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In the previous lecture, we had started talking about the beam problem. What was the 

difference between the beam problem and the bar problem that we had done earlier? The 

difference is that the beam problem is a fourth order differential equation. For this, we 

had defined the weak form; we had also talked about the boundary conditions that are 

possible. We had started talking about the shape functions that need to be constructed at 

the element level; the minimum order shape functions in order to satisfy the C 

 

one 

continuity that is imposed by the smoothness requirement that comes out of a weak 

formulation. 
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We have said that we are going to construct the so-called Hermite cubic polynomials, 

which we have said at the element level will lead to an interpolation of the value of…. So 

this is my x1 of k element; this is my x2
 of k for the element Ik, so it will lead to a 

interpolation to the value of the displacement at the element level and dv1 dx at the 

element level; similarly, at the two nodes v2

 

 and derivative here.  

So value on the derivative or the slope and the value at the slope at the two ends of the 

element. So, we need to interpolate between the four values and the minimum order 

polynomial that will interpolate four values will be a cubic. That is why the starting side 

of polynomials - the minimum set - is a cubic polynomial. As compared to what we had 

in the case of the bar problem where the minimum order polynomial was the linear; this 

was linear; remember that here we start with the piecewise cubic. 

 

We had said that essentially we will write v of x is equal to v1
 of k v1 over the element Ik 

v1
 of k into N1

 k plus - this dv1 I am going to call it as theta1 of k - theta1 k N2
 k x plus v 

– the displacement at the other end - transverse displacement, v2 of k N3k x plus - this I 

am going to call as theta2 k N4 

 

k x - the function of x. Now it is a question of constructing 

these polynomials. 



(Refer Slide Time: 03:45) 

 

 
 

If I go ahead and take v(x), as I told you earlier, is equal to some alpha plus beta into x 

minus x1 of k plus gamma into x minus x1 of k whole square plus delta into x minus x1
 of 

k whole cube. If I took this expansion which is a cubic, here I go and satisfy those 

conditions, I should be able to obtain the constants alpha, beta, gamma and delta and 

from these constant I should be able to rearrange everything in terms of v1 of k theta1 k 

v2 k and theta2 

 

k. 

I will get out of that N1 k of x is equal to 1 minus 3 x minus x1 k by hk whole square plus 

2 into x minus x1 k by hk whole cubed. Similarly, N2 k as a function of x comes out to be: 

minus x minus x1 k over hk into 1 minus x minus x1 k over hk whole squared, this whole 

square into hk. I can effectively cancel this hk out; take this one out. N3 k of x becomes 3 

into x minus x1 k by hk whole squared by minus 2 x minus x1 k by hk the whole cube. 

Similarly, my N4 k as a function of x comes out to be… N2 k will have this plus sign here 

(Refer Slide Time: 06:36 min). Again here it will be x minus x1 of k into minus of x 

minus x1 of k by hk plus x minus x1 k by hk

 

 the whole squared. 



N1k is 1 minus 3 x minus x1k by hk whole squared plus 2 x minus x1k by hk the whole 

cube into k is x minus x1k into 1 minus x minus x1k by hk whole quantity squared . N3 k 

is 3 x minus x1 k by hk whole squared minus 2 x minus x1 k by hk whole cube and N4k 

into x minus x1k into minus x minus x1k by hk whole squared plus x minus x1k by hk 

whole squared. These are the four functions that we have at the element level. Look at 

one thing that these functions N2 of k and N4 of k correspond to the slope that is dv dx at 

the two points. N2 of k and N4 of k - in these there is a difference in the dimension by a 

factor of hk. That is this into hk will give you the same dimensional consistency as the N1 

or N3. 

 

Let us now go and look at how these functions look. 
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If I am talking of these functions at the element level the first function N1k should be 1 at 

this point, at the point x1k, it should have a 0 derivative at this point and it should have a 

value 0 and the derivative zero here. Why? Because when I put it back in the expression 

for the value v at that point becomes is equal to v1 of k; the derivative becomes theta1 of 

k and so on. So because it is a linearly independent function, it so happen at when you 

take a derivative you should only be left with the part coming out of in the theta1 of k. 

