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In this lecture, we are going to continue our 1D programming assignments. We had stopped at 

the assembly of the element equations their application of the boundary conditions and the point 

load for the one dimensional problem. We had raised a question of how to solve the resulting 

system that we had, which is of the form, K U is equal to F and K was of dimension nndofs by 

nndofs and it was symmetric. 

(Refer Slide Time: 00:18) 

 

As I had mentioned in passing at the end of the last lecture, there are 2 types of solvers which are 

basically popular in engineering analysis, especially when we use FEM. One class of solvers is 

called the Direct Solvers. The other class is called the Iterative Solvers. The direct solvers work 

by direct elimination of the unknowns to get the solution. The iterative solver, it works by first 

taking an initial guess of this U and then trying to correct the solution then add correction to this 

initial guess to get to the solution of the problem. Each one has its own advantage but for our 

case, (Refer Slide Time: 02:09) for the system that we are interested in, let us look at only the 



direct solvers. Within this class of direct solvers, we will look at an important category of LU 

decomposition based solvers. What do we mean by LU decomposition? Let us see this through 

an example. 

(Refer Slide Time: 02:36) 

 

Let us take this matrix problem which is a 3 by 3 problem given by this kind of a system. 

Deliberately, I have made the matrix A or the K here a non symmetric, this is a general problem 

(Refer Slide Time: 02:58). When we have to do Gauss elimination then we simply go and 

subtract; I want to eliminate first the x1 variable from the remaining two equations not from the 

first one. I simply subtract twice the first equation from the second equation. To do this job, I do 

this and I get this one (Refer Slide Time: 03:25). I subtract once the first equation from the third 

equation. By doing that, I have reached this form, where I have eliminated x1

Once we have eliminated x

 from this equation 

and this equation that is, from the second and third equation. First variable is eliminated from all 

the remaining equations. This is how, if we remember, the Gauss elimination is done. 

1 from the remaining two equations then we want to eliminate x2 

from the third equation so we are going downwards. From the second equation, we take this 

diagonal (Refer Slide Time: 04:05) and we would like to eliminate everything under this 

diagonal. Like in the first equation, we have eliminated everything under the first diagonal. 

These diagonal elements are called the pivots and we are going to simply eliminate this one from 



here, by simply taking the second equation and subtracting it from the third one. If I subtract the 

second equation from the third one, I will get to this form. 

(Refer Slide Time: 04:34) 

  

1, 2, 1, 0, minus 2, minus 1, 0, 0, 3, x is 1, 0, 2. If we see this one, this has 0 entries in the part of 

the matrix below the diagonal. This type of a matrix where everything below the diagonal is 0 is 

called an upper triangular matrix. We will call this by a name U. We want to know how through 

a series of operations can we take A and get U. We have done those operations. How can we 

write these operations in terms of matrix manipulations? 



(Refer Slide Time: 05:45) 

 

If we go back, here the first operation that we did was we took twice the first equation and 

subtracted it from the second one. 

(Refer Slide Time: 06:04) 

 

This operation I would like to write through a matrix that I leave the first equation unchanged. I 

subtract twice the first equation from the second one. I do not do anything third one here and I 

am leaving the third one fixed. This (Refer Slide Time: 06:22) if I multiply it with A does the 



same job as subtracting twice the first equation from the second one of the matrix A. This one I 

am going to call with a name matrix D1. Similarly, if I go and look at the second part, second 

part from is here. To eliminate x1 from the third equation, I take once the first equation that is the 

first equation itself and subtract it from the third equation. This part will be given by a matrix; I 

have the first equation which remains unchanged. I am doing nothing to the current second 

equation. It remains unchanged and I subtract once the first equation from the third one. This is 

the subtraction process this (Refer Slide Time: 07:35) I am going to call as the matrix D2

(Refer Slide Time: 07:46) 

. 

 

Similarly, the third part was, after we have done this, we have a resultant modified matrix A. 

This is matrix A (Refer Slide Time: 07:57). I go and take the second equation and subtract it 

from the third equation. 



