want to construct N1 and I use some numbering 1, 2, 3, 4, 5, 6, 7 and 8. I 

want to find N1 hat as a function of psi and eta. This I will say is equal to C1;

We see that by the choice of these products I will get this function vanishing at all other 

points in the element. How will I find C

 on which 

lines should this function vanish to give me the value equal to one here and zero 

everywhere else? If it vanishes on this line and it vanishes on this line and this line, then 

it vanishes on all the points other than the first point. Therefore the equation of this line is 

psi plus eta plus one. What about the next one? It has to vanish at (08:32) these points, 

this line and this line. This equation is eta minus one and this line is psi minus one. 

1? It has to be one at the point one, I will have N1 

hat minus one minus one is equal to one, this is equal to C1 (-1) (-2) (-2). This implies 

that C1 is equal to minus one by four. Similarly, shape-function N2 

If I have to write N

will have a value one 

at this point and it should vanish on all other points. By the same token, if it vanishes on 

this line running through the nodes 5 and 6 and it vanishes on the top line which is 

running through the nodes 3 and 4 and the vertical lines which is running from nodes 4 to 

1, then it vanishes everywhere excepting the node 2.  

2 hat, I will write N2 hat is equal to C2 into (it vanishes on this line, so 

this line will have the equation) psi plus eta plus one into (it vanishes on this line, which 

is) eta minus one and (it vanishes on this line, which is) psi plus one. N2 hat has to be one 



at the point 2 which has coordinates psi equal to one eta equal to minus one. N2 hat at psi 

equal to plus one, eta equal to minus one is one, which is equal to C2 into (one plus one 

two minus one is) one, into (eta is minus one minus one) minus two into (and psi plus eta 

one is) two. This implies C2

In this way we construct first corner degrees of freedom or collar shape functions. N

 is equal to minus one by four.  

3 has 

to vanish on the line joining the points 6 and 7 and the line joining points 4 and 1, and 1 

and 2. Similarly, N4 has to vanish on the line joining the points 7 and 8, that is, on the 

line psi minus eta is equal to minus one and on the lines eta equal to minus one and the 

line psi is equal to plus one. Once I have these definitions, it is very easy to go ahead and 

construct this corner shape functions. What about a mid-edge one or let us say function 5, 

6, 7 or 8? I am going to form the generic function N7. If I want N7, it should be such that 

on this edge these shape functions should become the standard one dimensional shape 

functions of order P. If we are talking of a quadratic on the edge, if I look at this top edge, 

the shape function four should look like the one-dimensional first shape function, shape 

function seven should like the second one and the shape function three should look like 

the third one-dimensional shape function. N7

This is how our N

 on this edge will look like this and then it 

comes down to zero at all other points. 

7 is going to look. If I have to make N7, it should be one at this point 

and vanish at all other points. How is it going to happen? We see that N7 is sitting on this 

edge. If I take this edge, this edge and this edge, the equation of these three edges and 

multiply them together gives me this function, which, by definition, is going to vanish on 

this edge, this edge and this edge. 
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As far as the construction of N7 is concerned, I am going to make N7 
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vanish on the 

remaining three corner edges. 

 

N7 hat as a function of psi and eta is equal to C7 into (psi plus 1) into (eta plus 1) into (eta 

minus 1). 
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Also, I want N7 hat at this point 7, which has coordinates (psi equal to zero, eta equal to 

one). N7 hat at zero and one is equal to one, which is equal to C7 into one into two and 

into minus one. This implies that C7 is equal to minus one by two. Similarly, I can 

construct N8. What will N8 be? N8 has to vanish on this edge, this edge and on this edge. 

Which means, N8 will vanish on the edge eta equal to minus one, psi equal to plus one 

and eta equal to plus one. By the same token I can find the constant C8

If I can do these things I have constructed the eight shape functions corresponding to the 

serendipity family. Let us now look at what are the shape functions and look at the 

expansion. My N

. 

7 hat as a function of psi and eta is equal to minus half into (eta plus one 

into psi squared minus one). This is minus half into (eta psi squared minus eta plus psi 

squared minus one). Let us look at N1. N1 hat as a function of psi and eta will be equal to 

minus one fourth into, (if I do this one (16:51), it will be) (psi plus eta plus one) into (psi 

eta minus psi minus eta plus one). The bottom line: I will get psi squared eta, psi eta 

squared, psi eta, psi, eta, psi squared, eta squared and some constant, some coefficient 

into these terms. If I expand all these terms we see that it will contain the linears, the 

quadratics and these two extra terms, psi squared eta and psi eta squared.  
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The Pascal triangle in terms of psi and eta was one, psi, eta, psi squared, psi eta, eta 

squared, psi cubed, psi squared eta, psi eta squared and eta cubed. If I look at this, the 

Pascal triangle for the quadratic will have only this part. This part is completely 

represented by our serendipity family, plus, it has some more terms, which are these 

terms (18:54). The serendipity family has two extra terms as compared to three extra 

terms that we had for the tensor product family.  

