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In the previous lecture we talked about how to compute the element stiffness matrix and 

the element load vector entries for the linear approximation of the boundary value 

problem that we had taken. At the same time, while we are doing the element 

calculations, we can also compute the contribution from the non-homogeneous Norman 

part of the boundary. That is all that we have to consider as far as contribution of this 

boundary fluxes or tractions are concerned.  

We now have the element stiffness matrix and the load vector as we had constructed in 

the previous lecture. 
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We have for an element, the stiffness matrix K tau and the load vector F tau. Next, the 

question that we had asked in the one-D problem and which we will ask is where do we 

assemble? That is, in the global stiffness matrix K, the global problem [K] {U} = {F}. 



Which row and which column should I add the entries of the element stiffness matrix and 

similarly for the load vector? For this again we have to have a local to global 

enumeration, for which we had defined for the one-D case, the construction of an ieldofs 

array or ieldofs vector. We can have it either as an array or as a vector, but here we will 

choose to have this ieldofs as a vector. In every element we will have ndofel number of 

degrees of freedoms. For our case of linear approximation, ndofel is equal to 3. Our job is 

essentially to find the local to global enumeration for 3 degrees of freedom at the element 

level. 
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Let us take again our first element in the domain that we had made in the previous 

lecture. I will talk of the degrees of freedom as this. This is tau equal to 1, this is the 

global node 1, global node 2 and if we remember this is the global node 5 and we had 

said when we do the local enumeration, this is 1, this is 2, and this is 3. Remember, local 

enumeration is always done in a counter-clock wise manner.  

How do I pass this information to my assembly routine? That is, how do I tell that the 

local 1 corresponds to the global 1? This again, I can do while we are making the mesh, 

while we are making the nodes of the elements. In this case it is quite simple. We see that 

as we store the names of the nodes for the element in the nodes array; similarly, I can 



give the same numbers because the global degrees of freedom are also numbered the 

same way as nodes because they correspond to the nodes now. We can give the same 

numbers to the ieldofs. How will I do the ieldofs numbering? 

ieldofs for an element ‘iel’, the starting point will be: start at ndofel into iel minus one 

plus one. For the element there are ndofel degrees of freedom. The degrees of freedom 

for the element correspond to ndofel into iel. These are the locations in the ieldofs array 

which are going to give me the first degree of freedom corresponding to the element and 

the last degree of freedom for the element.  

For example, if I go by this, then ieldofs one (because for the element one iel minus 1 is 

1). The first location will be equal to the local one corresponding to the global number. 

The local 1 is equal to the global 1. Similarly, ieldofs 2 for the element will be equal to 

the global 2 and ieldofs 3 for the element will be equal to 5. ieldofs 1 to 3 correspond to 

the degrees of freedom of the element 1. If I go to element 2, we will have 4 as a degree 

of freedom and for the element 2 this will be 1, this will be 2 and this will be 3. 

For element 2 I will have the starting ieldofs correspond to 2 minus 1 is 1 into 3 plus 1. 

The ieldof 4 will be the first local degree of freedom for element 2 and this will 

correspond to the global number 5. ieldof 5 will correspond to the second local degree of 

freedom of the element 2, that is, 4. ieldof 6 will correspond to the third local degree of 

freedom of element 2 and is equal to 1. We can imagine that I have these blocks. This is 

for tau equal to 1 and this block is for tau equal to 2. This way I can arrange the entries of 

the ieldofs vector and this can exactly tell me: What is the enumeration? What is the 

correspondence of the local degree of freedom with respect to the global degree of 

freedom? 
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What do I do using this information? I start my assembly loop for each iel. For each 

element iel, for i = 1 to ndofel, (this is the local i) I will find the global I. This is equal to 

ieldofsl. For the element iel, I will find here the ifirst is equal to ndofel into iel minus one 

plus 1. ilast is equal to ifirst plus ndofel minus one. I find exactly where in the ieldofs 

array the degrees of freedom corresponding to the element of setting is. Then I will come 

here and I will be equal to ifirst plus i minus one. We see that i = 1 will correspond to the 

ieldof setting in ifirst plus i minus one. Then I will do F, I will now assemble the global 

F. Remember that before doing assembly these F and K matrices should be initialized to 

zero. F(I) is equal to F(I) plus F for the tau i. 