(Refer Slide Time: 08:12) 

 

How do I write that? This subtraction process can be written in the form. I leave the first 

equation unchanged. I leave the second equation unchanged and in third equation, I am going to 

subtract the second one from it. So I take the third equation from it to subtract the second one. 

This is the process of doing this job. This is given by the matrix D3. In terms of these three 

matrices, now can I write U? Yes, I can. If I take the matrix A, first I operate on it with the 

matrix D1 that is the first subtraction of twice the first row from the second row. Then I do the 

second operation D2 that is, subtraction of the first row from the third row. Then I do the third 

operation D3, subtraction of the second row from the third row. This job should give me the 

upper triangular form U. If I want to now write A in terms of U is equal to, I will take the inverse 

of this set. Inverse of this will be D1 inverse into D2 inverse into D3

This quantity I am going to call by a name. I am subtracting this quantity from the essentially, 

tells me by a how much amount, I multiplied the first equation to subtract from the second one. 

This one I am going to call l

 inverse into U, finding the 

inverses of these matrices is very simple. Let us see how simple. 

21. Similarly, this quantity I am going to call as l31 (Refer Slide 

Time: 10:30). 



(Refer Slide Time: 10:40) 

 

This quantity I am going to call as l32, it tells me from the third equation. This is the amount by 

which I multiply the second equation and subtract. It turns out that if I look at D1 inverse, it is 

quite simple. D1 inverse will remain 1, 0, 0. We had subtracted twice the first equation from the 

second. I simply have l21

(Refer Slide Time: 11:27) 

, 1, 0, 0, 0, 1. 

 



Here I have taken D1

(Refer Slide Time: 11:48) 

 and simply taken this part which corresponds to subtraction and taken the 

negative of that, put it there, back into the matrix that becomes the inverse which as simple that. 

 

Similarly D2 inverse will be 1, 0, 0. Here I will have l31, 0, 1. The third one will be 1, 0, 0, 0, 1, 

0, 0, l32, 1. So finding the inverse of these matrices D1, D2, D3

These matrices have a nice property that these are only concentrated in the lower triangular part 

of the matrix that is, everything above the diagonal is 0, everything below the diagonal is non 

zero. The product of these three things will be matrix L which will have once on the diagonal l

 is very easy. Once I know what 

the operation through which I can to this form. 

21 

in the half diagonal here. 



(Refer Slide Time: 13:04) 

 

l31 in the half diagonal here. l32

(Refer Slide Time: 14:10) 

 in the half diagonal here, 1 here. Now I have obtained a lower 

triangular matrix and the diagonals are all 1. This is the beautiful property of this matrix L (Refer 

Slide Time: 13:35). I can write the matrix A as a lower triangular matrix L into an upper 

triangular matrix U. Let me get back and look at what was U. 

 



If we see U, the diagonal entries of U are not 0. So we can make by a suitable modification, the 

diagonal entries of U also 0. How can we do that? 

(Refer Slide Time: 14:38) 

 

We can now say matrix U is equal to U11, 0, 0, 0, U22, 0, 0, 0, U33 into 1, U12 by U11, U13 by U11 

here I will have 0, here 1, U23 by U22, 0, 0, 1. This I am going to call a diagonal matrix D. I have 

simply taken the diagonal entries and written it in a diagonal form here and if I now multiply I 

should get back the U. This matrix, I am going to call it as U bar. 



