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In the previous lecture, we had started talking about the two dimensional problem, where, 

we had obtained the weak formulation for a given partial differential equation which 

arises in the two dimensional case. 
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We had considered the generalized problem of steady state heat conduction and from 

there we went ahead and used all the tools which we had developed for the one 

dimensional problem to obtain the variation formulation for the two-D problem. We saw 

what are the major differences between the one-dimensional problem and the two-

dimensional problem.  

Let me recap. The major differences are that here we are talking of a two dimensional 

domain, so the geometry of the domain now plays a role and how well we resolve the 

geometry of the domain is another issue that has to be handled. For example, I mesh my 



domain with triangles. This is my domain. I know that these triangles with straight edges 

will only approximate this boundary curve. So I have to ensure that this approximation of 

the boundary curve is decent. That is, I have a sufficiently refined mesh, that is, there is 

sufficiently large number of small triangles at the boundary so that these curves are taken 

care of. We will also see other approaches of exactly representing these boundary curves 

wherever it is possible. The geometry was the problem and this leads to the discretisation 

error as far as the definition of geometry is concerned. Next thing was that in application 

of the boundary conditions in the one-D case, we had talked about the boundaries being 

two points, the end points of the domain. Here, the boundary could be a line, a curve, or a 

contour. So the boundary conditions have to be now imposed on a close contour. So this 

is another difference between the one dimensional and two dimensional cases. 

Another thing we had discussed is that if I have a domain like this, you see that because 

of this corner here in the domain, there is going to be a singularity in the solution that you 

obtain. Irrespective of what the loading is, I am going to get, depending on the boundary 

condition on these two edges, I am going to get a singularity in the solution that you 

obtain in the vicinity of the corner. So these are certain things we have to keep in mind. 

Now let us go ahead and build the finite element approximation for the model problem 

we have taken. For the sake of simplicity, here I am going to consider the simplified 

version of that model problem, that is, del to the power of 2 u by del x to the power of 2 

minus del to the power of 2 u by del y to the power of 2 is equal to r, which is what we 

know as the parson equation. I have deliberately chosen, with respect to our earlier model 

problem, a11=1, a22=1, and a12

What we had said is, the first thing that we are going to do is construct the crudest 

possible approximation; the crudest possible approximation was an extension of the 

linear approximation that we had in the one-dimensional case. So we would now like to 

create a linear approximation in the two dimensional case. The linear approximation in 

=0. Two is just to fix ideas. Everything else we will 

follow. We will take a rectangular domain. In the rectangular domain, we had said, we 

are going to make a mesh of triangles. This is the simplest possible domain that I can 

have. Let us say it is a square domain not even a rectangular domain. It is a square 

domain with sides ‘a’ and ‘a’ and I have made these triangles.  



the two dimensional case would be of this form now. So, the linear in the two-D case will 

be a0+a1x+a2

We had said that we are going to define these three independent functions with respect to 

the three corner vertices of the element or the three corner nodes of the element. These 

are the nodes of the element of interest. In the two-D case, I have the triangles as the 

elements and the corners of the triangles are the nodes. So we are going to define these 

piece-wise linears with respect to these elements. Let us now go and see how we do this 

job. What we say is that, let the polynomial, let any function ‘u’ be represented by a 

linear in the element of interest. 

y and in this linear approximation, what we are going to do is, we are going 

to construct the basis functions over these elements that we have, over this domain, such 

that, I have a piece-wise linear approximation in each element, like we had in the one-D 

case. Over each element here, I would like to construct a piece-wise linear 

approximation. Piece-wise linear approximation means that over the element, my basis 

functions, the truncation of the basis functions are linear polynomials. Now how many 

independent functions do we need in an element in order to completely define a piece 

wise linear? The answer is that, since this piece wise linear incorporates three unknowns, 

we need three independent functions. In the two-D case, we required two independent 

functions in an element. Now we need three independent functions. How do we define 

these three independent functions? 
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So my element would be this and as we had said, these are the corner vertices of the 

element. So this is my element top and I give it some name. So what we want, as we had 

done in the one-D case is, to interpolate the given function u with a linear in this element. 