This function will be 1 here, the value is 1, slope is 0 and it comes down to value 0 and 



slope 0; this is my N1 of k. Similarly, let us take the similar one first; N3 of k will have a 

value 1 here, slope 0. So N3 of k will be like a mirror image of N1 of k this becomes N3 

of 

 

k. 

Let’s make the N2 of k. N2 of k what will it have? If I look at N2 of k, it should have a 

slope 1 at this point, value 0 and slope and values 0 at this point (Refer Slide Time: 10:17 

min). It should have a slope of 1, value 0 and we come down this. This is my N2 of k. If I 

look at the slope, this angle is 45 degrees; if you want to say that. Similarly, let me make 

N4 of k. N4 of k corresponds to theta2 k. It will have a value 0 here, slope of 1 at the point 

x2 and value 0 and slope 0 at the point x1. So that function will look like this. This is my 

N4 

 

of k. So these are our four shapes functions at the element level.  

Simple question: what are then the global basis functions? Because remember we are 

still, as far as the approximation is concerned, we are creating this global basis functions 

which are C one 

 

functions and the pieces of this global basis functions are these shape 

functions in the elements. 

Let me draw two of these representative functions. Let us take for example the function 

which interpolates the value of the v at this point. Let this be a generic point k. If I look at 

this function, in this element, this will be element k, this will be element k minus 1. If I 

look at this, this is going to be my first phi - the global basis function and then this 

corresponds to the value. The second one, let us look at this same point which 

corresponds to the slope will have a derivative one here. It is going to do something like 

this and this is my second function. (Refer Slide Time: 12:43 min) 

 

So corresponding to a generic node k, the first global basis function corresponding to that 

node is I will call it phi bar, is this kind of a function which vanishes at the ends of the 

elements k minus 1 and k, and after that its smoothly goes to 0; stays as 0 everywhere 

else. The second function phi double bar corresponds to this slope being 1 here, which 

means it interpolates the slope. You see what it does it has the slope 1 here, value 0 and it 

comes down finally at the ends of the elements k minus 1 and k it becomes 0. This is how 



we are going to construct the generic basis functions corresponding to a node k. Our 

approximation will be in terms of….So how many basis functions we have now each 

node? We have 2, because each node in the case of the C 

 

one approximation has 2 

unknowns assigned to it; these unknowns are the value of the function and value of the 

derivative of a function. If I have N nodes, then there will be 2N such functions. My 

generic approximation, in this case, I can write that v finite element for an N noded mesh 

is sum I is equal to 1 to 2N alpha I. Corresponding to the node k which phi I do we have? 

So corresponding to the node k it will be actually equal to phi, if you check it out it will 

be 2k minus 1 and this will be equal to phi 2k or we will have the basis functions 

corresponding to the node k or the phi 2k minus 1, in the phi 2k which goes into the 

representation of the finite element solution over the whole domain. 
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Now, by the same taken by what we have done here, we have done this, what is then my 

representation of the finite element solution in the element? Just like we did earlier, we 

will say that vFE in the element k is equal to v1 of k N1 of k plus theta1 of k N2 of k plus 

v2 of k N3 of k plus theta2 of k N4 of k 

 

. 



It is quite easy to see that what is this corresponding to? This corresponds to the global 

alpha 2k minus 1. This is the piece of the global phi 2k minus 1, because the first node of 

the element k is the node k. This corresponds to global alpha 2k and this corresponds to 

the global phi 2k; this is alpha 2k plus 1 phi 2k plus 1; similarly, this corresponds to alpha 

2k plus 2; in this phi 2k plus 2. 