(Refer Slide Time: 15:52) 

 

I can write A as equal to L D U bar. So this is called the L D U decomposition of A. This is 

something that we can also do. Let us get back. What is the advantage of this? Even U bar has 

one on the diagonals. Before go ahead now we see how this decomposition is going to be 

advantageous. If I have A x is equal to b; instead of A, I write L U. I will call y is equal to U into 

x, implies we will have L y is equal to b. Here (Refer Slide Time: 17:10) we have the lower 

triangular matrix into y is equal to b, solving for y is very easy, because here it is explicit. We do 

not have to do any elimination explicitly. We will first start with a first term, find y1 put that into 

the second equation, find y2

Once I have obtained y then I will obtain x as U x is equal to y. Instead of operating with A, now 

we can explicitly operate with the L and U. This makes life very simple because if I have a 

stiffness matrix, I want to change the loads applied on the structure keeping the boundary 

conditions of the material fixed. Then the stiffness matrix is going to remain the same. As the 

load is changing, the load vector which will be this side is going to change (Refer Slide Time: 

18:15). When the load vector changes then I do not have to eliminate A, do a Gauss elimination 

on A all the time. I can have the L and U in store and simply take the new load vector operate on 

it with the L and U and I get a solution. So that is something we would like to have. 

 and so on; solving this is very easy. 



(Refer Slide Time: 18:39) 

 

Let me now get back to the L D U decomposition. We had said A is equal to L D U bar. This 

turns out to be unique. There is only such decomposition which is present that is, if I have 

another decomposition and that decomposition equals A then each of these terms have to be 

equal. 

We see something very interesting; when A is symmetric then A is equal to A transpose due to 

symmetry. This is equal to U bar transpose D L transpose, but we know that there is a unique 

decomposition of A (Refer Slide Time: 19:20). We know that for a symmetric matrix U bar 

transpose is equal to L and L bar transpose is equal to U bar is just consistent. So then for these 

cases, for symmetric matrices, the decomposition becomes very simple. It becomes L D L 

transpose. This we can write as is equal to L D to the power of half into L D to the power half 

transpose. I take this part (Refer Slide Time: 20:32). Take the transpose of that multiply by 2. I 

get this decomposition for A is symmetry. This decomposition is called Cholesky decomposition. 

To take this information about what is L U D decomposition base solver is going to do and take a 

commercial version of this solver which is available in various places. 



(Refer Slide Time: 21:18) 

 

Again we can go to netlib.org, get the symmetric form because the matrix is symmetric that is L 

D L decomposition of the source code for this decomposition and in whichever form we want, 

Fortran, C or C++ or we can go to the book. This is a fantastic book in numerical analysis, 

numerical recipes. This is available in various versions. It is for Fortran, C and C++. On all these 

versions, this book is available. In these numerical recipes, source codes are given; the programs 

are given. We can take the program from there for the L U D decomposition; I think it comes 

under the name ludcmp. I would recommend use of this book to find the source codes. Once we 

have now obtained the solver which is the L U decomposition based certainly for us, we know 

our stiffness matrix is going to be banded in nature. There is going to be only a certain number of 

elements on either side of the main diagonal which are going to be non zero and everything else 

is 0. In that case, I can further reduce my cost of doing the elimination or finding the solution. 

We can find in these books, the banded solvers. Essentially what happens, when we have this 

kind of a property that the matrices sparse. If there are a lot of 0s in the matrix then I can simply 

store only the part which is non zero. There are these solvers which take advantage of that and 

the elimination also I will do using that information. So the cost of computation then comes 

down. One can also use the banded solvers. 



(Refer Slide Time: 23:53) 

 

We obtained the solution that is we have obtained this degrees of freedom U which implies that I 

should be able to now get the finite element solution, anywhere in the domain (Refer Slide Time: 

24:12). Specifically, in an element k, I can get the solutions in terms of the master element 

coordinates. uFE at any point x in the element k is equal to sigma i is equal to 1 to P plus 1 which 

is ndof for the element uig Ni

ig if we remember is nothing but ieldofs (k, i), for the kth element the ith row. It is very easy to 

construct the solution in each element. We can do piece by piece and also du

 hat where psi corresponds to the x that we taken. Now what is ig? 

FE by dx in the 

element k is equal to nothing but sigma i is equal to 1 to P plus 1 uig dNi hat d psi, whole thing 

into d psi dx which is 2 by hk. This will give me the derivative of the finite element solution at 

any point in the element. These are the degrees of freedom which we have already solved for 

(Refer Slide Time: 26:00). This we will obtain from the shape function routine. This I will get 

from the solver. This will come from the shape Ni hat, give me any point. 