Similarly, when we go and define, we can easily continue this job and talk of the 

serendipity family of order three. In that case the shape function should be such that on 

the edge they should represent the given order one-D shape function. I will construct 

them using the four points on the edge. In this case I will have four P terms. The number 

of shape functions corresponding to this is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11and 12.  

I have four P shape functions, which, for P = 3, is 12. If I had taken the tensor product I 

would have (P + 1) squared number of terms, which, for P = 3 would be 16. If I had taken 

triangular elements then I would have (P + 1) (P + 2) divided by 2, which would be 10 

terms. If I had used triangular elements of order 3, I would get ten unknown coefficients 

to solve for in each element. If I use tensor product of order 3, that is, bi cubic, I would 

need 16. If I use the serendipity of order 3, I need 12. Depending on what cost we want to 



pay, one can use one type of function or the other. We have now defined the major 

families of shape functions that will be needed to start off any finite element computation 

in two dimensions.  
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The next job is that, given the shape functions, I can have the u finite element in the 

element tau written in terms of psi and eta in a generic element given in terms of i = 1 to 

number of degrees of freedom in the element, ui tau for the element Ni

In the four-element mesh that I have, I will have twenty-one unknowns when I use the 

serendipity quadratic shape functions. I have deliberately done this kind of numbering, so 

that I first number the corner degrees of freedom. As far as mapping of the geometry is 

concerned, the geometry is always mapped using the bi linear map. It does not matter 

whether I use the tensor product family or the serendipity family. I always use the bi 

linear map for the geometry. I start it off with a polygonal domain or even non-polygonal 

 hat as a function 

of psi and eta. This is the representation in the element. What is a global representation? 

Let us say I have a domain with four elements. I have a serendipity that is quadratic. I 

formed this domain or mesh of four elements of quadratic serendipity. I number the 

degrees of freedom as 1, 2, 3, 4, 5, 6, 7, 8, 9 and I call this 10, 11, 12, 13, 14, 15, 16, 17, 

18, 19, 20, and 21. 



domain. In a polygonal domain, all edges of all the elements are straight edges. The 

elements are initially quadrilaterals, not with curved edges, but with straight edges and 

these are mapped to the master squares. For that the bi linear map is good enough. Let us 

say I am talking of polygonal domains. What do we mean by polygonal domains? When 

one domain is right in the picture, another domain I can have is this kind of a domain, 

where the bounding edges are all straight lines. 

We see that I have the total finite element solution given as uFE is equal to sigma i = 1 to 

21 ui phii. What is this phii

Similarly, by piecing together these element shape functions, we can have the global phi 

definition, which we have discussed many times over and there is no ambiguity. Given 

this, we also have to construct the local to global enumeration. Let us say I am talking of 

element 2. 

? If I look at the fifth phi for example, the phi corresponding 

to the fifth global node (by our definition the phi’s are defined with respect to the global 

nodes), it will be one here, it will die of like this in this element and then it becomes zero 

on these edges. In this element it will have this kind of a behavior, in this element it will 

have this kind of a behavior and then it will vanish here, vanish here and here. This phi is 

like a kind of tent.  
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Let us do the local enumeration for element 2. The local is 1, 2, 3, 4, 5, 6, 7, and 8. Which 

global ones does it correspond to?  
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The one of element two corresponds to global two, the two corresponds to global three, 

three corresponds to global six and four corresponds to global five. 
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One corresponds to global two, two corresponds to global three, three corresponds to 

global six and four corresponds to global five.  
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Five corresponds to global fourteen, six corresponds to global fifteen, seven corresponds 

to global sixteen and eight corresponds to global eleven. 
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I first went ahead and numbered these corner degrees of freedom, then I started looping 

over each element and I started numbering all the side degrees of freedom of the first 

element. I am giving them global numbers. First I had the 9, then, I had a 10, 11, 12 and 

13. Then I come to the second element, look at the mid side degree of freedom and if it 

has not been numbered, then give it a number, here it’s 14. If the next side is not 

numbered, give it a number 15, next side 16, come to the fourth side, it already has a 

number, so retain it. This way we go ahead and construct the numbering for the degrees 

of freedom. One can choose many other ways but I have chosen this.  
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This correlation is our global to local enumeration or local to global enumeration and this 

will go in the ieldofs array, where we will stack one below the other, the correspondence 

of the degrees of freedom from the local level to the global level for each element. For 

this element the local one corresponds to global two, local two corresponds to global 

three and so on. I will do this in such a way that the stack of the eight degrees of freedom 

for the first element is put first, then the next eight corresponds to the second element, 

then the next eight corresponds to the third element and then the fourth element.  