In order to interpolate this function u with a linear in this element, what we do is: u is 

given by some linear which is c1+c2+c3y in this element. Then what is a value of this 

linear at these nodes of the element? The nodes of the element have coordinates (x1, y1), 

(x2, y2) and (x3, y3). So, we want a representation of the function that we have taken at 

these nodes. So the value of the function at these nodes is u at (x1, y1) u at (x2,y2) and u 

at (x3 ,y3). What we want now, going by what we had done in the one-D case is, the linear 

interpolation of this function to match the value of this function at the three nodes. When 

we have this linear interpolation, we want c1 plus c2 x1 plus c3 y1 to be equal to the value 

of the function at the point x1 y1. Similarly, I want c1+c2 x2+c3y3 to be the value of the 

function at the point (x2, y2) and at the third point. These values of the function at these 

three points I am going to call as mu1, mu2, and mu3. I assume that I know my function, I 

know the values mu1, mu2 and mu3, which can be written in terms of the coordinates of 

the three points and these unknown constants. We want to find these unknown constants 

c1 c2 and c3. So the three values of u are given as a combination of these unknown 

constants c1 c2 c3. Now the job is simple: it is a three by three matrix, so we have to 



invert this matrix to get c1 c2 c3 in terms of mu1, mu2 and mu3

What we end up getting is: I call this matrix as matrix A, so A inverse will be one by 

twice the area of the triangle, we have called it tau, into some coefficients alpha

. That is about all we have 

to do. 

1, alpha2, 

alpha3, beta1, beta2, beta3, gamma1, gamma2, gamma3. We can write the area of the 

triangle A tau in terms of these alpha1, alpha2, alpha3
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What do we get then? The unknown constants c become as A inverse into this vector mu 

and after expanding this out, the constant c1 is 1 by 2 area of the element tau into alpha1, 

mu1 (mu1, is a value of the function mu at the first node which has coordinates (x1,y1)) 

plus alpha2, mu2, plus alpha3 mu3. Similarly, I can find c2 and c3, where these alpha ‘i’s 

are given like this in terms of the three nodal coordinates, that is, alpha1 will be x2 y3 

minus x3 y2, where, i j k are written in a cyclic permutation. Similarly, alpha2 will be 

equal to x3 y1-x1 y3 and so on. Similarly, I can find what is beta1 and what is gammaI in 

terms of the x1 x2 x3, y1 y2 y3. Once I have these quantities, I can rewrite: the linear 

interpolation of u over the element tau in terms of the values of the function at the three 

points u1 u2 u3 as one by twice area of the element tau into alpha1 u1 plus alpha2 u2 plus 

alpha3 u3 plus the part multiplying x plus the part multiplying y.  
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So this you can say is the part multiplying one, the part multiplying x and the part 

multiplying y.  So what is the next thing? We would like to group all the coefficients or 

all the monomials multiplying u1 together, all the monomials multiplying u2 together, all 

the monomials multiplying u3 together. Rewrite u in the element tau in terms of the 

values of the function at the three nodes into some polynomial Psii. Psii tau is equivalent 

to what we know as element shape function Ni tau. It turns out that Psii tau is given as 

one by area of the triangle into alphai tau plus betai tau x plus gammai tau y. These Psii

How many do we have? We have three of them. So we have the three linear shape 

functions in the element obtained by doing this procedure. You see that each of the shape 

functions is a linear showing that this set is a complete set, that is, it can represent any 

linear polynomial exactly by taking a linear combination of these and showing that these 

are linearly independent is now relatively an easy job. One can do exactly the same thing 

that we had done in the two dimensional case. Let us go further; so what will these 

functions look like? 