(Refer Slide Time: 26:26) 

 

As far as plotting is concerned, take the master element divide it into some number of sub 

divisions. I say psi1 is equal to minus 1. This is the psi1, psi2, psi3 so on (Refer Slide Time: 

26:40). This becomes psiN plus 1 is equal to plus 1. I can find the size. At this size, I will find the 

solution, by calling the shape function routine, telling it to give me the shape functions in the 

derivatives and using that to construct uFE at the point psii

Similarly, I can do the same thing for the derivative. We see that the u

. These I can output, I can loop 

element by element that is, I go over the various elements in the domain - elements 1, 2, 3 and 4, 

for each element put this uniformly distributed set of points, output the value of the displacement 

and the derivatives at this point. Let us say I get something like this as the output (Refer Slide 

Time: 27:25). I can connect these by a line to get a plot of what the finite element solution will 

look over the whole domain. As far as the plotting is concerned, I can output the values of the 

finite element solution at these points connect them by a curve and I am done. 

FE is very good at the 

nodes. What are the nodes? Nodes here we mean as the extremities of the elements. These are 

our nodes. It is very good. What do you mean by very good? It is very close to the exact value, if 

I had an access to that at these points. There is a rate of conversion for these essentially for such 

problems that we have taken, it goes as order h to the power of 2P that is the error between the 

finite element solution and the exact solution at this point. 



Further, if I have this then I can see that essentially, if I plot the difference between the exact 

solutions, if I had access to it and the finite element solution in an element, it will essentially 

look like this (Refer Slide Time: 29:08); this is u minus uFE. Imagine that the size of the element 

tends to 0 that is I am shrinking the size of the element. Then I can show that this is essentially 

equal to some constant aP plus 2 NP plus 2

If we see that somehow from here I am not doing it explicitly, essentially it can be written in 

terms of what we had given as the Legendre polynomials of order P. If I take the derivative, this 

is all I am doing in the master element. If I take the derivative of this finite element solution in 

the master element, the error in the finite element solution, it will essentially be dominated by 

this term which is the term corresponding to the P th order of Legendre polynomial. If this term 

has to be 0, what do we mean by this term being 0? This is 0, d d psi of u minus u

 hat that is it is essentially given by the next higher bubble 

functions. So I have taken all the bubble functions of order P. Now this one corresponds to the 

bubble function of order P plus 1. 

FE as hk

(Refer Slide Time: 31:06) 

 tends 

to 0. 

 

It tends to 0 at the points which are the roots of the Legendre polynomial of degree P. It is as 

simple as this. Let us take an example. If I have taken linear approximation, this derivative, if I 

have to find d dx of u minus uFE, I simply multiply it by 2 by hk. That is not a big problem. 



Wherever, this is 0, the actual derivatives are also going to be 0. If I take the linear 

approximation that is P is equal to 1, then the derivative in the finite element solution should tend 

to be exact at the root of the first Legendre polynomial. First Legendre polynomial is some 

constant into psi. So it should vanish at psi is equal to 0. In fact that is true that the error in the 

derivative is 0, essentially at the centre of the element. 

Similarly, if I go to P equal to 2, I will see that the derivative vanishes at the 2 roots of P2. What 

are these roots of P1 and P2

If I have obtained super convergence points, I should, at the nodes that are at the extremities of 

the element, the derivative obtained from the finite element solution is the worst that I can get. In 

fact, I should try not to use that information (Refer Slide Time: 34:05). How can I use this 

information about these good values of the derivatives of the finite element solution, to obtain a 

better approximation of the derivative by some post processing? What we are actually doing? 

With the previous transparency also we have done that thing. Here also we had said the plotting. 