Embedded loop for j is equal to one comma ndofel, J is equal to ieldofs ifirst plus j minus 

one. This gives me the global name of the jth, the column degree of freedom and then I 

will have K I comma J is equal to K I comma J plus K tau i comma j. As far as the 

assembly is concerned, we are now able to assemble the stiffness matrix and load vector 

corresponding to the element. I now end the loop over the rows, columns and over the 

elements. This is all I need to do as far as the assembly is concerned. What is left now?  
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What is left is application of dirichlet boundary conditions. Here this corresponds to ibc 

type equal to one, which is the homogeneous dirichlet. Let us see our numbering. 
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We will have the one and the type two which will correspond to our element. 
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Here I will have either one – the homogeneous dirichlet or two, which is the non-

homogenous dirichlet, both of which have to be enforced in the global stiffness matrix 

and the load vector. How do I find out what are the degrees of freedom that have to be 

fixed? Again, I will draw the simple domain that I had taken. I will write the global nodes 

and the degrees of freedom and I will remember that this was edge 1 on which I had ibc 

type two. That is, this is the only edge where the dirichlet boundary conditions had to be 

applied because u was equal to zero on this edge.  

The question is that if I have to apply the dirichlet boundary conditions on this edge, that 

is, I have to fix the displacement u along this edge to be equal to zero and all the degrees 

of freedom setting on this edge have to be made equal to zero, then how do I identify 

those degrees of freedoms? When we are finding the neighbors of the sides, when I go to 

element two for example, I find that the second edge of the element is sitting on the 

boundary segment one. I immediately know that for the boundary segment one the 

boundary condition is of a homogeneous dirichlet type. It is not a non-homogeneous it 

should be one. Boundary type should be one. That is, ibc type should be one. 

As soon as I do that, I find that this is an edge on which the dirichlet boundary conditions 

have to be applied. As I loop over the elements to find the neighbors after making the 



mesh, then immediately I can also make a list of the degrees of freedom that are lying on 

the boundary. To make the list of the degrees of freedom lying on the boundary, I go to 

the particular edge, which is the second edge of the element. Which are the degrees of 

freedom, which are non-zero and are active on this edge? I find that for this edge the local 

degree of freedom are two and the local three. If I draw the second element, this is the 

local one, local two and local three. These are the ones which are lying on this edge 

which have to be fixed. Immediately, I start a counter and start counting the number of 

degrees of freedom, which have to be set to zero.  

I will put start total number of fixed degrees of freedom is equal to zero initialize.  Now I 

loop over these edges and I have name of the fixed node. I increase the counter. For 

example, for first one will be equal to the global node one. Name of the second node that 

is fixed from this element comes out to be the global node four. Then I go to the other 

elements and as I am doing this assigning of the degrees of freedom and assigning of the 

neighbors on the edges, I come to element six. When I come to element six, I find that 

element six is sitting on boundary segment one, which is the boundary type one. Which 

means that here also the displacement conditions have to be satisfied.  

I come to this one. So my counter would have become two at the end assembly of 

element two. When I come to element six, I check whether a degree of freedom that lies 

on a fixed edge of this element six is already accounted for or not. I find that this element 

six has again its second edge on the boundary and that has global degrees of freedom four 

and seven as the fixed degrees of freedom. But then I find that four is already accounted 

for. If it is accounted for, I do not add it again. But then, I find seven is a new degree of 

freedom. Therefore, this is equal to seven. This counter has become three. I know that 

there are three degrees of freedom coming out of the dirichlet boundary conditions that 

have to fixed. The names of these degrees of freedom are this and while I am giving the 

naming, at the same time I look at the type. I can find the value of the fixed degree of 

freedom. We need not have only zero boundary conditions. We can have a fixed 

displacement or a fixed temperature that is non-zero on the edge.  



