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Let us now talk about two-dimensional problems. We have, in the two-dimensional case, 

a domain which is now given by some area, in the two-dimensional space which we will 

give the name omega. The domain will have a boundary delta omega which we will call 

by also the name gamma. 
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So here, what you see that as compared to the one-dimensional problem which we had 

earlier where we had the two end boundary points. Here, we have a bounding line or a 

curve for the domain and as such, the boundary conditions for the problem whichever we 

should pose on the two-dimensional domain are going to be specified on this bounding 

curve. So let us now see how this two -dimensional problem is going to be different from 

the one-dimensional problem. The first thing that we see is that now this bounding curve 

could have any of many different geometry. 
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For example, I have a domain where I have a reentrant corner. I have a domain, where I 

have an internal boundary also that is an inside crack; these are all possible two-

dimensional domain. So because of this we expect that the boundary affects the 

smoothness of the solution to the problem that we are going to pose. This is going to 

happen for any two-dimensional problem, the domain boundary, the smoothness of the 

boundary is going to effect the solution; this is not the case in the one-dimensional case. 

Let us say the simplest possible two-dimensional problems, which is the single variable 

problem. 
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What we do here is let us take the problem given this (Refer Slide Time: 03:23) in 

omega. If we take this differential equation where qx is given as a11 del u del x plus a12 

del u del y and qy is equal to a12 del u del x plus a22 del u del y. You see that, what we 

have done now is you have shifted from use of only differential equation in the one-

dimensional case, the problems that we had considered in the one-dimensional case, to 

now partial differential equation, because derivatives with respect to both x and y are 

involved. So this is another departure from the one-dimensional problem. If I give you 

this differential equation, this is as you can see a second order differential equation, 

because, when I plug in the representation of qx and qy here in my equation when you see 

the equation comes as the second order differential equation, in terms of the unknown 

variable u x y which u is the unknown variable which is now a function of x and y. If we 

want to use, the approach that we had developed for the one-dimensional problem what is 

the first thing that we have to do as far as getting to obtain a finite element solution for 

this problem? So the first thing is getting a variational or weak formulation. 
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For this, what we had done we will stress on the weak formulation more here. So we take 

this differential equation which is available to us and multiply the differential equation 

with a suitable admissible test function. So what do we do? 

 

We have minus del del x of qx, I will put it like this, plus del del y of qy

So what we have going to do? We are going to take this expression and do integration by 

parts. Why are we going to do the integration by part? Because we want to weaken the 

 is equal to r. So I 

will multiply both sides with this, at this function v and I am going to integrate this 

quantity over the domain omega. This is the first step that we had done as for as obtaining 

the weak formulation for one-dimensional problem. Same thing we are going to do here, 

where we start from differential equation, multiply it with an admissible test function v 

and integrate over the area. Remember that v we say is an admissible test function or we 

can say it is a virtual generalized displacement function or whatever we want to call it. 

Next step, if I go and see this representation here, because, of this derivative sitting, 

second derivative of u is sitting in the expression, second derivative with respect to x 

second derivative with respect to y. 

 



  

smoothness requirement on the unknown function u; that is, we want to transfer 

derivatives from the unknown function u to the test function t. This part we are going to 

do; so to do the integration by parts what do we do? We know that del del x of qx v is 

equal to del del x of qx into v plus qx del v del x. Similarly, for the y derivative; that is, 

del del y of qy v del equal to del del y of qy into v plus qy into del v del y.  

 

(Refer Slide Time: 09:39) 

 

 
 

Then we obtain that del del x of qx into v is equal to del del x of qx into v minus qx del v 

del x. This is standard calculus that you have done. Now, what I can do is I can replace 

this expression in my integral with this expression; that is, left hand side is the expression 

sitting in the integral, I am going to replace this with the expression on the right hand 

side. I am going to get integral over omega del qx del x into v d omega or dA, let me 

write it as dA is equal to integral over omega del del x of qx into v minus qx del v del x 

whole thing into dA. This expression del del x into of qx

As this integral is the same, as integral on the boundary also domain of q

 into v dA, we can write it using 

something that you have done in calculus Gauss Divergence theorem. 

 

x v into nx ds, 

this is on the bounding curve. We will see what is this nx and y? Similarly if I went ahead 



  

and did the same job for the other part in the integral, you will get this expression; this is 

equal to integral over the boundary into ny ds, where nx and ny are component of the unit 

outward normal on the boundary of the domain. So let us see, what do you mean by this 

thing. 
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I come back here, draw my figure; this is my omega what we will say, we will say the 

boundary to be in a counter clockwise direction. So bounding surface is counter 

clockwise direction such that the bounded area always lies to the left of the bounding 

surface. Then we will be talking of the unit outward normal at any point on the boundary. 

