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Module – 8 Lecture – 1  

In this lecture we are going to go further with the definition of higher order shape functions for 

two-dimensional problems. We were working with triangular elements. How do I construct 

higher order approximation, that is, an order greater than two for a triangular element?  

(Refer Slide Time: 00:45) 

 

Here are the corners of the master element. Given the order, the shape functions should become 

the one dimensional shape function, when I project them on a given edge of the triangle.  

If this is node 1, node 2, node 3 and if I am talking of the first edge connected to nodes 1 and 2; 

and if I am talking of P equal to 3, a cubic approximation, that approximation or those functions 

should become the one dimensional cubic shape functions on this edge. The one-dimensional 

cubic shape functions, in terms of definition - the Lagrangian functions, correspond to these four 



points on this edge, that is, these four equally spaced points. This point will correspond to the 

coordinate one-third, zero, this will correspond to two-third, zero and this is one, zero.  

Similarly, on this edge, I should have the four equally spaced points given by these locations. 

Here the coordinate will be psi is equal to two-third, eta is equal to one-third, while this one will 

be psi equal to one-third, eta is equal to two-third because psi plus eta has to be one. On this edge 

I will have two more points, which are given by eta is equal to two-third and eta is equal to one-

third. I have made 1, 2, 3, 4, 5, 6, 7, 8, 9 points. For P equal to 3 from the Pascal triangle we had 

drawn earlier, we needed (P+1) into (P+2) by 2 (number of monomials) for completeness. For P 

equal to 3, this is equal to 10. So nine points means nine definitions of Lagrangian shape 

functions. We need one more to give us ten independent basis functions.  

Let us say that I connect these points by straight lines. If I have drawn everything correctly, they 

should pass through like this. I have connected these points by a straight line, these two points by 

a straight line and then I draw straight lines parallel to the three edges. If I look at these straight 

lines, they intersect at an interior point. This interior point will have a coordinate. It lies on the 

line eta is equal to one-third and on the line psi is equal to one-third. So it will have a coordinate 

one-third, one-third. This is nothing but the centroid. This point is another node. This becomes 

the tenth node. Our shape functions are now defined. Now I am going to color the nodes with 

respect to these ten nodes and I will follow some numbering scheme. Let us say, as far as the 

definition of shape function is concerned, this is 1, this is 2, this is 3, this is 4, this is 5, this is 6, 

7, 8, 9 and 10. I need ten cubic basis functions in order to have a complete set, which can 

completely represent any cubic polynomial.  

How do I now go about defining the shape functions? Let us say I would like to define N1 as a 

function of psi and eta. This function N1 is with respect to this node such that N1

How can N

 is 1 at the 

nodes with coordinates zero, zero and zero at all other nodes. 

1 be a cubic polynomial in terms of psi and eta and vanish at all other nodes barring 

node 1? I will put N1 as psi. If I take the N1 to vanish on this line, which is nothing but the line 

psi plus eta is equal to one-third, make it vanish on this line which is the line psi plus eta is equal 

to two-third and on this line which is psi plus eta is equal to one. So if I choose N1 to vanish on 

these three lines, then automatically N1 vanishes on all other nodes barring the first node. So I 



will say, it will have to vanish on the line psi plus eta equal to one-third. So psi plus eta is minus 

one-third. It has to vanish on the line psi plus eta equal to two-third, so psi plus eta minus two-

third and it has to vanish on the line psi plus eta equal to one. So it is psi plus eta minus 1. This is 

going to give the N1 such that N1

Similarly, if I want to find N

 hat at the point zero, zero, which is the first point is equal to 1. 

This is equal to c into minus one-third into minus two-third into minus 1. C implies c is equal to 

minus nine by two. So it is quite easy to find the definition of the first shape function. 

2, N2 is a function, which is one at this point and vanishes at all 

other points. It simply means that it has to vanish along this line, vanish along this line, vanish 

along this line and vanish along this line. N2
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 is now written in terms of equation of this line. 