In this we have stack of eights because every element has eight degrees of freedom 

defined in the local (29:41). Through suitable pointers we can address these locations and 

find out the local to global enumeration. This information has to be constructed in the 

two-D case, as we had done in case of one-D. 



With this information, for any generic element, which is either a serendipity type or the 

tensor product type, we can go ahead and compute the entries of the stiffness matrix for 

the element, which is integral over the area of the element tau. 
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We have taken the simple definition of the model problem: integral over the area of the 

element tau into (del Ni tau divided by del x into del Nj tau divided by del x plus del Ni 

tau divided by del y into del Nj tau divided by del y) into dA. This is equivalent to doing 

the integration of the master element tau hat of del Ni tau divided by del x into del Nj tau 

divided by del x plus del Ni tau divided by del y into del Nj tau divided by del y, 

represented as functions of psi and eta into Jacobian into dA hat. What will happen to dA 

hat? It will become an integral of psi going from minus one to plus one, an eta going 

from minus one to plus one, this integrant into the Jacobian into d eta d psi.  
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It is the standard way of getting these integrals now in terms of the master element and as 

we had done before, I need to find del Ni tau divided by del x, which is equal to del Ni 

hat divided by del psi into del psi divided by del x plus del Ni

As we had done in the previous class, dx dy is equal to (del x divided by del psi, del x 

divided by del eta, del y divided by del psi, del y divided by del eta) into (d psi d eta). 

This is the Jacobian matrix and we can compute these quantities by using our bi linear 

mapping: x in terms of x

 hat divided by del eta into 

del eta divided by del x. These quantities can come out easily from the definition of the 

shape functions. When we are define the shape functions, at the same time we will define 

the derivatives of the shape functions with respect to psi and eta. Our shape function 

routine should return the value of the shape functions and the value of psi and eta for a 

given point psi and eta. We have to get these quantities from mapping. Remember that 

whether it is serendipity or tensor product or P order, we are talking of only linear maps 

of geometry. The mapping is independent of the order approximation for the problem 

cases that we are talking about.  

1, x2, x3, x4 and the psi in functions of psi and eta; and similarly, 

y in terms y1, y2, y3, y4 and functions of psi and eta. We can simply write d psi d eta. 

Note that Jacobian is now going to be a function of psi and eta.  



This will be equal to Jacobian inverse into dx divided by dy. This Jacobian inverse is 

actually equal to del psi divided by del x, del psi divided by del y, del eta divided by del 

x, del eta divided by del y. With these components, it is very easy to find Jacobian 

inverse. That is, one by Jacobian (change the sign of these terms) I get these quantities.  

These are going to be functions of the given psi and eta. I evaluate these quantities at 

every point, from this inverse mapping and that is why we see that the inverse mapping 

should have the Jacobian greater than zero. Otherwise, this can become singular. 

Determinant of the Jacobian matrix can become zero and the inversion may not be 

possible. That is, many points are going to one point or vice versa. That is, the mapping is 

not one to one.  

That is why we need to have the shapes of the elements or the quadrilaterals in such a 

way that the angles are always less than 180 degrees. We can determine these quantities 

at every point and the only question is how do we go ahead and put it in a program? We 

will have to do the integration using integration points in a program.  That is, replace the 

integral with a summation.  
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Let us talk about how to apply boundary conditions. Let us say, on this edge I have given 

some kind of a flux boundary condition. On this edge I have specified g. This edge lies 

on the element one. If I look at element one we are going to number the edges for the 

generic element in terms of the local nodes for element one. This will be the edge 1, this 

will be edge 2, this will be edge 3 and this will be edge 4. Edge 4 of element one has g 

specified. As far as the integral is concerned, I have to integrate g against Ni

Only these shape functions are going to participate as far as this integral is concerned and 

on this edge these shape functions are the one-D shape functions. On this edge the shape 

functions are N

 tau ds on the 

edge 4. This is what I have to do as far as the integral is concerned. In the master element, 

this edge corresponds to psi is equal to minus one and again on this edge, using the 

quadratic serendipity, the first one for the element is non zero, the fourth one for the 

element is non zero and the eighth one is non zero.  