This normal is given as the vector n. This will have component nx in the x direction; ny in 

the y direction and if this makes an angle alpha with the horizontal, then we know nx

n

 is 

equal to cos alpha i, where i is the unit vector in the x direction. 

 

y is equal to sin alpha i. It will be useful to write these guys in terms of the local tangent, 

a small piece taken in the tangential direction about the point of interest. So if I take that, 

with this is that C, this C in the conjunction direction is the size ds. If you take that here is 

my dy and here is my dx. Note that dy is positive, dx is negative. You will see that, this 



  

angle is nothing but the angle alpha. So what will happen? Cos alpha is equal to del y by 

del s, I have written it in terms of the partial and sin alpha is equal to del x del s. This 

becomes useful from a computational point of view to write this cosine and the sin in 

terms of the small changes in the length along the curve. We have defined the unit 

outward normal at any point on the bounding surface any in terms of that we get the two 

components nx and ny. 
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Now in the previous slide if you see that we know what in by nx, we know what you 

mean by ny. 
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So let us go back and go up and see that in our initial weighted residual form, that is the 

first part is called a weighted residual form, why? Because we are taken the differential 

equation, simply multiplied with the weak function integrated. 
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If I do integration by parts, put in all the things that we have obtained, then I will get the 

final weak form as: integral over omega of qx del v del x plus qy del v del y dA is equal to 

integral over omega r v dA plus integral over the boundary gamma or delta omega you 

will have qx nx plus q y ny whole thing into v ds. Now, if you look at this quantity qx qi 

form the component of the vector q. The vector q dotted with the normal vector n will be 

equal to the normal component of q. That is the component of q in the direction of the 

normal which we call by qn; this will be equal to qx nx plus qy ny. So we can replace what 

we have written there by qn. Now you see that this is our final weak form for the second 

order differential equation in terms of one variable that we have taken. 

 

Next, what had we done earlier? Next is we would like to identify in the boundary 

condition that can be applied on the boundary of the domain gamma; the boundary 

gamma of the domain omega. 
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From the boundary condition, you see that on the right hand side I have the integral over 

gamma of qn v ds. This is called the normal in a generic way normal flux where q is 

called the flux vector. So as we talked about earlier, here either you can give what is the 



  

value of qn on the boundary gamma, apart from the boundary gamma or we specify what 

is the unknown variable u on the boundary. We have the boundary conditions which we 

will quite different name as we written earlier Dirichlet and here is Neumann. Dirichlet 

will [ ] have an analogy with the one d k that u is specified on boundary. Neumann means 

qn is specified on the boundary. Now, the Neumann is subscribed on the full boundary; 

just like in the one d case at one point I can have one boundary point, I can have one type 

of boundary condition, on the other I can have different type of boundary conditions; in 

this case we can take the domain omega. 
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In this, I can have part of the boundary with Dirichlet boundary conditions; I can have 

this part, I can have this part, and I can have these parts. The remaining part of the 

boundary I can have Neumann boundary condition. That is in the remaining part I specify 

Neumann conditions. The part of the boundary where Dirichlet conditions are specified I 

am going to call it by gammaD. On the part of the boundary where Neumann conditions 

are specified I am going to call it by gammaN. 



  

So this is gammaD, this is also part of gammaD, essentially we mean the collection by 

gammaD of all the parts where the Dirichlet boundary condition is specified or u is 

specified. u is equal to u bar specified. On this part I will have qn is equal to g. 
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The next question is that on the part of the boundary gammaD, u is equal to u bar which is 

u bar is a given function; it could be 0, it could be something else, whatever is specified 

by the user as in input data. So on this boundary, the v has to be constrained. So v will be 

constrained to the 0 on this boundary. Just like in the one d k. On the Neumann boundary 

we have… if I go back to my weak form I will get the following expression: plus qy del u 

del y dA is equal to integral over omega r v dA plus. Now we will have the integral over 

gammaN; on gammaN qn is given a g, so this will be gv ds plus integral over gammaD 

where I will have qn v dA, but on gammaD I know v is equal to 0, so this whole integral 

drops out. So the weak form essentially is given in terms of this expression. Remember 

here we have not touched the finite element method at all. All we have done is followed 

the procedure of weighted residual development and using integration by parts, we have 

obtained the weak form for the problem. In getting the weak form, we found that we now 

have the two possible boundary conditions that can be specified at any point on the 



  

boundary. Nothing else, either the displacement or the normal flux can be specified; no 

other quantity can be specified on the boundary. This looks very similar to the 

development that we had made in the one-dimensional problem.  

