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Till now, we have looked at the one-dimensional problem where we have solved for a 

bar.  
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So a bar was essentially a thin member subjected to an end axial force or distributed axial 

force or even a point load. When we looked at the response of this bar, we came up with 

a second order differential equation. We have done a detail analysis of this problem and 

we have gone through the various steps of creating the weak formulation or the variation 

formulation which was used to design the finite element method; we discussed in detail 

how to construct the basis functions for this approximation. Now, let us change the 

problem a little bit. So, what we have now going to do is look at a one-dimensional 

problem, but of a different type. 



(Refer Slide Time: 01:57) 

 

We have, let us say a support like this and here is our member again with an axis of 

symmetry, you will see what we mean by this and this member is subjected to some 

distributed transverse load. This load has an intensity of q of x, where this is my x 

direction and this is my y direction. 

The material has Young's modulus E and Poisson ratio mu. Now, the cross section of this 

member we are going to take as symmetric section; so the cross section if I take this and I 

look at it I will have something, such that we have this y-axis going along the line of 

symmetry of the cross section here. And the z-axis is like this and this is called the 

neutral axis. This we all know is a beam and what we have going to do is look at the 

Euler-Bernoulli beam theory. I assume that Euler-Bernoulli beam theory is known to 

everybody according to which, I will have this space u0 in the direction of x and u0

We have taking the cross section to the symmetric; this is a represented symmetric cross 

section and this is a member. Now by the Euler-Bernoulli beam theory, if I solve this 

problem, I will get certain differential equations. 

 and u 

and v in the direction of y. 
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So what is assumption with the Euler-Bernoulli beam theory? That my u, axial 

displacement of the function of x and y is equal to u0 is the function of x minus y dv dx; 

v as a function of x and y is equal to, it is only a function of x and w as a function of x 

and y that is displacement in the z direction is 0. This is based on the assumption that thin 

sections remain plain and the lines perpendicular to the neutral axis remain perpendicular 

even after the deformation. Let us now look at the equation of motion or the static 

equilibrium equation corresponding to this problem. 



(Refer Slide Time: 07:32) 

 

Let me again draw my beam here; this is my beam; this is the neutral axis of the beam, 

which is what we called x-axis here. Essentially the neutral axis is the one which remains 

unchanged in length, which does not deform, while everything above and below deforms. 

Given this, if I want to write the equation of equilibrium for the bending of the beam 

using the Euler-Bernoulli beam theory of the beam subjected to some distributed load, the 

equation of equilibrium is given by d two square dx square of EI d two v dx square is 

equal to q of x for x lying from 0 to L. As we have done earlier, let us look at the 

weighted residual formulation. We will take this expression, multiply it with the weight 

function w, and integrate it from 0 to L. This is what we have done earlier. So let us do 

the same thing here. I will have d two dx squared EI d two v dx squared 

If you see now that here as far as w is concerned we have the 0

into wdx, this is 

equal to integral x is equal to 0 to L q w dx. This is the first step that we do. Next what 

we have done earlier we will extrapolate those steps here also. 

th order derivative of w; 

that is, w sitting by itself and as far as v is concerned, I have the fourth derivative of v. So 

what we have done earlier, we had said that you want to weaken the requirement of 

smoothness on v; because, here if I take it as such, the fourth derivative of v has to be 

defined. So we would like to weaken that requirement and transfer derivatives from v to 

w. How do we do that? We do that by integration by parts; let us do it once. 



If I do integration by parts once, I will get d dx of EI d two v dx squared into w evaluated 

from at x is equal to 0 and at x is equal to L minus integral into EI d two v dx squared 
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into 

dw dx dx; the right-hand side remains same. I am simply writing this part after 

integration by parts. I get one boundary term out and I have a part which is remaining in 

the integral, as an integral over the length. If I look at this part, see here I have transferred 

one derivative of w, but here I still have a requirement of the third derivative of the two 

exists. That is again lop-sided. I would like to transfer now again a derivative from the v 

to the w. If I want to do that - we will see why you want to do that - if I want to transfer 

this derivative, I will have to do integration by parts once again. 