 

taus are the shape functions in the element. 
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Let me just take an example. Let us say this is node 1, this is node 2 of the element and 

this is node 3 of the element. Here I would like to plot the function psi or N1. If I take N1, 

as you will see, the N1 has a value one at the node one. So, we will see N1 tau at x1 tau y1 

tau is equal to one. It will have a value one at the first node and it will have a value zero 

at the second node and the third node. So this function is going to be like this. It is like a 

slanting roof. It has a value one at the first node, zero at the other two nodes. That is, it is 

zero along this whole line. Similarly, this is function N1 tau or as I have written in the 

previous slide as psi1 tau. Similarly, if I want to draw N2 tau, N2 tau will be a function, 

which has value one at the second node and value zero at the first node and the third 

node. So this is my function N2 tau. So it is a roof slanting down from the second and 

similarly I can draw the third function. These are our element shape functions and you 

can see that these shape functions for the ith node will correspond to a tent like structure. 

That is, by piecing together all the shape functions, I get the global basis function phii 

It vanishes on this black edges and it is one at the node with respect to which it is defined 

and it is piece-wise linear and each of the elements shares that node. This, you will 

remember again, that in the two-dimensional case, a node may be shared by many more 

than two elements. In this figure that I have drawn there are four elements sharing a node. 

for 

the ith node of the mesh that we have and this function vanishes on these edges. 



This basis function has to be defined with respect to all the elements which share that 

particular node. With this, now, we have obtained our representation of the linear shape 

functions. Let us now construct the finite element solution, if I have to do that in an 

element. I define the finite element solution globally. So, given this phii

Similarly, I will number the elements, this is element 1, this is element 2, element 3, 

element 4 and elements 5, 6, 7, and 8.  So, I have numbered the nodes and the elements. 

Now how many basis functions will I have formed by piecing together these piece-wise 

linears? I will have nine basis functions corresponding to the 9 nodes of the mesh. If I 

want to make a finite element solution, which is a linear approximation over this domain, 

then, u

, let me again 

make a mesh. For our own convenience, let us take an example of a mesh of eight 

elements. You can take the simplest possible method. So let us say, this is my node 1, this 

is my node 2, I am doing a numbering of the nodes in the mesh, node 3, node 4, node 5, 

node 6, node 7, node 8, and node 9. 

FE would be equal to sum of i is equal to 1 to 9 ui phii, which is the function of (x, 

y). Now, I want to look at the restriction or the part of this finite element solution over 

some generic element. Let us say I am looking at it over this third element.  So, uFE over 

a generic element tau will be given in terms of the value of this coefficients ui

So, it can be written as, sigma i is equal to 1 to 3 u

 at the three 

nodes, which are the N vertices of this particular element, multiplied by the restriction of 

these basis functions over this element. 

i in the element tau Ni tau (x, y). By 

this we understand that if I am in the third element, I will have a local numbering for the 

nodes. If you recollect, in the one-D case too we had defined the global numbers and the 

local numbers. So this will be my local node 1, local node 2 and local node 3 for the 

element. Then I see that the u1 of the element tau is equivalent to the global u2, u2 of the 

element tau is equivalent to the global u3, u3 of the element tau, which is the third 

element, is equivalent to the global u6

For every element, I have to obtain the local to global numbering. So remember that same 

data structures have to be continued here. Local to global enumeration has to be done, 

which tells me which global degree of freedom does my local degree of freedom 

. 



correspond to. Similarly, the N1 tau for this element is equivalent to the phi2 in this 

element N2 tau is equivalent to the phi3 and in this element N3 tau is equivalent to the 

phi6

Once I have the representation of the finite element solution in the element then I can go 

and do the next step. That is, I can do my element calculations. 

. We now know the one to one correspondence between what is the global solution 

and what is that we are doing locally. 
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What do we do for the element calculations? We should remember, if we take the weak 

form that we obtained and put it for this particular model problem that we have taken, the 

weak form would be del u del x del v del x plus del u del y del v del y dA would be equal 

to integral over the domain r v dA plus if you remember we had talked about the Norman 

part of the boundary, the part were the flux conditions are specified, you will get g v d s. 

g is the specified boundary flux and v is our test function or the weight function that we 

have used. 