 

Next is a question that we have the weak form, then what? After we have the weak form 

comes the question of as far as the construction of an approximation is concerned, where 

should my approximating function for u lie? Similarly, where should v lie? So what kind 

of smoothness requirements we have to satisfy. If I go back to the weak form we have, 

we want this expression, this whole integral, to be finite, all the integrals to be finite. If I 

want the integral of the left had side to be finite, the integral of the right hand side to be 

finite, what is the smoothness requirement that I have to have on u and v? 
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So the answer is, again the same thing that we had, we want for them to be finite del u del 

x, del v del x, del u del y and del v del y should all be defined. That is again in the 

domain my u and v have to be…. the u as well as v are continuous in the domain and we 

want only the derivative, the first derivative - of each function to be defined. What we 



  

need is again what we call a C zero continuity; this is what we need. Then comes the 

question of how to go about constructing a solution to the problem. 
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So what we do is look at our domain. In this domain, how did we go about solving the 

problem in the one-d case? If made a mesh; with respect to the mesh we defined this so-

called local basics functions, basis functions with local support. Here also we have to 

make a mesh. So what kind of mesh is possible? Generally, what we do is we take a mesh 

of triangle of quadrilaterals. I am drawing some mesh of triangles here as an illustration; 

so I will cover my whole domain with this mesh of triangles. I am drawing a very gool 

mesh, so that I am able to show this connects. What I have done is I made a mesh to 

cover my domain omega; mesh of triangles. 

 

Here I have mesh of triangles. In the one-d case we had mesh of the sub intervals or the 

small segment. Here we have made a mesh of triangles. Now how do I define the 

extremities of a triangle? A triangle here will be defined in terms of three end points of 

the triangle. So the end point of the triangle. Now, what did call the end points of an 

element in the one-d case? We call those as nodes. The triangles are our elements and the 



  

end points of the elements or collection of the end points of the elements are called the 

nodes. So these are our nodes. 

 

There are a few differences with one-dimension case, that we should see right away. First 

thing, we see that observe the following thing that if I take this size. So, there is 

discrepancy in capturing the actual boundary of the domain, with the elements that we 

have taken. If you look here, it is really bad. So if I take a mesh is represents a different 

domain; that is it is not able to exactly sit on the boundary of the domain. So in the two-

dimensional problem, which is not the case in the one -dimensional problem, we could 

exactly mesh the line that we had. 

 

Here we do have the issue of not being able to exactly mesh the control of the domain 

availability. That gives rise to essentially what we can call as discretization error; that is 

an error in representing the domain with our collection of elements. The triangles or 

rectangles or whatever we take - that is one issue.  

 

Second thing we see is that as far as the boundary conditions are concerned, we have to 

apply them; that is, in part of the domain I may have g given or in part of the domain and 

I may have u specified. How do I know where to apply what point condition? For that, 

you see that now the boundary is given on the boundary contours. We have to know for 

every element whether an element, element is the triangle, that is called the triangle by 

generic name tau. So we have tau can be of various size; one could be an interior triangle; 

interior element that is an element lying completely in the interior of the domain. 

 

We could have at tau which is the boundary element. That is an element which shares at 

least a side with the boundary of the domain. It could share two sides for all we know. It 

is an element with shares a side with the boundary. So these are some essential 

differences that we have with respect to what we had done earlier, with respect to the 

one-d problem. We have to identify when we are making the mesh that these are the 

elements which are boundary elements and which are the elements which are interior 

elements. 



  

Now for the boundary element, we also have to identify which are the edges lines on the 

boundary, because boundary conditions have to be applied along edges, not along the 

nodes. We will be applying the boundary conditions along the edges of the element that 

we have and this way we go element by element. These are some issues that we should 

have in mind when we go ahead and do the finite element computation. 
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Now the question is that I have taken a very simple second order differential equation. 

Now for this simple second order differential equation does it represent anything 

meaningful from an engineering application point of view? In terms of that, there is a 

whole class of problem for which this second order differential equation is what we have 

to solve in order to get a solution. 

 

For example, if I look at the problem of steady state heat transfer, then in this case heat 

conduction. So in this case, you see that u is equivalent to… the u that you have taken 

here, the generic q to the T; T is the temperature. The differential equation look exactly 

the same rather a11, a12, a22 are nothing but the thermal conductivity. So this is one 

problem where I can use this differential equation to get a solution. 



  

What we will do is, see when from the programming point of view the program for a 

differential equation then we interpret where we can interpret. The whole class of 

engineering problems can be covered by this program, whatever we are going to do. Here 

the flux q essentially we have to consider the heat flux in the design. Similarly, you have 

the irrotational flow, the steady state irrotational flow; so irrotational flows, in this case 

the u is equivalent to the stream function psi. In the steady heat conduction problem 

earlier, the r represents the heat flow term. Here I can have various r of either it could be 

0 or I could have a source anything, whatever. 