 

If I do integration by parts once again, after the second integration by parts I will get the 

following: d dx of EI d two v dx squared whole thing into w to L minus integral of EI d 

two v dx squared into dw dx whole thing evaluated from 0 to L plus integral over 0 to L 

EI d two 

After doing integration by parts twice, what do I have if I look at this expression? Here I 

have the second derivative of v and the second derivative of w together in the expression. 

Now, if I say - why not do integration by parts once again? Then what am I doing? I am 

transferring another derivative from v to w. So, I will have a third derivative of w and the 

v; this expression is equal to integral x is equal to 0 to L q w dx. 



first derivative of v, which is not useful to us, because, then I am raising the smoothness 

requirement from w while lowering the smoothness requirement on v. 

We would like to have the smoothness requirements on both v and w of the same type, 

because, here we are using a Galerkin approximation that is w and v have the same 

representation. We really do not want it as it is not because of the Galerkin, but by 

construction, we do not want to make the smoothness requirement lop-sided. So what we 

will see here is that if here it is a fourth order differential equation that we have taken, we 

have done integration by parts twice. If it is, in general, a 2mth order differential equation 

then I will do an integration by parts m times to get d mv dx to the power of m dm w dx 

to the power of m in the representation. It is the standard rule that you should follow.  

Now here by doing the integration by parts twice, I have EI d two v dx squared d two w dx 

squared plus these boundary terms is equal to the work done by the distributed external 

force. All of you must know that I is the moment of inertia about the z-axis and EI is 

nothing but the flexural rigidity. So the weak formulation essentially is given by integral 

of EI - this part d two v dx squared d two w dx squared dx is equal to integral of q w dx 

minus this part minus d dx of EI d two v dx squared with w evaluated at x is equal to 0 

and L plus this part which is EI d two v dx squared into d w dx evaluated at x is equal to 0 

and L. 
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We know that this quantity, if I go by our equilibrium analysis on a small piece at a 

position x of size delta x. What do we know we have? Here we will have the shear force 

V of x, here we have the bending moment M of x, here we will have the shear force at V 

of x plus delta x, bending moment m at x plus delta x and the resultant force due to the 

distributed density is q x delta x. Actually what we derived came out of this - the 

equilibrium equation. 
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If I go back, you see that here in our equilibrium equation the u0 does not play a role, 

because u0 corresponds to an actual stretching and in this case - in the beam analysis - the 

way we are doing is the stretching and the bending modes get decoupled. So I will have 

the bending equation clearly in terms of v and the stretching equation only in terms of u0

Let us come back to our problem here, as far as the weak formulation is concerned.  

. 

So I do not have to consider the stretching equation here. Since there are no loads in the 

axial direction, I would expect, not expect, I will get my stretching mode as this 0 

displacement. We are ignoring that part here.  
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If I write the weak formulation now I will get for this one integral x is equal to 0 to L EI v 

double prime w double prime dx is equal to integral x is equal to 0 to L q w dx plus we 

had said minus of v dx of EI into w d two v dx squared, that minus of v dx of EI d two v 

dx squared is equal to the shear force v; because, if I go by what we have done here, M is 

equal to EI d two v dx squared and shear force v is equal to minus dm dx minus d dx of EI 

d two v dx 

What we will have here - the upshot is - v into w evaluated at the point x is equal to 0 and 

x is equal to L plus M into dw dx evaluated at the point x is equal to 0 and at the point x 

is equal to L. So essentially we have seen v w evaluated at L minus v w evaluated at 0 

plus M dw dx evaluated at L minus M dw dx evaluated at 0. This whole thing is now my 

weak formulation (Refer Slide Time: 20:41 min). Once I have my weak formulation, you 

see that certain nice things are coming out of the weak formulation. What are the 

boundary conditions that are possible at the two ends of the member? 