I will say that the value of the first fix degrees of freedom comes from the information 

given for this boundary edge as far as the temperature is given. In this case it is zero. 

Similarly, I will have the value of the fixed degree of freedom for the second degree of 

the freedom that is also zero; for the third degree of freedom also it is zero. I know 

exactly which degrees of freedom have to be fixed by this numbering here and I know 

exactly what is the value that has to be given to it. All these information is available to us. 

Now what do I do?  
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I go to my global stiffness matrix and I start loop over i is equal to one to ntotfix, that is, 

the total number of fixed degrees of freedom. Find name of the degrees of freedom is 

equal to what we have given in the previous slide.  
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It is namfix i, val is equal to valfix i. 
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I know which global row I have to go to and I know what the value is. After that I will 

simply say that K (namdof, namdof) is equal to one. Then K (namdof, j) is equal to zero, 

for j not equal to namdof. What have I done? I have gone to this particular row which 

corresponds to the given global degree of freedom and I have made the diagonal entry of 



that row equal to one and all the off diagonal entries of that particular row equal to zero. 

Once I have done that and this row is taken care of, then F namdof is given the value that 

is the fixed value. Therefore, it is val. 

After this, what do I have to do? I have to also correct the remaining equations. In the 

remaining equations F(j) is equal to F(j) minus K(j, namdof) into val. I am going to the 

other equations and accounting for the known value of the given degree of freedom by 

taking the multiple of that corresponding column entry against the known value of the 

degree of freedom to the right hand side, because this is a totally known quantity which 

modifies my load vector and then after that K(j, namdof) is equal to zero. 

Once I have done this, I end the loop. Once I have done this, I have taken care of the 

degree of freedom in its corresponding row fixing it by modifying the stiffness entries in 

such a way that it gives me the desired value exactly the same way as we had done in the 

one-D case and we first modified the load vector in the other rows to account for the 

known value of the degree of freedom, in that we are trying to eliminate from the system 

and then set the corresponding row entry to zero. 

Once I have done this, the dirichlet boundary conditions are also taken care of. We see 

that when the val is equal to zero, that is, I am talking of a homogeneous dirichlet 

condition, this quantity leads to no correction in the right hand side. But we have written 

it in a generic way so that this can be used for all types of homogeneous and non-

homogeneous dirichlet boundary conditions. 
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One thing I like to point out again is that we are applying the boundary conditions on the 

edge and not only at the nodes. There is always a misconception that the dirichlet 

conditions have to be applied at the nodes and that the force conditions have to be also 

applied at the node. We are doing integrals along lines, along edges and those integrals 

actually translate to fixing of values or assigning of loads to the degrees of freedom 

sitting on the particular edge. This is something that we have to always keep in mind. 

We should be able to solve the problem. If I look at the fifth equation, that is, the 

equation corresponding to the global five degree of freedom, this equation will have 

contribution from elements one, two, four, five, seven and eight. It has contributions from 

six elements, because, there are six elements which are sharing this node amongst 

themselves. 

Similarly, if I am talking of the third node, this will have only contribution from the third 

element. No other elements actually participate in this node. We see that I can have 

contribution to a node coming from one element, from two elements, from five elements, 

from a varying number of elements. It is not the same as what we had in the one-D case 

where at most two elements participated in the equations for a node. Here we could have, 

depending on the mesh, many more elements present.  