This is going to be our weak form, which is obtained as a specialization of the general 

weak form we had obtained earlier. Now, what do we know from this? We can now 

partition as sum over all the elements: sum 1 to number of elements integral over the 



elements tau of del u del x del v del x plus del u del y del v del y dA. Similarly, we can 

do the same for the right hand side. Now from the finite element point of view, we 

replace u with uFE . uFE on the element is given by uFE tau. Similarly, what we do as far 

as v is concerned is, we take v to be the global basis function itself. So v would be again 

given as v over tau. Here we are talking of the global basis functions that are going to be 

non-zero in this element or the global basis functions that correspond to the Ni tau, that 

is, the shape functions of the element. Essentially, what happens is, as far as the 

contribution of the element is concerned, the element is going to only contribute to the 

rows in the global stiffness matrix or in the global equations, which correspond to the 

phii
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s, which are non-zero in the element. Let us go back to our previous figure. 

 

If I am in element three, then, corresponding to the uFE that we have constructed, I will 

have a 9 by 9 global system, in terms of the nine unknown uis. So, as far as element 3 is 

concerned, phi2, phi3, and phi6 are non-zero in element three. All other phiis are zero. So 

my element 3 is only going to contribute to the global equations corresponding to phi2, 

phi3, and phi6, that is, it is going to contribute to the second, third and the sixth global 

equation and similarly for the other equations. It is also going to contribute to the second 

row to the third row and the sixth row, because these are the only coefficients or the basis 

functions, which are active in this element. 



With that understanding, for the element, there are only three active basis functions. Even 

the uFE
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 of the element is in terms of these three coefficients. The element stiffness matrix 

will be a 3 by 3 stiffness matrix as far as the piece-wise linear approximation is 

concerned. This 3 by 3 stiffness matrix for the element is what we would like to obtain. 

Once I obtain this 3 by 3 stiffness matrix, then we do the usual process of assembly to get 

my global system. What does this 3 by 3 stiffness matrix correspond to? 

 

Just like we have done earlier, let us talk of the integral over the element del uFE over the 

element tau del x (now here instead of the v, we are taking the basis functions which are 

non-zero in this element, which are nothing but) del Ni in the element tau over del x plus 

del uFE in the element tau del y del Ni in the element tau del y. These are essentially 

corresponding to i=1, 2, 3. We will get the three equations from the element. In the three 

equations, when I substitute for the uFE tau, I will get the three columns, which are there 

in terms of u1 tau, u2 tau and u3 tau. If I do this, I will get the stiffness matrix entry in the 

element tau by expanding uFE tau and is given as integral over tau del Nj tau del x del Ni 

tau del x plus del Nj tau del y del Ni tau del y. So this is going to be my ijth term of the 

element stiffness matrix, where, ij is equal to 1, 2 and 3. 



Everything that we do is exactly the way we had done for one-D. Only thing is, the 

number of entries increases here and we are dealing with partial derivatives of the 

quantities of interest. If I have to do this for the standard model problem that we had 

taken, that is, the generalized one, then we will have to do it with the a11, a12 and a22 

sitting there. The stiffness matrix entries for the element can now be computed in terms 

of the derivatives of the element shape functions Ni and Nj, where Ni and Nj

As far as this part is concerned, finding the integral is not difficult at all and one can do it 

very easily and explicitly. However, let us go and build some of the other features, which 

are going to be important from the point of view of a computational implementation. Let 

us first talk of the geometry representation. The geometry is going to be represented by x 

being given in terms of, that is, in the interior of an element tau, if I want to find any 

point x, it will be given in terms of the coordinates of the end points of the element. It 

will be given in terms of, as a linear interpolation, x

 have been 

obtained from our interpolation that we have done earlier. Now, if I take the piece-wise 

linears, we see we see that these derivatives are going to be constant. As far as the piece- 

wise linears are concerned and the model problem that we have taken, the integrant here 

is going to be a constant integrant. This constant we can easily obtain corresponding to 

each i and j. The integral of the constant against the area will be equal to the area times 

this constant. 

1 tau N1 tau plus x2 tau N2 tau plus 

x3 tau N3 tau. Similarly, y is equal to y1 tau N1 tau plus y2 tau N2 tau plus y3 tau N3 tau. 