Equation of this line is psi is equal to two by three; equation of this line is psi is equal to one by 

three; and equation of this line is psi is equal to zero. 

 

N2 hat, which is a function of psi and eta is, let us say, some constant D. It has to vanish on the 

line psi is equal to zero, so psi minus 0, into (on the line psi equal to one-third) psi minus one-

third, into (on the line psi is equal to two-third) psi minus two-third.  
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N3
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 vanishes on this line, vanishes on this line and vanishes on this line. Equations of these lines 

are: eta is equal to zero, eta is equal to one-third, eta is equal to two-third. We should have a 

value one at the node three.  

 

N3 will be some constant E into eta minus 0 into eta minus one by three into eta minus two by 

three. 
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If I have to find N4, N4 has to be one at this point and zero at all other points. If N4 has to be 

taken to be zero at all other points, N4

By the same token, if I want to construct N

 has to be zero on this line. It has to be zero on this line and 

it has to be zero on this line. Equation of this line is psi is equal to zero. Equation of this line is 

psi plus eta is equal to minus one. Equation of this line is psi plus eta is equal to two-third. 

8, N8 will be 1 at the node 8 and it should be zero at 

all other nodes, which means that it has to be zero. If I take it to be zero on this line, zero on this 

line, which takes care of all these nodes and zero on this line, then N4

Similarly, I can define N

 is taken care of.  

10. N10 has to vanish on the three edges of the triangle. If I have to talk 

of N10, N10 will be zero along this line, which is eta is equal to 0, 0 along this line which is psi is 

equal to 0, 0 along this line which is psi plus eta is equal to 1.  
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N10
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 is the function of psi and eta is equal to F into psi minus 0 into eta minus 0 into psi plus eta 

minus 1. I can construct this way, all the shape functions that we need in the master element. If I 

want to now go to P = 4, P = 4 will require, by our definition of (P+1) (P+2)/2 monomials, to 

define a fourth order polynomial. This will require 15 shape functions to be defined. 

 



Let me give some notations. These corner degrees of freedom are called the vertex degrees of 

freedom. These degrees of freedom on the edge are called the side degrees of freedom and this 

interior degree of freedom, which is ten, is called the interior degree of freedom. Ten is non-zero 

in the given element. It is going to be zero outside this element. Ten is called an internal bubble 

function. These edge functions are going to be non-zero only in the two elements, which share 

this edge. So these are called side bubble functions. The vertex functions are non-zero in all the 

elements, which have this vertex as a common vertex. 
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Let us now see how to do the P=4 case.  
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We will make these vertices. When I project the shape functions on the edges of the triangle, 

they should become equivalent to the one-dimensional fourth order shape functions (defined in 

the one-D case) on this edge. They are given by specifying five equally spaced points on the line 

P+1. So I have these three points here. Then I will have these three points here and similarly, 

three points here on these edges.  

If we count all these points, I have 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12. As far as the vertex and 

edge functions are concerned, there are only twelve side functions. So I need to have three more 

functions, which are now internal bubbles. We connect these points with straight lines on 

opposite edges. I have constructed these additional internal points in this grid. I define the shape 

functions for all these points. There are exactly three internal points and fifteen points with 

respect to which I define the shape functions. Here I have fifteen nodes for the definition of 

shape functions. I follow the same procedure as before to define the shape functions.  

For example, if I have to find the shape function corresponding to this one, let us give the 

numbering 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 and 15. Let us say I am interested in the 

eleventh one. The eleventh one should be such that it is one at this point and zero at all other 

nodes. How can I choose four lines such that the eleventh shape functions vanishes on all other 

points? I can choose this line, I can choose this line, I can choose this line and I can choose this 



line. So the shape function should vanish on this line, in this line and this line and this line. 

Looking at the equations of these lines and multiplying them together, I will get the fourth order 

shape function corresponding to the eleventh point. I can keep on constructing the higher order 

approximations to any order that I wish by using this kind of a structure. It can be done in the 

master element and immediately used.  