Another thing is, if I look at degree of freedom one, it actually participates in the 

equations in the definition of u along the boundary edge two as well as along the 

boundary edge one. When we say that we are going to fix the u on an edge, it forces us to 

fix the value of the degree of freedom one. In this case, the value of degree of freedom 

one is actually equal to zero. The dirichlet condition actually predominates over the 

Norman condition. That is, the value of the degree of freedom, if it is fixed from one side, 

then that is what we are going to assign to that particular degree of freedom. And we 

should not confuse that from one side we get a load contribution and from the other we 

get a displacement contribution because, these things are defined only on the edges. With 

all this done, we should now be able to assemble the global stiffness matrices, the global 

load vectors, apply the dirichlet boundary conditions and solve the problem. That should 

not be a problem as far as the simple problem that I have taken. Let me ask another 

question. 
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I have a domain like this; I could also have an internal cutout. First, let us make a simple 

mesh over this. If there is a cutout here, I am making a very crude mesh. Our first job is 

always to make the mesh. Before making the mesh, what have I done implicitly? I have 

identified the geometrical entity. This domain has these distinct edges: edge one, edge 

two, edge three, edge four, edge five, edge six and the four internal edges which 



correspond to the boundary of the whole. It has actually ten such edges. I have not done 

anything as far as the loads are concerned. Let us say that here I am fixing the specimen. 

Here I am applying traction. Here in this region also I am applying traction and I may be 

fixing it in this region.  

As far as the definition of the geometry is concerned, we see that I need only definition of 

these ten edges but as far as the boundary condition is concerned, this edge has one 

boundary conditions specified which is a zero flux, this has another boundary condition 

applied, this edge has another condition, this one has another, this one has another. We 

see this edge has a different boundary condition, while this edge has a different one and 

this edge has a different one. All these edges also have their specific boundary conditions 

applied. A global geometric edge may actually have sub-sections where boundary 

conditions are changing and we have to honor this transition or change of boundary 

conditions by putting nodes at those points where the boundary condition transitions.  

This mesh is actually unacceptable because here is a point where the boundary condition 

transitions and I have not put a node there. In a very simplistic way I should have a line 

like this. I am just simply dividing the mesh and if I have this line then I will have to 

mesh it like this. There are times when in fact this is always going to be the case in 

practical problems that the boundary conditions decide how many boundary segments we 

are going to define a priori and from there we have to first honor the existence of this 

transition boundary conditions while putting nodes. This has to be a node, this has to be a 

node, this has to be a node, and this has to be a node. All these have to be nodes because 

the boundary conditions are transitioning, as well as, in certain points, the geometry is 

transitioning. For example, here the boundary conditions are similar, but the geometry 

has a change. I have to honor those. These nodes I have to put. So these are the minimum 

number of nodes that I have to put in the definition of our mesh. 

The new mesh is no longer what I have drawn earlier it is actually these entities. In most 

problems, one has to be careful that we do not violate the applied boundary conditions. 

Another thing I may have is I have different material domains. Nobody tells me that my 

two dimensional domain will have the same material everywhere. I could have absolutely 



different materials in different regions. For example, I take this sample. I decide to put 

one material here, one material here and something else here. 

These material boundaries also have to be clearly honored when we are talking of making 

a mesh. These material boundaries have to be demarcated and we also have the other 

ones corresponding to geometry. And then, depending on the boundary condition for 

example, here I may have traction applied for a flux condition. This point also has to be a 

node. I may fix this part, so this point will also have a node here. We will have to have 

these nodes put apriori, as soon as the boundary information, material information and 

the geometry information is available to us. Then we start meshing. The rest of the mesh 

can come after this. These things have to be kept in mind. 

We have done enough with these linear approximations. We have gone through the whole 

process of what we will be actually doing in a finite element setting. The only thing 

which is missing in what we have done is that the integrations have been done in an exact 

way. We would like to add numerical integration, which we will talk about later. I may 

have to do better than linear approximation to get a reasonably accurate solution.  