Now, if you remember, from a computational point of view, it was much easier to work. 

We could do everything in the physical element, but we decided to map our physical 

domain physical element in a one-D case to a master element. Similarly, in the case of 

this two dimensional problem, let us map our physical element into a master element. Let 

us define the mapping as a linear map. 
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So what happens? I have my physical element, which has these nodes x1 tau y1 tau, x2 

tau y2 tau, and x3 tau y3 tau. This, we are going to map to a master element given in 

terms of the coordinate system psi eta and defined as this or master element is going to be 

such that the first node has coordinates (0,0). The nodes of the master element I am 

numbering them with hat. The second node has coordinate (1, 0) and the third node has 

coordinate (0, 1). So what have I done? I have simply mapped my original physical 

triangle linearly to this master triangle. That is, the straight edges go to straight edges and 

the area maps linearly. I have done the linear map and now my next job is to define this 

map. How do I define this map? In order to define this map, let us take the linear shape 

functions and map them to the shape functions that we have, that is, the corresponding 

entities over the master element. I will call this master element tau hat. This is my 

element tau. So how do I do this mapping? A linear polynomial in the physical element 

goes to a linear polynomial in the master element. If a linear shape function was one at a 

physical node, it will be also one at the corresponding master node. If it was zero at a 

physical node, it will be zero at the corresponding master node and so on. If I have the N1 

tau, the N1 tau in the master element will become N1 hat. This N1 hat will be a function 

of psi and eta.  



Now, what is this N1 as a function of psi and eta? N1 hat as a function of psi and eta is 

quite easy to show, it is a function which is one here and zero along this line because 

remember that N1 tau was zero along this line, so similarly N1

This is how I have defined my N

 hat has to be zero along 

this line. This line has an equation psi plus eta equal to one. If it is zero along this line, 

the function has to be one minus psi minus eta. Check that this will be one at this point 

where it is (0, 0) and along these two points - two and three. 

1 hat. Similarly, I can define N2 hat as a function of psi 

and eta is equal to psi. Again, the function has a value one at the second point and value 

zero at the first and the third point. This becomes psi, one can check. Similarly, N3
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 hat as 

a function of psi and eta will be equal to eta. By doing this mapping, I have at least in 

principle constructed the corresponding map versions of the shape functions. How can I 

define the geometry mapping? 

 

Geometry mapping becomes x is equal to x1 of tau into N1 hat plus x2 of tau into N2 hat 

plus x3 of tau into N3 hat and y becomes y1 of tau into N1 hat plus y2 of tau into N2 hat 

plus y3 of tau into N3 hat. This is how I can give the x and y at any point psi and eta in 

the master element, the corresponding value of x and y. 



Once we have done this mapping, remember that we have to do master calculations. In 

the master element, if you remember, we had an integral of this type. We would like to 

convert it to an integral over the master elements. So from the physical I come to the 

master where I have the integral over the master element tau hat of this integrant. This 

integrant converted into an expression in terms of psi and eta into (note that the area in 

the physical element has to be mapped to the area in the master element) and that will be 

in terms of something called the Jacobian into dA hat. The question is, what is this and 

how do I use the derivatives in the master element to obtain the derivatives in the 

physical element? For that we will have to obtain the metrics of the transformation. So 

how do we obtain the matrix of the transformation? 
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If I say that I want dx, dx will be equal to del x, because x is now a function of psi and 

eta, del x del psi d psi plus del x del eta d eta. Similarly, dy is equal to del y del psi d psi 

plus del y del eta d eta. This is because x and y are functions of psi and eta. So, change in 

x is again in terms of change in psi and eta. Now we have to obtain these quantities. 

Where are these quantities going to come from? These are going to come from the 

definitions of x and y that we have given in terms of the three nodal xs and ys in the 

physical element and the definition of the shape functions in the master elements. One 

can show from the expression we have there that del x del psi is equal to x2 of tau minus 



x1 of tau. Let us go back and see. Here, if you remember, N1 hat was one minus psi 

minus eta, N2 hat is psi, N3

If I take this definition and go back, dx d psi will be equal to x

 hat is eta. 