We are now, in principle, in a position to construct any triangular Lagrangian basis function of 

any order that we wish to obtain. And the beauty of these basis functions is that we have exactly 

the number of functions that we need to have a complete definition of the polynomial of the 

given order.  
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Now we are going to go to another family of shape functions or basis functions, which are very 

popular and are probably used more than triangles. Let us look at rectangular elements. Instead 

of meshing the simple domain that I had taken earlier with triangles, I have meshed it with 

rectangles such that the size here is h1 and the size here is h2

Let us take a generic element here. This is element 1, 2, 3, and 4. So the rectangular element will 

have four corner nodes or four corner vertices. Everything has to be done or defined with respect 

to these corner vertices. The simplest thing we can do is to take a generic rectangular element. 

.  



For simplicity, I am taking the first one. I will give a coordinate axis here, x and y, such that the 

first node has point locations (0, 0). This is the first node, second node, third node, fourth, fifth, 

sixth, seventh, eight, and ninth. 

I take these four nodes and I will have 1 for the element, 2 for the element, 3 for the element, and 

4 for the element. So I am taking the first element and by 1, 2, 3 and 4 here I mean the local 

numbering, just like we did for the triangles. The coordinates here are going to be (0, 0), (h1, 0), 

(h1, h2) and (0, h2). I am doing a counter clockwise numbering. What are the simplest basis 

functions or simplest element shape functions that we can define? They have to be defined with 

respect to these four vertices. Let us take this element apart because these angles are 900

Let us imagine I have taken these two edges apart - this edge and this edge. Let us say this edge 

is with the nodes 1 and 2 and this edge is with the nodes 1 and 4. On each of these edges, as we 

had said for triangles also, the shape functions should be such for the two-D domain that the 

projection on the edge becomes a one-D shape function.  

.  

Let us take the same principle here. We have to define the shape functions in such a way that the 

projections on the edge become the one-D shape function. On this edge it will become this one-D 

shape function. Let us say these two linear are N1 of x and N2 of x. Similarly, here I will have 

this function. This will be N1
 of y and this will be N2 of y. I have defined the linear on each of 

the edges. What is N1 of x? As a function of x on this edge, it is quite easy to define the shape 

function. It should vanish at this point. It should be equal to 1 here. I will define it as (h1-x) 

divided by h1, which is 1 minus x by h1. The second one, N2 of x as a function of x (because this 

is a one-dimensional shape functions and along this edge there will only be functions of x), this 

will be equal to nothing but x divided by h1.  
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Similarly, N1 of y should be 1 here, 0 here at the point y equal to h2. By the same token, it 

becomes 1 minus y by h2 and N2 of y becomes y by h2

(Refer Slide Time: 22:43) 

. This is the simple definition.  

 

Using these one-D shape functions that we have defined along this line and along this line, we 

take the product of these functions to get all the functions. If I take the product of N1 of x, that is, 

the function on this line corresponding to this node and function on this line corresponding to 



this node, which is N1 of y, by the definition of N1x and N1y, this function is 1 at this node and 

vanishes at this node, which means it vanishes at this node also. It satisfies all our constraints 

that the function should have a value 1 at this node and 0 at all other nodes. Similarly, I go to this 

node. This node lies as a second node on this line, so I take N2 of x. On this line, this is the first 

node and so I take N1of y and by definition, N1of y is going to vanish here and here; N2of x is 

going to vanish here. So it vanishes at all other points and gives me a value 1 at the second. N3 of 

x lies as a second node of this line. So N2of x and it lies as a second node of this line and N2of x 

into N2 of y should do the job and the fourth one should be N1 of x into N2 
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of y. 