squared. 
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That is if I am talking of this end x is equal to 0 and the end x is equal to L.  We can 

have, if you see that, let us take the end x is equal to L, you can have either the shear 

force specified here. That is I am telling you what is the size of the force that I am 

applying at this end or I have the displacement given. We have the shear force at the end 

or the v given and either I have the bending moment or I have the slope; dv dx is nothing 

but the slope; dv dx or what we called as the rotation.  
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These two things are given which comes out if you see from your variation formulation, 

you have either the force at the end either the force is given or v is given, which means 

the w is constrained to be 0 there; just like we did in the earlier case. So, the end where v 

is given then w is allowed to be anything, but if small v is given, then w has to be 

constrained to be 0. Similarly, along with this I have to give a boundary condition on the 

end moment. 

So either I specify what is the end moment M, in which case, dw dx is allowed to be free 

to be anything, or I say what is the rotation here? That is, what is dv dx here? In which 

case dw dx is forced be 0. You see we have through this we have naturally brought out 

what are the applicable boundary conditions for our problem of interest. Now, you can 

tell me what are these boundary conditions. 
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I have boundary conditions at each end of the following type that force V, which is shear 

force V or displacement V, which is equivalent to saying that i w is equal to 0 is given. 

At each end, now I have to specify two boundary conditions and the bending moment M 

is given (Refer Slide Time: 24:21 min). So we have here our Neumann boundary 

conditions are given in terms of the specification of the shear force or the bending 

moment M. These are our so-called Neumann conditions and corresponding Dirichlet 

conditions or the displacement conditions or the specification of either the end 

displacement v or/and the end rotation dv dx; so this is Dirichlet. No other types of 

boundary conditions are possible for this beam model.  

You see that as far as the shear force and the bending moment are concerned they 

naturally occur in the weak formulation. So they are called natural boundary conditions 

or the Neumann and these conditions of v or dv dx being specified has to be enforced 

through a constraint on the w. So they are said to be essential boundary conditions; that is 

they have to be enforced. 
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Let us go back to our weak formulation that we have here. You see as far as our terms are 

concerned, here we want our second derivative of v and second derivative of w to be 

defined, for this integral to be finite. If the second derivative of v and second derivative 

of w are not defined then this integral become infinite, they will not be defined. We need 

v double prime and w double prime to be defined. This is our so-called minimum 

smoothness requirement on the v and w. 
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That d two v dx squared and d two w dx squared are defined. Remember that using the 

language that we had used earlier for the bar problem v is our so-called trail function; v is 

the trail function and w is our so-called test function. So for both the trial function and the 

test function we want the second derivatives to be defined. What does that mean? That 

means if I have, this is my domain, I can have a situation like this that the second 

derivative of this function can have so if I plot this d two v dx squared as a function of x, 

second derivatives can have jumps at points x0 or x1, at some finite number of points they 

can have jumps. That is the d two v dx squared and d two w dx squared 

If the first derivative of this function v as well as the w is continuous, obviously, the 

function v and w itself is also continuous. In fact, they are continuously differentiable. So 

we need to construct as far as minimum smoothness requirements is concerned v and w 

to have continuous first derivatives. Then we require our functions to have continuous 

first derivatives they are said to be C

by construction as 

far as the minimum smoothness requirement is concerned can be allowed to have jumps. 

If these two things will have jumps, the second derivative will have jump, it implies that 

the first derivative dv dx is continuous; that is, at these points, the first derivative will be 

continuous, but there will be a change in slope of the first derivative, which is essentially 

the jump in the second derivative. 

 one functions. If you remember - why did we need 



this minimum smoothness requirement? To construct our basis functions for the 

approximation. As far as the approximation, yet we have not done any approximation, we 

have simply written the weak formulation. So, as far as our approximation is concerned 

for that the basis functions that we are going to construct for v and for w have to be C one 

The question is again - you should always ask this question - can we ever have a situation 

where the minimum smoothness requirement is indeed required or necessary? 

function, that is they have to ensure that their first derivative is continuous. 
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Let us take an example; because, you see that our construction of the basis functions is 

being done with respect to the minimum smoothness requirement. If I am interested in 

solving a set of problems for which this minimum smoothness requirement is never 

reached, then why do I have to construct basis functions like this? Let us see the situation 

- is it a practical situation?  