We are actually in the regime of the post processor. Once the solution is obtained, we are talking 

of how best to interpret our data, to represent our data and how best to extract something better 

from it. I would like here to get a better value of du star dx from the du

? These are nothing but the Gauss points corresponding to the 1 point 

rule, the integration points. This is at the points corresponding to the 2 point rule. I can 

essentially if I have obtained the solution using a P order approximation then I go to the P order 

or P point rule and find those points corresponding to the P point rule. At those points, I know 

that the finite element solution, the derivative of it is going to be very good. These points are 

called Super Convergence points. 

FE dx. I know that I can 

use the values of the finite element solution, the derivative of it, at these points which correspond 

to the roots of the Legendre polynomial of order P which are nothing but the P point integration 

rule. 



(Refer Slide Time: 35:24) 

 

If I have given these points, let me call these points as super convergence points (Refer Slide 

Time: 35:25), super convergence of derivative of duFE dx at roots of the Legendre polynomial of 

order P where P is the order of approximation which corresponds to P point integration rule. I 

already have this information stored with me. Where are these points? Simply take these points 

and I will them as points psii

Now this is something bad, I do not want this, so this is d dx of u minus u

 super convergence, i going from 0 to P. Given these points, if I go 

to the elements by mapping back from the master to the physical element, I will have some 

points in each of the elements where the derivative of the finite element solution is going to be 

good. If I plot these derivatives in the elements, we will see they will do like this (Refer Slide 

Time: 36:52) and there will be a jump in the value here at the interface; derivative will do this. 

FE where u is the exact 

solution. Here I am talking of the derivative of the error and we want this to be essentially a 

straight line 0. I do not want the derivative of the error to be big anywhere. Further at the 

interfaces, I get a jump in the derivative of the finite element solution is the something which I 

do not want physically, because it leads to a jump in the axial force that we obtained. How best 

can we now use this information about this point to create better derivative information? The 

simplest possible way is the following. 



Let us say this is the element k (Refer Slide Time: 38:01). This is its neighbor k minus 1 and k 

plus 1. Let us say, here I am doing the one point rule but we can have the various things. This is 

corresponding to x1
 k minus 1 super convergence here. This is x1

 k plus 1 super convergence 

here (Refer Slide Time: 39:12). These are the mapped physical points corresponding to the super 

convergence points in these elements. Let us say, I have taken linear approximation for the time 

being. At these points, I know the derivative is going to be good. Let us say the derivative here is 

this, derivative here is this, derivative here is this (Refer Slide Time: 39:30). To obtain d u star 

dx in element k, because I have used linear approximation, I am going to now represent du star 

dx by a linear in this element. So I am going to represent as a0 plus a1x

I would like to get these coefficients such that I hope that it is going to be a better derivative 

information in this element then we have out of d u

 in this element and I also 

extended by the same thing in the neighbors that is the k minus 1 element and k plus 1. 

FE dx. I would like to obtain essentially using 

this information, the straight line fit and I hope that this straight line fit is essentially equal to du 

dx. How do I construct this straight line fit? I take for the element k, remember that I am doing it 

for the element k. I have to do it for each element separately. Find these coefficients a0 a1

(Refer Slide Time: 41:08) 

 from 

there construct the value of the variation of du star dx in the element k. 

 



To do that again I take this neighborhood; it is k, k minus 1, k plus 1. I am going to define this 

functional as 1/2 sum over all the i(s), i is equal to 1 to 3 into (3 actually should be 3P of) duFE 

dx evaluated at the point x for P is equal to 1, i s minus du star dx evaluated at the point x1 i s 

whole squared. I am taking this term is given by a0 plus a1x. I am taking this value of x from 

super convergence point for the neighbors, putting it here I am doing discrete sum. This is the 

functional J and I am looking for the coefficients a0 and a1 which minimize. So find a0, a1 such 

that J is minimized (Refer Slide Time: 42:55). J, I would say is defined for the element k. This 

definition, I have to do for any generic element k. I have to go from the first element to the 

second one, to third one. I will find this coefficients a0, a1

(Refer Slide Time: 44:01) 

 corresponding to the element. From 

there I can construct du star divided by dx at the element level. What happens at the various 

places? If I have an element at the boundary, that is the first element. In this case, I do not have 

the 0th element; I only take this neighborhood. For the last element, again I will take the n minus 

1th element and the nth element. So this is nelem and this is nelem minus one (Refer Slide Time: 

43:50). This is how I am going to construct these so called recovered coefficients. 