 

We could also write that this is equal to at the element level by renaming v1 of k and so 

on. I is equal to 1 to 4 alpha I of k NI of k, where we understand what are alpha I in the k 

mean. If I do this convention of renaming the v1 of k as alpha1 of k; beta1 of k alpha2 of 

k; v2 of k as alpha3 of k and theta2 of k as alpha4

 

 of k. What kind of local to global 

correspondence do we have? If I write here i 1 2 3 4; this is local; this corresponds to 

global. Let me write it as big I; big I is equal to 2i minus 1, 2i, 2i plus 1, 2i plus 2; this is 

the global. Now it is quite easy to write it an algorithmic way that the global I is equal to 

2; the global actually should be 2k minus 1, 2k, 2k plus 1, 2k. This one will be 2k minus 

1 plus i. 

If I write it like this, you check that for i is equal to 1 is become 2k minus 1; for i is equal 

to 2 it becomes 2k; for i is equal to 3 it becomes 2k plus 1. This I can now load in my 

ieldofs. So ieldofs for the element k, i for the element k the local ith degree of freedom is 

equal to 2k minus 1 plus i. This gives me the local to global enumeration. Once we have 

obtained these things, then I have a complete correlation between the element level 

approximation and the global approximation. 
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If we now see what does the elements stiffness matrix and the element load vector turn 

out to be? If you see this, the global stiffness matrix will come from this expression. This 

will give me the global stiffness matrix and this remember that on the right hand side I 

have x is equal to 0 to L f w dx plus shear force into w evaluated at 0 and L plus bending 

moment into w prime evaluated at 0 and L. This quantity plus this quantity is going to 

give me the load vector. Remember that as we have done earlier for the second order 

problem, these boundary conditions we are going to impose later. This essentially will go 

into our load vector - this part (Refer Slide Time: 21:33 min). If I look at first stiffness 

part, where is it going to come from? The stiffness part, this obviously, will come from 

the partitioning over the element k, sum over x1 of k to x2 of k of EI. I am now writing the 

second derivative as the double primes; w double prime dx. This is the sum; this integral 

can be written in terms of this sum; similarly, for the load, I can write sum over the 

element k integral x1k to x2k of f w dx. 
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So, at the element level which are the integrals that are active? It is x1 of k to x2 of k EI 

of x v double prime w double prime dx and integral x1 of k to x2 of k qw dx; q is my 

transverse load that I have applied; so I am using f or q accordingly here; I am mixing the 

two, but it should be q, because according to the convention for beams process load is 

generally given by a q. If I look at this, the finite element approximation is replaced here 

instead of v; I know the finite element approximation will be equal to the sum of I going 

from 1 to 4 alpha 2k minus 1 plus i phi double prime 2k minus 1 plus i. It is a sum of this 

four and remember that this is equivalent to writing the sum over i going from 1 to 4 

alphai of the element k into Ni of the element k double prime. Similarly, for the q, I will 

get it as sum… here there is no sum involved. In the q, I will get the integral as integral 

x1 of k, x2 of k q; it is Ni of k , because here the w also what happens? w is also made of 

this Ni,

 

 because these are the only parts of w which is non-zero in this element. 

For v, I have this representation; for w, now I will write, I will put w is equal to N1 of k 

and 2k and 3k and 4k and I will get the 4 equations to which this element is going to 

contribute. Which columns will it go to? So if I put w is equal to N1k, N2k, N3k, N4k it 

means which rows it is going to? It is going to the row 2k minus 1, row 2k, 2k plus 1 and 



2k plus 2; columns will come from this alphai

 

 part, so columns will be the column 2k 

minus 1, column 2k, column 2k plus 1 and column 2k plus 2. In terms of this element 

representation, I am going to have the elements difference matrix K to the power k which 

is of size 4 by 4 and the element load vector for by 1. 
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Let us now give the entries of the element stiffness matrix; it is going to be… we have 

done enough of this, so we can now go back to what we have done to the previous slide 

and see that it is going to be EI x Nik double prime Njk double prime dx and Fik is equal 

to integral x1 of k to x2 of k q Ni

 

 of k dx. 