Let us take a problem where, at this point, at some point x0 in the domain I am applying a 

bending moment M0. I am applying a point moment, a concentrated moment at the point 

x0. Due to this point moment, there is a jump in the bending moment from this side to 

this side. That is if I take this block out x0 this is I say x0 minus x0 plus; here I have 



applied M0; this is M at x0 minus; this is M at x0 plus. I am shrinking the size of this 

piece, so that essentially I am at x0. Then I will have M at x0 plus minus M at x0 minus 

plus M0 is equal to 0. That is as I shrink the size of the piece to 0, I get that M at x0 

minus M at x0 plus is equal to M0

Now, with this condition I have a jump in the bending moment at the point x

. 

0

We will have EI d

, jump in 

the bending moment means what? That EI, let us say that the bar has uniform cross 

section, to be on the safe side, to be simple minded, and the Young’s modulus is also the 

same. 

 two v dx squared evaluated from the x0 minus; that is from this side of 

x0 minus d two v dx squared at x0 plus is equal to M0. What I am getting? Because EI at 

this point x0 is same for both sides. I will get the d two v dx squared at x0 minus minus d 

two v dx squared at x0 plus is equal to M0

I could have a concentrated shear force applied at a point; in that case what will I have 

the jump in the third derivatives is given by the shear force, but that is the smaller 

constraint that is the more forgiving constraint, that third derivative has to jump, but the 

minimum smoothness requirement is indeed reached when I have a bending moment 

applied at a point. This is highly feasible. 

 by EI. This is tells me that there is a jump in 

the second derivative at this point. You see that such solutions for which the second 

derivative has a jump are indeed feasible, very feasible, because we do have such 

problems where you have a concentrated moments applied at points. 
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So from our approximation point of view we are going to construct basis functions phii of 

x which satisfy this C 

But again from the philosophy that we have from the finite element computation that we 

have taken this phi

one continuity requirement. Remember when we are talking of 

basic functions we need a global definition of these functions. 

i of x have to have local support; what property they should have? 

They should have local support, they should be complete, that is again the appropriate 

order polynomials can be exactly represented and they should be linearly independent. If 

my basis functions by construction satisfy these properties, then we are in good shape. 

Let us now go and construct the basis functions. If I have this then, obviously, I will say 

the v finite element, that is the representation of the solution, will be equal to sum of i is 

equal to 1 to sum N alphai phii of x; such that v finite element has continuous values and 

first derivatives at each point in the domain. 
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How are we going to construct these basis functions? To construct these basis functions, 

let us first take a partition of the mesh into some element. Let us say that we have made 

three uniform elements. 

If I look at a particular element, let us say this element; for this, I would like this is my 

VFE here, I would like the VFE to have continuous values of the function and the 

derivative at these end points, because that where it is transitioning from one element to 

the other. What would I like to have continuous? So here, if at this point if I say I gave v 

and dv dx and at this point I give you v and dv dx which are unique at these points; 

similarly I do here and I do here and then I say that I would like to construct functions 

such that they take these values and give the function VFE. How am I going to construct 

those functions? If you look at this element, so let us take a generic element IK. So here 

this is my point x1
 of k; this is my point x2

 of k. What I am saying? I am saying that here 

the v1
 of k is given and I will say dv1

 of k dx is given. This I will call as theta1 of k. And 

similarly, here v2
 of k and theta2 of k are given. So given these four values, what is the 

minimum order polynomial that we can fit? Given these values v1
 of k, theta1 of k at the 

point x1
 of k, v2

 of k, theta2 of k, we ask a question what is the minimum order 

polynomial which can interpolate these values in this element? 