 

We are going to define our shape functions in terms of this: N1, which is a function in the 

element x and y in the element 1, equal to N1 of x into N1 of y which is the function y. N2 in the 

element 1 has a function of x and y is equal to N2 of x into N1 of y. N3 in an element 1 is equal to 

N2 of x which is a function of x into N2 of y which is the function of y. N4 in element 1 which is 

the function of x and y is equal to N1 of x and N2of y. I have defined these four shape functions 

with respect to the four vertices of the rectangle and this is the minimum we can do, because 

these functions have to be defined by the logic that we have been following with respect to these 

four vertices. By definition, these are products of functions in the x direction and functions in the 

y direction. Since, they are defined as products of one-D functions defined in the x and y 

directions, they are said to be Tensor Product Family of shape functions.  



Let us look at some features of it. N1 of x is nothing but 1 minus x by h1 and N1 of y is 1 minus y 

over h2. So if I take this product, this is going to be 1minus x by h1 minus y by h2 plus xy by 

h1h2
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. This part is linear in x and y. This part is bilinear, that is, it is not linear, it is more than 

linear in x and y. The basis functions or shape functions seem to represent more than the set of 

functions we need to represent completely or to define a linear. That is, they contain more terms 

than just the linear.  

 

We have the Pascal triangle here: 1, x, y, x2, xy, y2, x3, x2y, xy2, y3, (I will write up to the 4th 

order) x4, x3y, x2y2, xy3 and y4.  
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If I expand all of these functions N1 N2 N3 N4,
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 I will find the same feature that they will contain 

the linear part in terms of 1, x and y plus they will also contain the product of x and y.  

 

If I come to the Pascal triangle, what happens is, if I look at the representation of these functions, 

they will not only represent the linear, they will also contain the xy part. That is more than what 

is really required to define the linear polynomials.  
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Similarly, if I define the quadratic shape functions, I will simply add intermediate points on each 

of these edges. We connect these points just like we had done for the triangles. I will get an 

additional node in the middle. There are nine such functions that are products: three functions on 

this edge, three functions on this edge; three into three and I have nine and these nine functions 

are nicely given here in terms of these nodal values. If these nine functions are to be given in 

terms of the quadratic, I will define the quadratic shape functions on the edge and multiply for 

the two edges to get the quadratic shape functions for the element.  

Here the feature is that I get P+1 functions in one direction into P+1 functions in the other 

direction. That is, I will get P+1 squared functions. For the linear I had 2 into 2 which is 4, for 

the quadratic I will have 3 into 3 which is 9, for the cubic I will have 4 into 4 which is 16. I am 

increasing the number of functions as I am increasing the approximation.  
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If we look at the quadratics by the same formula that we have followed, that is, the same line of 

approach, the quadratics should represent this much to be complete, but it turns out that they not 

only represent this much, they go and represent this whole set. That is, the quadratic definition 

will include all these functions. It will go beyond the quadratic and have these extra functions. 

These additional functions are also in the representation above the requirement of completeness. 

This is a feature of the Tensor Product Family. 



(Refer Slide Time: 31:25) 

 

It is not always that we will have such a nice rectangular domain.  Let us take this kind of a 

domain. If I try to mesh this domain with four nodded entities, this mesh will have quadrilaterals. 

It will be a mesh of quadrilaterals, not of rectangles. When I have a mesh of quadrilaterals, then 

we do not have the luxury of having these two perpendicular edges for which we define these 

individual functions and take the product. I cannot do anything at the physical level, that is, at the 

level of the physical element.  

For that we map this physical element to a master element. So we will have to define the master 

element now for these quadrilaterals. We define the master element in such a way that I can use 

this tensor product representation to get the shape functions in the master element.  
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Let us say this is the physical element, which is a generic quadrilateral, which has n nodes (x1, 

y1), (x2, y2), (x3, y3) and (x4, y4

Node 1 will have coordinates (-1, -1). Node 2 will have coordinates (1, -1). Node 3 will have 

coordinates (1, 1) and node 4 will have (-1, 1). The four nodes in the master element – 1, 2, 3, 4, 

map to, let us say, 1 hat, 2 hat, 3 hat and 4 hat nodes with these coordinates. The master element 

is now a square and is called a master square.  