2 minus x1. Similarly, del x  

del eta is equal to x3 tau minus x1 tau and del y del psi is y2 tau minus y1 tau del y del eta 

is equal to y3 tau minus y1
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 tau. Let us now rearrange this thing in a matrix form. So I can 

write it as, dx dy is equal to del x del psi , del x del eta , del y del psi, del y del eta, d psi d 

eta. I have simply rewritten this expression in a matrix form. Once I have this expression 

in the matrix form, then I can talk of the Jacobian. 

 

The Jacobian is nothing but the determinant of this expression of this matrix that we have 

written. And we would like to obtain expressions for del psi del x, del psi del y, del eta 

del x, del eta del y. That is, since we can write x and y in terms of psi and eta, we can also 

write psi and eta in terms of x and y. So we want metrics of the inverse transformation. 

How do I do it? By exactly following what we have done there, we can get d psi d eta is 

equal to del psi del x, del psi del y, del eta del x, del eta del y dx dy and this matrix is 

nothing but the inverse of what I will call as the Jacobian matrix here. We take the 

inverse of this, bring it on this side and we will get d psi d eta in terms of dx dy. 



So, all we have to do is, given this matrix J, we need to find the inverse of that matrix. 

Now what is going to be the inverse of this matrix, say J inverse? 
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J inverse is equal to one by Jacobian, we interchange the diagonal entries and so I will get 

del y del eta, del x del psi and take the negative of the signs of the half diagonal entries 

and so minus del x del eta , minus del y del psi. This is my J inverse and the J inverse is 

now going to give me my del psi del x and so on. Del psi del x is equal to one by 

Jacobian into del y del eta, del psi del y is equal to minus one by Jacobian into del x del 

eta. del eta del x is going to be minus one by Jacobian into del y del psi and similarly, del 

eta del y is equal to one by Jacobian into del x del psi. Obtain the matrix of the inverse 

transformation. Why do I need it? Because, if you remember, these quantities are 

equivalent to saying del Ni hat del psi del psi del x plus del Ni hat del eta del eta del x. 

Because I can rewrite my Ni tau as a function of psi and eta, that is, Ni hat as a function 

of psi and eta, then the x derivative of Ni tau is given by this chain rule that del Ni del psi 

del psi del x del Ni del eta del eta del x. We now need to obtain these quantities. But 

these quantities are quite easy because we have already obtained each one of these 

quantities from the definition of x and y. 



Given these quantities, I can go ahead and now define what is del psi del x, del eta del x. 

In this case, you notice that for this triangle, for linear mapping, del y del eta del x del eta 

del y del psi del x del psi are all constants. Why? Because x and y was linear in terms of 

psi and eta. Take the derivative of the linear and you will get constant. Because they are 

all constant, the Jacobian is also a constant. This is true only for the linear maps of 

triangles. We will see that when we go to quadrilaterals, Jacobian will no longer be a 

constant. So, given these entities now we can plug them in and obtain all the quantities. 

For the element, I have to input the three nodal coordinates the x1 x2 x3, y1 y2 y3
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 and I 

can construct the metrics of the transformation. Let us now take a very simple example of 

the same domain that we had taken. Let us assume that my elements have edges of size h. 

 

Given these elements of size h, I would like to construct, let us say, for the first element 

in my domain, the entries of the stiffness matrix using linear approximation. 

In the next class, we are going to construct the stiffness matrix of the elements and then 

we will talk a little bit about the assembly for this special problem. Another important 

thing that we are going to talk about in the next class is impassing, how to apply the 

natural boundary conditions, that is, the force boundary conditions. We will also finally 



discuss how to apply the displacement boundary conditions. Once we do that, then we are 

not going to be happy with linear approximations in the null element. We would like to 

extend it to higher order approximations, quadratic, cubic, fourth order and we will see 

how we can construct the basis functions or the shape functions in an element, 

corresponding to any order of approximation that we desire and then how to put it in the 

framework of whatever we have developed here as far as the element calculations are 

concerned. 