There are four values given; the minimum order polynomial which will fit these four 

values is a cubic. The finite element solution what we are going to do is VFE in the 

element Ik is a function of x would be represented as a cubic, as some alpha plus beta x, I 

will put it as x minus x1
 of k plus gamma x minus x1

 of k whole square plus delta x minus 

x1
 of k whole cube. This is my cubic. I have deliberately written it in terms of x minus x1 

of k to basically make life convenient for me; otherwise, this is still a cubic it does not 

matter whether I write it in term of x minus x1
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of k or in terms of x; only the coefficient 

should have different meanings. If I take this cubic, my idea is to now define a cubic in 

terms of these fours specified values, because, I would like to define this function 

piecewise ensuring continuity of the value of the function as well as the derivative at the 

inter element interface. 

 

If I go ahead and put that VFE in the element k at the point x1
 of k is equal to what we 

have given its v1 of k which is equal to from or expression, this is the cubic, which is 

equal to alpha. Next, I say d VFE dx from the element x1
 of k, I am not going to write that 

over and over again, at the point x1
 of k is equal to theta1 of k.  
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This if I look at what you have done, if I take the derivative of this it will become beta 

plus two gamma into x minus x1
 of k plus C delta into x minus x1

 of k whole square and 

the point x1
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of k we are left with beta. 

 

This will be equal to beta. Similarly, I go to the other end VFE at the point x2
 of k is equal 

to v2
 of k; this is equal to alpha plus beta. Now x2

 of k minus x1
 of k is equal to h of k. So 



this is h of k plus gamma x2 minus x1
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of k whole square which is h of k whole squared 

gamma plus delta into h of k whole cube. 

 

So here if I put x2
 of k minus x1
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of k is the size of the element h k. From this expression, 

that is what I am going to get. 

 



Similarly, I will put d VFE dx at the point x2
 of k is equal to theta2 of k this is equal to 

beta plus 2 gamma hk plus 3 delta hk square. You see that now the alpha and beta are 

easily obtained; they are nothing but v1 of k theta1 of k. Now, in terms of v2
 of k and 

theta2
 of k and the v1

 of k and theta1

Once I have obtained these coefficients of the cubic in terms of these four given 

quantities, then now I can write my cubic expression in terms of v

 of k, I can obtain gamma and delta. 

1
 of k into something 

plus v2
 of k into something plus theta1 of k into something plus theta2
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 of k into 

something; that gives me how many functions? In a cubic, for example, how many 

independent basis functions will we have? As we have done for the linear we have two; 

for the quadratic we have three; again this is the cubic, we will have four independent 

functions. 

 

These we will define in detail in future, but it is quite easy to now do the algebra here and 

derive this functions. What will we have? If I write it VFE in the element Ik is equal to V1
 

of k and I will call this function as N1
 of k as a function of x plus theta1 of k is a function 

N2
 of k plus the function V2

 of k plus theta2 of element k into N4
 of k x. These four are 

going to be our independent functions. 



Once I define these functions, where have I defined them? I have defined them in the 

elements; so these functions NI
 

In the next lecture, we are going to define these shape functions that we have constructed 

at the element level; we will give the expression for those in the physical element as well 

as in the master element, because here also we will do the same thing that we did for the 

second order differential equation. 

of k for I equal to 1 to 4 are the shape functions. Now, by 

piecing together our shape functions, we can construct our global basis functions.  

We will take out physical domain to the master domain, physical element to the master 

element, we will convert all our expressions, all our integrals from integrals over the 

physical element to integrals over the master element, because ultimately we will have to 

do the numerical integration. 

From that point of view, we are going to do that conversion, define the shape functions in 

the master element and see there is a curious change from what we have done earlier. 

And we are after that going to say how to do the integration; the points will remain the 

same, essentially what is the order of integration rule that I have to take and so on. And 

we look at some basic properties of the solution using these functions.  

If you see your NI
 of k, these are cubic functions, they are given a name - these are called 

Hermite cubic polynomials and remember they are very different from the cubic 

Legrangial polynomials that we had defined in the element as our element shape 

functions for cubic approximation for the second order differential equation. This we 

have to keep in mind. We will look at these things in the next class in detail, look at 

pictures of these and then will go from there. 