). Let us say, I have the xy coordinate system somewhere. We 

are going to take it to a master element, which is defined as this. This is psi. This is eta. This is 

node 1 in the master element, node 2 in the master element, node 3 and node 4. This is the 

generic element tau. This is the master element tau hat and this is the node 1 in the physical 

element, node 2, node 3 and node 4.  

How do I define the shape functions with the master element? The master element has edges that 

are perpendicular to each other. So I will take these edges out with the nodes 1 hat, 2 hat, 1 hat 

and 4 hat and then on these edges, I can redo the whole job as I had done earlier. I will define 

these linear functions on this edge, which is in the direction psi, on this edge, which is in the 

direction eta. I will define this linear again.  



This is N1 psi. This is N2 psi. This is N1 eta. This is N2
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 eta. This way I can define these one-D 

shape functions on the psi edge and the eta edge. In terms of the products of these one-D shape 

functions, the shape function for the master element can be defined. If I have to define the 

bilinear or the linear approximation, it is a tensor product and it is called Bi-P approximation. 

Which means, it is P in one direction and P in the other direction. It is a product of these two Ps. 

 

When P is equal to 1, it is called a bi-linear approximation. N1 hat, which is a function of psi and 

eta, will be nothing but N1 psi into N1 eta. N2 hat as a function of psi and eta is equal to N2 psi, 

N1 eta. N3 hat, which is a function of psi and eta, is N2 psi, N2 eta. N4 hat psi and eta is equal to 

N1 psi into eta. We can define the bi-linear shape functions here. It will turn out to be 1/4th of (1 

minus psi) into (1 minus eta). This one will be 1/4th of (1 plus psi) into (1 minus eta). This one 

will be 1/4th of (1 plus psi) into (1 plus eta) and this will be 1/4th of (1 minus psi) into (1 plus 

eta). So this way, I can define the bi-linear shape functions for the master element. Similarly, we 

can define the quadratic shape functions by quadratic shape functions.  
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Let us look at biquadratics. As we had done earlier, this is the psi edge. This is the eta edge. I 

will add these additional nodes on the edge at the mid side and I will define these one-D 

quadratic functions on the edge. This becomes N1 psi. This becomes N2 psi. This becomes N3 

psi. On the eta edge, I will similarly define N1 eta, N2 eta and N3

For example, N

 eta. I have three functions on 

each edge. So I have these nine functions defined on the master element with respect to these 

nine points. I will call this point 1, this is 2, this is 3, this is 4, and this is 5, 6, 7, 8 and 9. 

Depending on which line the point lies on, I will find the corresponding shape function.  

1 hat as a function of psi and eta should be equal to (it has the first node of the psi 

side, first node of the eta side) N1 psi into N1 eta. Similarly, N2 hat, lies on the third node of the 

psi side and the first node of the eta side. So it will become N3 psi into N1 eta. To define N3 hat: 

(N3 hat lies on the third node of the psi side and the third node of the eta side) N3 psi into N3 eta. 

N4 hat is equal to N1 psi into N3 eta. Similarly N5 will be equal to (see it is a second node for the 

psi side and first node for the eta side) N2 psi into N1

To get N

 eta.  

9 hat: N9 hat is equal to (it lies on the second node of the psi side and second node of the 

eta side) N2 psi into N2 eta. I am able to define all the nine basis functions with respect to these 

definitions of N1 N2 N3 and so on, depending on P on the edge.  
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Similarly, I can construct bi cubic approximation. If I look at the master element, I will have 

these corner vertices. On this edge I will have two more equally spaced points, just like we had 

done in the triangles. Connect these by lines. We will get four more points lying in the interior 

and we will get a grid of sixteen points. Bi Cubic will have sixteen functions. We can continue 

this to whatever order we want. 