The question is that we have done everything at the master element level. How do I 

convert everything into the master element level? Again we are going to put in the 

transformation x is equal to x1k into 1 minus psi by 2 plus x2 k into 1 plus psi by two. If I 

put this transformation then in the definition of N1k, N2k, N3k and N4k all I have to do is 

substitute x minus x1 of k is divided by h of k is equal to one plus psi divided by 2; we 

check from here that x minus x1 of k will be equal to what? x2 minus x1 of k into psi by 

2, and x2 minus x1 is hk. x minus x1 of k divided by hk is equal to 1 plus psi by 2. 



I substitute this thing in the expressions of N1k, N2k, N3k and N4k to get my so-called N1 

hat as a function of psi; N2 hat as a function of psi; N3 hat as a function of psi and N4

 

 hat 

as a function of psi. 
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Let me write as an example what will N1 of k become? N1 of will mapped to N1 hat of 

psi this is equal to 1 minus 1 plus psi by 2 whole square plus 2 1 plus psi by 2 whole 

cube. With this simple substitution, I am now able to get the definition of these shape 

functions at the master element level. 
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If I have the definition of the shape functions at the master element level, then I can 

convert these integrals to integrals about the master element level. 
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How will I convert? So what I will get is kij over element k now by doing the conversion 

minus 1 to plus 1 EI hat now it has become a function of psi Ni hat double prime Nj hat 

double prime. Ni hat because d two Nik dx squared is equal to d two 2Ni hat d psi squared 

into d psi by dx whole square. This d psi by dx whole square is nothing but as we have 

defined the Jacobean earlier 2 by hk the whole squared. I will have here 2 by hk whole to 

the power 4 because for each one of them now the Jacobean. This is what my kij

 

 is going 

to look like at the element level. 

Similarly, Fi for the element k will look like this: minus 1 to plus 1 q becomes now a 

function of psi. So I make it q hat into Ni hat into hk by 2d psi. In the element load vector 

N3

 

 becomes this. Let use see what is the integration rule we have to use? So we are going 

to use the [ ] quadrature that we have defined. The question is what is the order of the 

integral - maximum order? 
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Let us assume at least for the problems that we are trying to solve, lets say that we have 

this beam with a rectangular cross section. For this cross section this is the height h, this 

is the width b. We say that h various linearly and b is constant; that is, the height varies 



linearly, that is, I have tapering in the height, while the depth remains the same. In this 

case i as a function of x is equal to one-twelfth bhh cube. So i varies is a cubic, because h 

is linear, so i is one-twelfth of bh cube; its becomes a cubic. 

 

(Refer Slide Time: 33:10) 

 

 
 

If i is a cubic, if I go back to my integral here, so EI is a cubic. So if I write it here EI is a 

cubic, it is of order three. The second derivative of Ni since, Ni was cubic, second 

derivative linear, second derivative of Nj

 

 is linear. The order of the integrant is 5, if I 

have taken the beam to be a tapered beam; if it is a beam of constant cross section that is 

h and b are both constant, then this part will become 0. So this integrant is essentially of 

order 2. 

Similarly, if I look at Fi, let us say that I am interested at most in a loading, which is 

linear; that is, I will have the constant loading and I have the step loading, triangular 

profile. The loading is linear, if the loading is linear, the q is linear Ni is cubic. The 

integrand is of order 4. Let me write here within bracket incase my EI is a constant. 
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My integrand E bar, if you remember, will be equal to max of 2 or 4. This is equal to 

either 5 or 4; with the understanding that this 5 when I have a tapered beam and it is 4 

when I have a beam with constant cross section. 