 

When I piece them together, I will see that essentially the du star dx it will look like a piecewise 

linear. If I am at a material interface, if this is the element (Refer Slide Time: 44:18) which has 

this material interface, I am sitting at the material interface then I do not take the neighbor. If this 

is the element k, I do not take the k plus 1 neighbor because it is lying in a different material. I 



will only take the neighbors from the same material neighborhood. This is how we can construct 

the recovered du star dx in each element k. This is called the Patch Recovery method and this 

indeed gives us the values of the derivatives which are very good. 

If we do this kind of a post-processing, we can construct very good recovered derivatives without 

doing any extra computation. The computation here is minimal and it is done at the element 

level. I will do for each element separately. Out of what I did here, I will get the system of 

equations in terms of a0, a1 up to ap

(Refer Slide Time: 46:09) 

. I will solve that system of equation for the element. I have 

to solve it for all the elements separately one by one and I have constructed the du star dx 

information for all the elements. This one (Refer Slide Time: 45:50) said to be a Super 

Convergence Recovery method. 

 

There is another version of it where I can actually modify J to have EA at the point x1, i comma 

s. Here I have taken 1 but in our sum we should have all these integration points in the three 

elements which form the neighborhood of the super convergence points. Here also (Refer Slide 

Time: 46:40) I will have EA at x1, i comma s. If I add this, this is another way, an alternative 

definition for getting these super convergent recoveries. Especially when the EA is non uniform, 

but not transitional one it is simply if it is a tapered beam for example, then this will do the job. 



(Refer Slide Time: 47:13) 

 

We have done these recoveries – certain things; once we have done this, our post-processing has 

also been completed. After we have done all this, we have written a program, how do we check 

our program? We check it using so-called Patch Tests. Patch tests or benchmark tests, the basic 

idea in all these are that we take problems for which we can get the exact solution. Then we go 

and try to solve this problem and we see whether our finite element solution is close to the exact 

solution. It should not be too far away. If it is too far away, there is some problem. 

In fact, in the patch tests, we can construct at least for the case k0 equal to 0, EA is equal to 

constant. If we take our f(x) is equal to 1 or x or x square, we know our exact solution in this 

case will be of the type x squared by 2 is a polynomial (Refer Slide Time: 48:35). Here it will be 

x cube by 3 and here it will be x to the power of 4 by 4 plus some constants. In these cases, when 

k0

Let us say I have taken f(x) is equal to 1, I will take P is equal to 2, the quadratic approximation 

and with this quadratic approximation I should get the exact solution to the problem back. 

Similarly, if I take P is equal to 3 and take f(x) is equal to x, I should get u

 equal to 0, is EA is equal to C, taking either this as the load or this as the load or this as the 

load (Refer Slide Time: 48:52), correspondingly, I will get the quadratic, the cubic and the fourth 

order solution. We can simply pay for this solution. 

FE is equal to u exact 

and for P is equal to 4, I do this (Refer Slide Time: 49:26). If somehow the code does not give 



the finite element solution equal to the exact solution then there has to be a bug in whatever we 

have done. We have to go back and debug our program and set it right so that till at least the 

machine precision that is specified. Generally, we do double precision calculations. The numbers 

will match with the exact solution.  

So with this, we have come to the end of the one dimensional programming assignment. With all 

the tools given, we can develop the one dimension code. I tried to give a feel of what will be 

coming or needed in the 2 and 3 dimensions. Essentially, the data structure that we have 

constructed here, the kind of procedure we followed here, will carry over almost unaltered into 

the 2 and 3 dimensional cases. It is for you to write the program, test it for this patch test or for 

benchmark test for which you construct the exact solutions and then use it for other problems for 

which you would like to get a solution for which getting a exact solution is difficult. 

Thank you. 