Constructing this basis functions in the generic quadrilateral element has to be done at the master 

element level and we follow the same principle that we had followed for the rectangular element 

and we get the shape functions. Question is will it give me a continuous approximation? Answer 

is yes, because, if I have the next element setting here and if I have two elements like this, the 

shape functions of both these elements should become equivalent to the one-D shape function on 

the edge. Both these functions on this edge will match from either side because they have to 

become equivalent to the same one-D shape functions. The approximation will match because 

the functions match. Continuity is not a problem here in this definition.  
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We have not discussed how we map this quadrilateral to the master element. What is the kind of 

mapping that gives me this? This is a domain with straight edges. For the mapping of the 

geometry, in this case, as long as I do not have curved elements, we are going to use bilinear 

map. That is, x at any point psi and eta in the master element will be sum of i is 1 to 4, xi Mi (I 

am deliberately writing it as Mi) as a function of a psi and eta, y as a function of psi and eta is 

sum i is 1 to 4, yi Mi hat as a function of psi and eta. Where are these xis, yis? This is the (xi, yi), 

this is (x1, y1), (x2, y2), (x3, y3) and (x4, y4

Why have I written M

). 

i? Because I want to bring out clearly that mapping need not always be of 

the same order as the approximation. Here, Irrespective of whether I am using a cubic 

approximation or a fourth order, that is, bi cubic or bi quadratic, the mapping is always going to 

be bilinear for this kind of a domain, where the quadrilateral is a straight edged quadrilateral. So 

the mapping should always be done with respect to the bilinear shape functions, while the 

approximation can be done with respect to any shape function that I wish. These Mis are nothing 

but the bilinear shape functions.  
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We see that as far as our computations are concerned, we finally want to put everything in a 

computer program. As far as the computations are concerned, we need quantities like del x 

divided by del psi, del x divided by del eta, del y divided by del psi and del y divided by del eta 

because, we have converted, we have mapped all our functions from the physical domain to the 

master domain. So why not do all the integration and other procedures which are required to get 

the stiffness matrices and the load vectors in the master element? These quantities are required. 

How do I find these quantities?  

X will be equal to x1 into ¼ of (1 minus psi) into (1 minus eta) plus x2 into ¼ of (1 plus psi) into 

(1 minus eta) plus x3 into ¼ of (1 plus psi) into (1 plus eta) plus x4 into ¼ of (1 minus psi) into (1 

plus eta). y is also written similarly, in terms of the y. So these are our Ms - M1, M2, M3 and M4

Del x divided by del psi becomes equal to minus x

.  

1 into (1 minus eta) by 4 plus x2 into (1 minus 

eta) by 4 plus x3 into (1 plus eta) by 4 minus x4 into (1 plus eta) by 4. So this one will be equal 

to, if I write it in terms of psi and eta, 1/4th of (collect all the constant parts) (x2 minus x1 plus x3 

minus x4) plus eta into (x1 minus x2 plus x3 minus x4). Similarly, del x divided by del eta is 

equal to minus x1 into (1 minus psi) by 4, minus x2 into (1 plus psi) by 4, plus x3 into (1 plus psi) 

by 4, plus x4 into (1 minus psi) by 4. If I collect, it will be 1 by 4 into ((x3 plus x4 minus x1 

minus x2) plus psi into (x1 minus x2 plus x3 minus x4)).  



I can get the quantities corresponding to y by replacing this by y and replacing this by y1, y2 and 

so on. Similarly, I replace this one by y and these by y1, y2
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 and so on. So del x divided by del 

eta, del x divided by del psi, del y divided by del eta, del y divided by del eta can be now 

obtained. Once I have obtained these quantities, I use them to get the matrix of the 

transformation.  

  

I would like to write dx, dy is equal to (del x divided by del psi, del x divided by del eta, del y 

divided by del psi, del y divided by del eta) into (d psi, d eta).    
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If I go back and look at this one, I can write this expression as A1 plus A2 eta and this expression 

becomes B1 plus B2
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 psi.  