 

In this case, if the integrand is of this order, then we know that the integration rule, the 

number of points, so I have to have nint is greater than equal to p bar plus 1 by 2. In this 

case, it is equal to if I take 5 then 3 and if I take 4 it will become 2.5. So nint is equal to 3 

will do the job. If we take the 3-point integration rule, we will get exact integrals as far as 

the stiffness part is concerned and as far as the load part is concerned. Remember that 

these are procedures which are now very similar to what we have done. If I want to 

incorporate this in my finite element program which I have already written, I do not have 

to change much; all I say the p processor you see that the mesh will be the same; the 

degree of freedom numbering how will I do? I will go and simply... If it is the bar 

problem I will do the degree of freedom numbering according to the bar with the order of 

approximation we can choose; in the case of the beam we are only going to look at the 

Hermite cubic we could raise the order of approximation, but let us say it is only Hermite 



cubic; so we choose for the beam the Hermite cubic and then we can give a degree of 

freedom numbering as I have just shown, the ieldof can be created, no problem. 

 

After I have done all those things, then I choose the integration points; I have the 

integration points and there again at these integration points I can load the values of the 

shape functions, the derivatives of the shape functions and now in this case the second 

derivative of the shape functions also we are going to store. Go to the element 

calculation, do the element calculation, do the assembly and continue from there. 
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This is how we are going to do the whole procedure. So adding this part to the one-d code 

should not be difficult. Now, what about the boundary conditions? So, the boundary 

conditions, let us take some basic types of boundary conditions, I can have at each of the 

end, the case which corresponds to a clamped end. 

 

Here I am saying u is equal to 0 and v is equal to 0 at the point x bar. Now u by its 

representation it means that through the height it is 0, which means that this will give me 

dv dx is equal to 0, because u0 was 0 for the problem the way we have done it. So u 



becomes equal to minus y dv dx; now for all y this has to be 0; so dv dx is 0. This 

condition where I am specifying v is equal to 0 and dv dx equal to 0 at the point x bar - 

this is called clamped end. We have talked about the clamped end and this is nothing but 

our Dirichle’s boundary condition, that is both u and v are fixed. We can have a mixture 

of things also, let us see. 

 

We can also have a second type of boundary condition at this point N where I am 

specifying the bending moment and the shear force. That is the bending moment and the 

shear forces are given. So, this is our Neumann end. Now the bending moment and the 

shear force could be 0 which corresponds to a free end. This is a Neumann boundary 

condition. 

 

I could have another situation where I am fixing the middle line of the bar, have to be at 

this point. What I am saying here is v at this point is equal to 0. If v is 0, then I am 

actually allowed to give a moment if I want - a rotation. I can apply moment M0 

 

or I 

leave it free. This is called pinned end. 

Remember what we had said is the displacement and the shear force occur together in 

pairs and the bending moment and the slope occur in pairs. If the displacement is 

specified certainly I cannot specify the shear force, but here I have done nothing about 

this slope. So, I can apply a bending moment there. I have to apply a bending moment 

there; the slope could be anything. 
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In general, see in most of the examples that you see, this bending moment is said to be 0. 

Similarly, I could have another special boundary condition, where I have x bar moving in 

a guided slot and this is our rigid support; the rigid support is moving in a guided slot. So 

what happens because of this I have a dv dx at x0 equal to 0, it is not allowed to bend, but 

I could certainly at the same time, specify a shear force v. So we can have various types 

of boundary conditions; one can take many more, but these are quite sufficient, at least 

for most of the problems that we are looking at. These boundary conditions can also be 

incorporated exactly the way we did it for second order for the bar problem, this can be 

incorporated for the beam problem where ibc type at the two ends. Now, this ibc type can 

be given various numbers: 1 mean clamped; 2 means bent; 3 means free; 4 means rigid; 

rigid free; rigid on a roller. So we can give these flags at each end and according to the 

flag, we specify what is the data which has to be input. Accordingly, because dv dx, for 

example here is fixed, so I have to go and constraint the dv dx to be equal to 0 in my final 

system. So once I have obtained element calculations, done the assembly, then I now 

appropriately add the boundary conditions; that is add either the boundary forces and 

moments or constraint the boundary displacements on the slopes to the given values.  