i

Here I am left with these points being functions of N

 hat as a function of minus one and eta. They become a function of psi 

and eta but psi is equal to minus one. They are left as functions of eta only. 

i

The integral of this quantity g has a function of eta on this edge into Jacobian for this 

edge d eta and I start from the pointers ds is minus d eta. With this I go ahead and do my 

integral on this edge. Similarly, if the boundary conditions are specified, I do the 

projection for the other edges and the integral, which is the one-D integral. I can thus 

construct the integrals on the edges of the element. After I compute integral of r N

 double hat of eta. I map it to this 

master edge. The edge of the master element is a function of eta. The problem is that we 

have to do the integration with respect to eta, but since this direction is downwards we 

will have to integrate for eta is equal to plus one to eta equal to minus one. If I integrate 

from eta equal to minus one to plus one, ds will be minus d eta. 

i hat d 

psi d eta into the Jacobian over tau hat, I compute the boundary integrals if the edge lies 

on a Norman boundary and simply add the integral to these corresponding entries. 
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If there a generic edge and s goes like this, then we see that this has point (x1, y1) and this 

has point (x2, y2

ds is given in terms of d psi and this is nothing but the scaling of the lengths, which is the 

Jacobian for the edge. This is not the same Jacobian as that for the area. This way I can 

complete all my integrals that we have to do for the element and given the local to global 

enumeration, we can assemble the stiffness and the load vector components in the 

respective global stiffness and the global load vector entries [K] {U} is equal to {F}; 

apply the essential boundary conditions by fixing those known degrees of freedom to the 

known values and solve the problem.  

). In terms of length ds is equal to square root of dx squared plus dy 

squared for this edge. This is equal to square root of dx divided by d psi whole squared 

plus dy divided by d eta whole squared d psi. Jacobian is equal to this (42:11).    
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How do we do the integration? Integration in a computational domain involves numerical 

integration. We will discuss the integration rules for triangles and quadrilateral elements. 

In the case of the triangle, we are doing the integral over the master triangle. This is zero 

zero, one zero and zero one. I want to replace integral of some psi and eta d psi d eta over 

tau hat is equal to summation over from j is equal to one to number of integration points, 

F evaluated at these points psi j, eta j, into a weight function corresponding to these 

points. Thus, we replace it by a summation.  

Depending on the order of the integrand, that is, the integrand polynomial order (here we 

are dealing with only polynomials defined over the master element) will define what 

order integration rule I should use and how many points would give me an exact integral 

for that given order. The number of points is fixed by the order of the integrand. We are 

now going to give a sample Fortran routine, which gives these integration points for 

triangles. The construction of these points for triangles is not so easy. This is something 

that is obtained from a research paper written long ago in the 1970’s on how to obtain 

these points for triangles. 
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This is a routine called second. We input to it the order of the integrand, which we have 

to compute from the terms involved in the integral, which is exactly the way we had done 

in the one-D case. Given the order of the integrand, it returns the values of the 

coordinates of the integration points given for this particular order and the corresponding 

weight function through vita.  
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Things arranged in this page are: I have an array giving the coordinates of the shape 

functions of the integration points and a vector weight, which gives me the values of the 

weight functions.  
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If my order is equal to one, my weight function has a value one. For this order equal to 

one, I have one point integration root. That is, there is only one point for which the 

weight is equal to one and the x int is now given as three coordinates, though we had only 

psi and eta. These three are actually given in terms of what is called the area coordinates 

or the barycentric coordinates. Let us take any point. This is node one, node two and node 

three. Connect these points. This becomes area A1. Given any point in the middle or 

anywhere inside the master triangle, I connect that point to the three vertices. The area 

opposite to a given vertex is given the name A1. This area becomes A2.  This area 

becomes A3. A1/A + A2/A + A3/A = 1. These quantities are given names as lambda one, 

lambda two and lambda three. For any point, you can define unique values of lambda 

one, lambda two and lambda three. This is sometimes referred to as the barycentric 

coordinate system. This was classically used when triangular elements were used. Now 

we write everything in terms of psi and eta. 