 

This one is going to be C1 plus C2 eta and this one is going to be D1 plus D2 psi. Now I have to 

compute the Jacobian, because Jacobian is needed for the transformation of the integrals from 

the physical domain to the master domain. This will be equal to (del x divided by del psi into del 



y divided by del eta) minus (del x divided by del eta into del y divided by del psi). Del x divided 

by del psi is A1 plus A2 eta. This one is D1 plus D2 psi, where the D1, D2 are again obtained 

from the previous expression. Del x divided by del eta is B1 plus B2 psi and the second one is 

going to be del y divided by del psi, that is, C1 plus C2

In the product, it will be A

 eta. 

1 bar plus A2 bar psi plus A3 bar eta plus A4 bar psi eta, where the 

bars are obtained like this for us: A1 bar is A1D1 minus B1C1

When we have to do the numerical integration, we have to account for this part of the Jacobian. 

Jacobian is also a bilinear in terms of the psi and eta and because it is a bilinear in terms of psi 

and eta, we would like as such, that the Jacobian should always be greater than zero, because that 

is what is physical and that positive area maps to a positive area. It is not that the area can 

become negative or a given area cannot map to a point. An area will map to another area, but this 

will be a positive number, the ratio may be less than one or greater than one but nevertheless, it 

is a positive number and the ratio of the two areas is nothing but the Jacobian. When we say 

Jacobian is zero, it means the area maps to a point, to which we not aligned, we cannot have. It is 

unphysical. We would like to avoid elements, geometries of quadrilaterals for which this 

Jacobian can become a negative or zero at a point. Who stops this from becoming negative or 

zero? I can have some combinations of psi and eta given this A

 and so on. The bottom line is that 

the Jacobian is no longer a constant. Even with this bilinear map, this is no longer a constant 

because it is now a function of psi eta and the product psi eta. While in the triangular element, 

when we did the linear map, the Jacobian turned out to be a constant.  

1, A2, A3, and A4 that are the four 

nodal coordinates, and will define A1 bar, A2 bar, A3 bar A4 bar in such a way that the Jacobian 

could be negative at a point. 
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It is quite easy to show that this can only happen, when (let us take this as the initial physical 

element) I have 1, 2, 3, 4, these four points and I decide to start moving point 3 inwards. It will 

turn out that point 3 could lie on a triangle, degenerate triangle. If I go beyond this, that is, if 

point 3 moves to this point here, then the Jacobian would be negative at some points. Geometries 

of quadrilaterals for which one of the angles becomes an obtuse angle are not allowed.  

One has to be very careful when making the mesh and ensure one does not get this kind of a 

quadrilateral domain. We can always convert it into two quadrilaterals for which the 

quadrilateral is convex, that is, the angle is certainly lesser than or equal to 180 degrees. We do 

not want quadrilaterals for which angles are large. We should not have these kinds of 

quadrilaterals – very large or very small. In general their performance will be pretty bad. So 

while making the mesh we have to ensure that these quadrilaterals are as good as possible. The 

angles are not too large and the angles are not too small. In this case, we will have a point where 

Jacobian is less than or equal to 0 for some psi and eta. This is a very important point that has to 

be kept in mind, when we are using quadrilateral elements.  
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As far as the definition of the quadrilateral is concerned, these rectangular elements, we have 

over-done the job. That is, we have in the Pascal triangle, accounted for more terms. The 

question is can we redefine our basis functions or the shape functions over the quadrilateral in 

such way that we do not over-do the job. That is, can we cut out some of these extra terms?  
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The answer is yes. That comes by using what we call the ‘serendipity family of functions’. 

Completeness is guaranteed and these extra terms are cut down. 

So in the next class, as far as the approximation is concerned, we are going to discuss the 

serendipity family of shape functions. Then we are going to now consolidate everything in terms 

of the finite element approximation in an element. We will then move on to look at how we are 

going to use this in a computational regime. That is, how numerical integrations are done for the 

quadrilateral or for the triangular element.  