If I have to do better than linear approximation, I should be able to make higher order 

approximations. When we are talking of higher order approximations, we will be talking 

of piece-wise polynomials. The issue of completeness and the issue of linear 

independence will all come up. As far as two-D is concerned, the higher order 

polynomials are given, to which, all the monomials that have to appear in a given order 

polynomial for that representation to be complete, is governed by something called a 

Pascal triangle. 
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If I take a monomial corresponding to the zeroth hour polynomial, it is one. If I take a 

monomial corresponding to the linears, it has x and it has y. If I take this correspond one 

x y as a monomials corresponding to linear. If I take quadratic, I will have x squared, xy, 

y squared. If I take cubic, I will have x power three, I will have x squared y, I will have x 

y squared and I will have y power three. If I am talking of fourth order, then I have x 

power four, x power three y, x squared y squared, x y power three 

Linear approximation or the linear representation will require three monomials: one x, y. 

A quadratic representation will require six monomials (all the things that lie above are 

also included): one xy, x, xy, y squared. A cubic will require ten monomials. That is, to 

all that which was there for the quadratic, I add x power three, x squared y, x y squared, y 

power three, that is ten. And the fourth order will require fifteen monomials in its 

definition.  

and y power four. 

Constant monomial, order zero polynomial will require only one monomial in its 

definitions. We will call the order P equal to zero.  

When we talk of construction of basis, when we talked of the linear, we saw that we had 

three and the basis was linearly independent and complete. When we go to the quadratic 

approximation over a triangle, we actually need to have six basis functions defined in the 



element. That is, six independent functions of degree two have to be defined in order to 

completely represent a quadratic polynomial in the element.  

How are we going to do these things? We see cubic will require the ten. The generic 

definition is that the number of monomials corresponding to a given order of 

representation will be equal to the number of monomials given by P plus one, P plus two, 

divided by two. We will see that when P is equal to one, this is two into three by two, 

which is equal to three. When P is equal to two, this is three into four by two, which is 

equal to six and so on. We will get out of this, exactly the number of monomials on 

independent basis that have to be defined in order to completely represent the given order 

polynomial. 

This has to be used in a definition of or in a construction of these higher order basis 

functions. I am going to operate in the master element only. 
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Let us take the generic master element. This is psi and this is eta. I am going to make the 

element like this. We have made the generic master element tau hat. As far as the linear 

approximation was concerned, I had the basis functions defined with respect to these 

three nodes. When I want to do quadratic, I will borrow a lot of ideas from what we have 



done in two-D. If I am taking a quadratic approximation in this triangle, then the 

projection of the quadratic say on the first edge should also be quadratic because it is a 

quadratic in a triangle. If the projection of the quadratic on the first edge is a quadratic 

and I have the basis functions on this edge defined with respect to the corners, then the 

simplest way I can define a quadratic on the edge is put a middle node here. 

Similarly, I look at this edge. When I look at the projection on this edge, (I know that the 

quadratic is defined over the whole triangle), it also has to be a quadratic. So why not 

define a middle node here? We draw the line parallel to the base through this middle node 

and the line parallel to the base through this middle node will cut at the middle of this 

edge. And as we have said for these two edges, similarly on this edge also, the projection 

of the quadratic should be a quadratic, so this edge also requires a third edge node to be 

added. We see that in order to have the quadratic at least on these edges, we have to have 

these three new nodes. Then I will complete this element. We have one, two, three, four, 

five and six nodes. The question is, can six be the number of independent basis functions 

that we require to define a quadratic approximation?  

We have six nodes. Now can we define a basis function or a shape function in the 

element such that the six shape functions correspond to a value one at their corresponding 

node and zero at all other nodes and they form a complete basis for the quadratic? Our 

challenge is: let us say, I want to define N1. So I call this node one. I will do the 

numbering in a way which is a little different from the standard 1, 2, 3, 4, 5 and 6. If I 

want to define N1, N1 will be such that it is one at this point, becomes zero at this point 

and zero here. Similarly, on this edge it is one at this point, zero here and zero here. N1