Again, the same procedure that we have followed. Once we have this, then now we are in 

a position to solve the problem. We can solve this problem in terms of how many 

unknowns, if it has any LEM number of elements, then I have ne LEM plus one node 

twice into ne LEM plus one is the nndofs, the total number of degrees of freedom that we 

have; that is all. We solve for that many degrees of freedom, get the solution and we are 

done. 

 

Another thing that you should be able to do now, we have done the principle of virtual 

function. We could also derive everything that we have done from the total potential 

energy, where the strain energy is given by, as we you know from a basic mechanics, EI 

of x minus integral x is equal to 0 to L q v dx minus M v prime v prime at 0 to L minus v 

into v as defined. 

 

So if I define the total potential energy like this, which is what we have the strain energy 

due to the bending, work done by the distributed force, work done by the N moment 

work, done by the end shear forces, then by taking the first variation of this we should get 

exactly the weak formulation that we have obtained. Now, the question is that this was 

just a remark - we could derive it anyway we wish - that how do we post process the 

solution? What is the information that we need?  
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Out of this, if I have this beam, I will be interested in the bending moment distribution, I 

will be interested in the actual stress sigmaxx distribution, I will be interested in sigmaxx 

max at that point, I may be interested in the shear force at that point; these are the 

quantities that I may be interested in, to get from the finite element solution. How will I 

get to M of x? So in an element Ik, I could do it globally or I can do it in an element, this 

M of x is equal to, M in the element Ik is equal to EI x into d two v dx squared in the 

element Ik, but this if I can write it: i is equal to 1 to 4, alphai k Nik double prime 

 

whole 

thing into E I of x.  

So I know what alphai k corresponds to from the global to local enumeration. So I find 

the value; this is alpha 2k minus 1 plus i, I find the value of this degree of freedom 

multiply it with the second derivative of the shape function that we have obtained the 

value of the material property – the flexural rigidity at the given point x. This way put it 

in, I can find the value of the bending moment at any point in the element. So by 

interpolation we can find. Similarly, for the shear force; shear force, in this case, in this 

element if you see it will be this (Refer Slide Time: 47:06 min). Let us assume, for the 

time being that EI is constant, then this essentially means this is nothing but the third 



derivate of v, which in the element is a constant, because we have taken a cubic. So VI 

for uniform flexibility is a constant. So post-processing is not a problem if EI is not a 

constant, then I can go and put it again in the formula that we have written. So this way 

we can find bending moment and shear force at every point.  
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Now given a bending moment at a point x, finding sigmaxx is not a problem. It is equal to 

Mx at this point y by I; so this will be equal to Sigma i is equal to 1 to 4 E alphai k Nik 

double prime into y. So where is it maximum – at the top or the bottom? So I go to plus 

minus h by 2 or whatever is my maximum value of the y, because, it may not be that the 

neutral axis is at the mid point; neutral axis could also be at shifted depending on what is 

the cross sectional parameter. So I find the value of this at the top and the bottom and see 

which one is the higher, and that is how I will find sigmax max, 

 

if I need to.  

Given a mesh, the values of alpha for a node alpha2i minus 1 and alpha2i, for a node I, these 

values correspond to v at this point; corresponds to theta at this point; values are exact if 

EI is equal to constant. So for constant flexible rigidity the nodal values of the 

displacements, that is the alphas that we have obtained, they correspond to the transverse 



displacement and the slope at this point and they turn out to be exact, provided that EI is 

constant. If EI is not constant, but if it is smooth then the nodal values are very good, but 

are not exact. Similarly, I can talk of now, how the bending moment behaves. If I have 

this cubic approximation, I will find in an element the bending moment, if I look at the 

error in the second derivate, it will be something like this. So what I will get is d two wFE

 

 

dx squared is very good at actually the points corresponding to the two-point integration 

rule; that is at psi, if I go to the master element plus minus 1 by root 2. So these are the 

points where the second derivative of the w are going to be very good, similarly, because, 

the second derivative of the w here is a linear. 
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So if I say that, then M of x is equal to EI x d two wFE by dx squared is very good at two 

points in the element and these two points correspond to in the master element psi equal 

to plus minus 1 by root 3. Similarly, if I talk of v of x, this will be very good at the centre 

of the element. Or we can say it corresponds to the point psi corresponding to the one-

point integration rule. So, essentially if I really want to pick up the good values of M of x 

and d of x, I can pick them up at these points. 