 

Similarly, I have the torsion of a solid section; torsion of a general section. So here, in 

this case a11 is equal toa22 is equal to 1 and a12 is equal to 0 and r becomes equal to 2. If I 

take this and the function u represents the handle stress function, I could call in theta. So 

you see that there are many such problem where I can apply the generic second order 

differential equation that we have written to get the solution. In the torsion problem, the 

boundary conditions are very specific; theta is equal to 0 on gamma. That is, in this case, 

the whole boundary is a Dirichlet boundary that we complete here; so we can solve for 

the Prandtl’s state function, we can obtained the j, the term which goes into the modulus 

of torsional rigidity. So all these things we can do if we are able to solve this second 

order differential equation that we have taken.  

 

Now the question is how do we construct the approximation? That is the discretization. 

What we did earlier in the one-d case was we said that the simplest possible function for 

the second order differential equation which satisfy the C zero continuity were piecewise 

linear. 
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So why not try the piecewise linear function? We will have the piecewise linear 

functions. What do you mean by piecewise linear function? That is I have a triangle 

which is my generic element, over this element I defined a function, an approximating 

function which is given in terms of the linears in x and y. That is a0 plus a1x plus a2y. So 

the element that is linear. 

 

You see that this linear now in the two-d case requires C constant a0, a1, and a2 where in 

the one-d case this thing was not there; it needed only the two constant a0, a1

Now using this how can we construct the basis functions? We are going to do the 

elaborate construction of the basis function in the next class. Here what we are going to 

. This 

required C constant, you know that this has to be represented in terms of values of the 

function, if I take any generic function which is a linear, it can be represented in terms of 

the values of the function at three points and these three points we chose as the nodes of 

the element. We will essentially construct the basis function or the shape function here in 

terms of the C node value function. 

 



  

do is at least let us see graphically what these basis function will look like. So let us say 

that we have a node. 
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Like in the one-d the piecewise linear were defined with respect to a node. We have a 

node here, now the difference between the one-d and two-d is that the node could be 

connected to many elements; it need not be connected only to two elements. So I could 

have this kind of a connectivity for this node, where these are all the nodes at the other 

ends of the element that are connected to this nodes. So let call this middle one as node I. 

With respect to this node, I can make the basis functions exactly like you have done in 

the one-dimensional case as having a value 1 at the point of the node, the location of the 

node - and it [ ] of linearly to 0 at the other extremities of the element; that is, at the other 

node of the element sharing this node. 

 

It is essentially if you look at it forms the tent like structure; so the things forms a tent. 

Beyond this point that is in all the elements which are outside this region this function is 

going to be 0. This function that you have constructed will be called the basis function 

phii as a function of x and y. Just like in the one-d case this will be our basis functions 



  

which is piecewise linear in the element that are connected to this node I. In all other 

elements, this function has a value 0. What do we have? The same feature that you have 

built in the one-dimensional case we also incorporate with the function in the two-

dimensional case; that is, they have local support. These functions have local support. If I 

keep on defining these functions with respect to all the nodes I in the mesh then I have 

the set of basics function phii which are now generalized hat function, that is these are 

more like tent like functions in two dimension. So these are functions that we would like 

to create in order to construct our approximation. What more property this functions have 

to satisfy? Remember that these properties are generic and any construction in any 

dimension will have to satisfy this problem. So they have to be linearly independent; are 

these functions linearly independent? Now again, extrapolating the argument we have 

done in the one-d case. 

 

If I look at a function made by a linear combination of this phii then I know that at a 

particular node only the corresponding phii is going to be of size 1 at all other node this 

phii is going to be 0 and at this particular node all other phii s are going to be 0 . If I take 

f x y is equal to sum over all the i’s 1 to n alphai phii if I take the x y to be the co-ordinate  

of the ith node then a [back] node if phii becomes 1 all other phii become 0 , so I get 

alpha i is equal to 0. So if I get alpha I is equal to 0 it tells me that when this thing is 

equal to 0 we can only v equal to 0 when all of the alpha is 0. 

 

So these functions phii are in the linearly independent; they have to be complete. 

Complete means that the linear combination of this phii should be able to exactly 

represent any linear polynomial in the domain. If see you that is quite a trivial case 

because these will indeed in each element represent the linear; so you take the collection 

of this element and you will get the completeness over the whole domain.  

 

So these are certain things that we have to keep in mind when we are making these basics 

functions in the two-dimensional case. Local support is one property, completeness is 

another property, and linear independence is another property. 



  

In the next class, what we are going to do is we are going to go into the specific 

construction of these basis function. We will do it for the standard general Cartesian 

coordinate x y, then we will move over to a concept similar to what we have done in the 

one-dimensional, that is the master element. In the master element, you see that definition 

become much easier, management of the functions becomes much easier and it is also 

going to be directly incrementable in a computer program. 