How do I now define a quadratic that is one at this point and zero along all these points 

and at these points? It is quite easy.  We see that if I take a function that vanishes along 

this line and multiply these two functions, I should be able to get a quadratic. What is the 

equation of this line? The equation of this line is, if I take the equation of this particular 

line, it will give me a psi plus eta is equal to half because this corresponds to the point 

 is 

a curved roof that gradually dies off too value zero on this second edge of the master 

element.  



half, zero. This corresponds to the point zero, zero, this corresponds to the point one, 

zero, this corresponds to the point one by two, one by two, this corresponds to zero, one, 

this corresponds to zero, one by two. The equation of this line is psi plus eta is equal to 

half. Equation of this line is psi plus eta is equal to one. If we see that N1 hat is a function 

of psi and eta is equal to some factor alpha into one minus psi minus eta into half minus 

psi minus eta and if I multiply these things out, it is going to be a quadratic and in psi and 

eta and it is also going to vanish along this line and this line. If it vanishes along this line 

and this line, it is also vanishing at all these nodes. This is a very simple way of defining 

N1 hat. Alpha will come by putting the value of psi eta equal to zero because I want the 

N1

What will I have? I have psi eta is equal to zero. So N

 hat at zero zero equal to a value one.  

1

Similarly, if I want to define the quadratic shape function with respect to node two, such 

that this quadratic vanishes at all other points. We see that all other points lie on this line 

and they lie on this line.  

 hat at zero zero is equal to alpha 

into half, which implies it is equal to one, which implies alpha is equal to two. I can 

replace alpha with two. That is my definition of a quadratic shape function corresponding 

to the node one. 

If I take the equations of these two lines and multiply them with the factor in front, that 

should give me the representation of the second shape function. Equation of this line is: 

psi is equal to zero. Let me go ahead. The bottom line is that all these functions can be 

constructed in terms of products of the equations of one of these lines that I have drawn. 

Equation of this line is: eta is equal to zero; equation of this line is: eta is equal to half 

and equation of this line is psi is equal to half. 
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As far as N2 is concerned, I will take psi into one minus psi minus eta into alpha. We see 

that N2 as a function of psi and eta is equal to psi into one minus psi minus eta into some 

constant beta. Where should N2 be if we check that this thing will vanish on all the other 

points? At the point psi equal to half, eta equal to zero, this is equal to half into one minus 

psi minus eta which is half, into beta, this has to be equal to one implies beta is equal to 

four.  
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Similarly, this is not N2 this is N4
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I should go back and change this to N4. 
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I want to have representation of N2. N2 is one which should be having a value one at this 

node and zero at all other nodes. If it has to be zero at all other nodes I can make that 

happen by taking this function to vanish on this edge and this edge. What is the equation 

of this edge: equation of this edge is psi is equal to half and equation of this edge is psi 

equal to zero. 
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I can define N2 hat has a function of psi and eta which is equal to psi minus zero into psi 

minus half into gamma. This thing should have a value one at the point psi equal to one 

eta equal to zero. This is one into half into gamma, which is equal to one, which implies 

gamma is equal to two. This way I can construct all the shape functions corresponding to 

the quadratic. Let me take this further. 
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How will I do N5? I have N1 and I have found N4 and N2. Let us do N3. N3 is one which 

vanishes if I see along this edge and this edge. N3 will have equation eta minus half into 

eta minus zero into some constant. That constant I can find by putting the value of N3

Similarly, N

 

equal to one at the node three.  

5 is one, which is one here and zero at all other nodes. Which means, zero 

along this line and zero along this line. I take the equation of this line, which is psi equal 

to zero and this line, which is eta equal to zero, this one is psi eta and so on. N6 is very 

easy. N6 six will be one here, zero along this line and this line. It is one minus psi minus 

eta into eta into some constant that is equal to N6. 
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This way I can construct all the six quadratic shape functions. And what I have done is 

essentially an extension of the Lagrangian definition to 2 D. In the next lecture, I am 

going to extend this further to the cubic approximation, to the fourth order approximation 

and then we will go and look at some more families of shape functions that can be used in 

our practical problems.  