Now there is another question imagine that I would now like to get a good value of M of 

x at every point in the element (Refer Slide Time: 52:22 min). So again what would I do? 

I have essentially, the neighbors k minus 1 and k plus 1; for the neighbors, I know that for 

each of the elements, there are two points where the second point of w is good. So I will 

take these points, let us say psi1 of k minus 1, this is psi2 of k minus 1 and so on, psi1 of 

k, psi2 of k… I will number them in a sequence; there are 6 such points. So I will call the 

six points psii

 

 bar, in this set of three elements. If I look at this del two w dx squared is a 

linear. I will now say that I want to get an approximation which is quadratic. Then, I will 

define how I will find these co-efficients? I hope that what I am getting is better than 

what the finite element solution gave me.  

So I am going to define a J which is sum over i equal to 1 to 6; this is for the 

corresponding to the element k EI at the point x corresponding to the point psii bar into d 

two w star dx squared at the point x corresponding to psii bar minus d two wFE dx 

squared at the point corresponding to psii bar whole squared. So I defined this discrete 

sum over the six points where the six points are the two-point rule in the elements k, k 

minus 1 and k plus 1. So this I will define for the element k. Now, I want to minimize 

this. So I want the co-efficients a0k, a1k, a2k such that this is minimized. I get the set of 

equations knowing what is the wFE; this is known. I can find d two w star dx squared 

from this fit, I can find these coefficients a0k, a1k, a2k just like we had done in the earlier 

case.  
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Once I have obtained these co- efficient, then I can say that my M star in the element k is 

equal to EIx into a0k plus a1k x plus a2k x to the power 2. So if I go back again this 

exercise, this fitting has to be done for each element, where for the element I take two 

neighbors and from there I am fitting this quadratic polynomial using the values at these 

six points. Once I have done this, then for each element I can construct the solution and I 

can construct the M, as I have constructed the M, I can construct the sigmaxx star at the 

element K is equal to E into a0k plus a1k x plus a2k x squared into y. 

 

This is how we can 

construct the recovered value of the stress. This is essentially an extrapolation of what we 

had done for the second order differential equation. So this is also a patch recovery 

method, but used for the beam problem. You can see that this will give quite decent 

values of the recevored bending moment and the actual stress that we obtain. 

So, now we have been able to reach a proper procedure for solving for the actual bar 

problem and a beam problem. Now, in general, I could also look at some extensions of 

this, maybe the beam is sitting on an elastic support that is on a distributed spring with 

this I will only change the stiffness matrix part, that is for the stiffness part I am going to 

add k of x wFE into w dx. I could have my member supported by one spring, then at this 



point I have to ensure that I have a node and at this point I simply go and take care of this 

by adding k0

 

 to the diagonal entry corresponding to the displacement at this node.  

So these are certain things that now can be easily handled. I could also handle the 

problem I have a distributed load which is transverse and an actual force and an end load. 

That is you can look at the combined beam-bar problem; that is both impend loads and 

transverse loads are there; in this case, we will also have the actual displacement; the 

actual displacement will give me the second order differential equation; the transverse 

will give me a beam which is a fourth order differential equation. So we can combine the 

two and solve the problem. In this case what will happen is at every node you will have 

the u, 0, v and dv dx as the unknowns; so there will be a three unknowns. This is not a big 

problem. Once we have understood how to do these things, you can handle this. So 

essentially, in a one-dimensional problem this is what we are going to look at. 

 

Next class we are going to start on the two- dimensional boundary value and we are 

going to elaborate about how to go about adapting what we have done without major 

changes to the two-dimensional problem. 