If we look at lambda two, lambda two is zero when I am on this edge (49:00) and when I 

have a point on this edge. It is one when I have the point here. When the point is here 

then lambda two is one. Which of our psi’s and eta’s are one here and zero here? Lambda 

two is actually equal to our global psi. Similarly, lambda three is actually equal to a 

global eta and lambda one is nothing but one minus psi minus eta. It is quite easy to relate 

this barycentric coordinates to psi and eta; that lambda two is the psi lambda three is the 

eta. As far as we are concerned, this is our psi and this is our eta. Whenever we see these 

three points given in terms of lambda one, lambda two, lambda three, corresponding to 

this integration point, we are only interested in the psi and eta values that will do the job. 

Similarly, if an integrand is of order two, then we see that we are going to have actually a 

three-point rule. 
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When the integrand is of order two then I have three points involved and the weight of 

the first point is one third, weight of the second and third point is two third and one sixth. 

Similarly, the coordinates are given like this. The coordinates of the other two points of 

the first point is: psi is equal to one sixth, eta is equal to one sixth, the weight of the 

second point is also one third, weight of the third point is also one third; so weight of the 

second and third point is one third and the coordinates are inherited in this way. 



This way I can continue and create the integration rules of the requisite order. For 

example, when the order of the integral is three, then I think I have a four-point rule. 
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We see that there are four points involved and the weights and the coordinates are given 

like this, the weight of the first point is this, weight of the second point is this, weight of 

the third point is the same as that of the second point and of the fourth point is the same 

as that of the second point when the coordinates are given in terms of the barycentric, 

which we can easily convert to our psi eta form.  

Similarly, when the order is four, we will have six points. There are six points, that is, 

NINT for order four is equal to six. We see that the number of points cannot be obtained 

directly as a formula in terms of P. It is a little complicated, nevertheless, we have these 

points available to us and we see that the coordinates are given up to the fifteenth decimal 

digit. They are given in double precision. So one can use these points and define the 

integration rule for a triangular element. 

We have now obtained all modules that are required to do a finite element computation in 

two-D for the single variable problem  



We have defined the integration rule for the triangles. How do we define it for the 

quadrilateral? 
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For the quadrilaterals, I have the psi and eta directions like this. Here psi is equal to 

minus one and here psi is equal to plus one. Here, on this line, eta is equal to minus one 

and here eta is equal to plus one. I take the tensor product of the one-D integration rules 

for the psi direction and eta direction and that is going to give me the integration rule for 

the two-D. One-D rule is already known. If I have linear in psi and a linear in eta as my 

integrand, that is, it is a bi linear integrand that is linear in psi linear in eta, then the rule is 

governed: n is greater than equal to P plus one by 2. Where P is in each direction, what is 

the order of P? If P is equal to one in the psi direction and one in the eta direction then 

essentially P + 1 is two. Two by two is one, so I can have a one-point rule.  

For the psi in this direction, the one-point rule corresponded to the point psi equal to zero. 

In the eta direction, this one point rule corresponds to the point eta equal to zero. For our 

element we take the corresponding coordinate as the one which has psi eta equal to zero. 

What is the weight? I take (psi i 1D, eta j 1D) as (psi i eta j), corresponding to the ijth (we 

do a double index integration point). The weight for this point is equal to weight i 1D into 

weight j D1. That is, the integral over psi is equal to minus one to one integral of eta 



going from minus one to one of f which is a function of psi eta, d eta d psi is equal to 

summation of i comma j going from one to n f at the point psi i, eta j into wij
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integral for the quadrilateral elements. I replace the integral by the summation, while the 

summation is understood as summation in the psi direction, that is, a tensor product of the 

psi and eta directions. I have the one-D functions, which we have already created in the 

one-D problem. We can easily construct the two-D functions.  

 

Let us take a case for the two-point rule. The two-point rule corresponds to psi eta is 

equal to plus or minus one by root three. eta is also plus or minus root three. So I will 

take our integration points in the two-D domain as this. Our integration points are going 

to be this, this, this, this (57:34), where this is psi one, this is psi two, this is eta one, this 

is eta two. This is psi one eta one point, this is psi two eta one point, this is psi two eta 

two point and this is psi one eta two. The weight here is w1 into w1, weight here is w2 

into w1, weight here is w2 into w2 and weight here is w1 into w2

In the next lecture, we are going to look at some of the properties of the finite element 

solution that we have obtained as far as convergence is concerned, how to improve the 

convergence, we will talk about those aspects of the finite element solution because that 

. This is how I can do the 

integral. We have essentially defined how to do the numerical integration inside the area. 



is very important in the two-D case. The shape of the domain itself, that is, the geometry 

is going to decide, to a large extent, the smoothness of the solution.  


