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Today in this lecture, we are going to talk about the one dimensional finite element program. 

Before we write the one dimensional finite element program, we have to fix what should be the 

features of the program; that is, what the code should be able to do, what kind of material data, 

loading data, and boundary condition it should be able to handle. 

(Refer Slide Time: 00:09) 

 

Let us take an example for the following case. This is our member (Refer Slide Time: 01:24) 

with this line being the line of symmetry or we call it as x-axis, in this member I can have a 

material in this region and some other material in this region. Here we would like to have 

material constant E1 and the area, if we see in both the members, is tapered but with different 

tapersation. Here (Refer Slide Time: 02:14) I say area is A1(x). Here the material constant is or 

the Young modulus can be E2. Taper ratio or the taper is given by A2(x). This is what we would 

like the code to handle. Where does this transition happen? This transition we are going to say is 



at the point xm, this can be point x0. This could be point x1. We know that x1 minus x0 is equal 

to L. We are going to set our x0 

Further, the other features are the following. I would like a distributed load along the centre line 

(Refer Slide Time: 03:51) this intensity f(x) given by f

to 0.  

0 plus f1x plus f2x(x square) that is we 

would like up to a quadratic distributed load. We would like to add some more features to our 

program. We like this program, if we desire on elastic support but what we would like is the 

elastic support should be distributed through the whole domain; that is, it should be applied to 

the full domain. We would like this elastic support to have an intensity k(x) is equal to k0

Another feature we would like to have is, let us say there is a point here (Refer Slide Time: 

05:35) the location of which will be given by x

 so our 

elastic support has uniform spring constant we do not want the spring constant to be very 

different; it should not vary. 

p. At this point I apply a concentrated load of 

intensity P1 or phi P1. This is the concentrated load, I am applying here phi P1

Further, we are also looking at boundary conditions which are symmetric in nature, we could fix 

this in. We would like to handle all these kinds of boundary conditions at each of these ends. I 

could choose anyone of the three results there; this is the problem we would like to solve. The 

other approximation that we want is P; let say is less than equal or to 3. If we look at this 

problem, as far as making the mesh is concerned, we have to honor certain boundaries. Which 

boundaries we have to honor? This boundary (Refer Slide Time: 07:45) where there is a 

transition of a cross sectional area or the material we want both the transition to be the same, we 

do not want separate. Another boundary is here (Refer Slide Time: 08:00); we have to put a node 

here because at this point a concentrated load is applied. If we see that the mesh is broken, the 

 and we would like 

to handle only one concentrated load, not more than that. Further now, we would like our code to 

handle various sets of boundary conditions. What could be the boundary condition? I can have 

here an end load Q which is tensile. While, at the other end I could have the end force given in 

terms of the force applied by end spring. F is a force applied by end spring, for the spring I have 

to specify the stiffness coefficient of the spring and whether it is free compression or not delta L 

is the initial compression of the spring. This spring could be applied here this force could be 

applied here we could have any mix and match of various kinds of boundary conditions. 



domain is broken into three parts; from this part from x0 to xm from xm to xp and from xp to x0

(Refer Slide Time: 08:41) 

. 

These are the three parts that we would like to handle. Let us now go and essentially look at, how 

to design the pre-processor to handle all these cases? 

 

For the pre-processor design, we would like to first read the input data. This could be through a 

program. We can call it Read Input data; one can name it whatever he wants to but the name 

should reflect what that program is doing; so read data is our program. What would we like to 

read in? First, we would like to read in the Domain Data. From our figure that we have drawn 

there (Refer Slide Time: 09:45) domain data means I am interested in the extremities of the 

domain x0 and x1. So x0 which for us is going to be 0 and x1 which is equal to the length of the 

member or we could have said x1 minus x0 is equal to L but here we are setting x0 is equal to 0 and 

x1 is equal to L; this is what we have input first. We would like to input the material data, so how 

would we write the material data. In the material data we have to input the values of E, E1. 



(Refer Slide Time: 10:41) 

 

We want to have the values of E1 as the function of x which we are going to given in terms of 

two parameter a0 plus a1(x minus xm) so this is given in terms of a0 plus a1(x minus xm). If I 

have to give this then I have to also input xm. This E1 a0, a1 xm have to be input first, we have to 

input for the second part of the domain E2, A2 as the function of X is equal to b0 plus b1(x minus 

xm). So the first part of the domain we input these two things, for the second part of the domain 

we input this quantity (Refer Slide Time: 12:00). It will be better to first input the transition point 

xm as a separate entity and then for the two parts of the domain we give E1A1 and E2A2. In case 

I want only a single domain, material domain; for example, I take this bar for which E1 is equal 

to E2 is equal to E and A1 is equal to A2 is equal to A. It could be tapered but the taper is not 

changing. In that case, we will make xm is equal to x1. If we do that then what will happen is 

your program is going to take only E1 and A1

These data can be input all the time irrespective of whether I have a transition or not and 

according to the plot of x

 so as the domain because the second part is 

essentially at the end of the domain so this is will not come into play. 

m the appropriate data will be taken. If I see this is given, now if I have 

k(x) we know we wanted to be a constant k0. This k0 also has to be input as an input data. As far 

as the material data is concerned, we need to input the point of transition xm, we need to input a0, 

a1, b0, b1, E1 and E2 and K0. Totally we need 1, 4, 7, 8 data so 8 quantities has to be input. This 

quantity is a user supplied quantity because, this is something that the user is selling this 



corresponds to the domain the material data of interest to me. We have the material data we 

would like to give the load data. 

(Refer Slide Time: 14:31) 

 

What is that we have to input as far the load data is concerned? We have said that our distributed 

load is defined over the whole domain if not defined piecewise. It could define in piecewise that 

it will only add little more to the complexity. Here we want to define it globally that is in the 

whole domain as f(x) as I have drawn in the figure is f0 plus f1x plus f2x square so these 

quantities f0, f1, f2 has to be input. If I want a constant load I make f1 and f2 is equal to 0. If I 

want a linear load, I will make f2 equal to 0. If I want no load then I make f0, f1, f2 equal to 0.

What else do we want? We want to give whether point load or not, so if there is a point load we 

would like to know what this point is? Where the point load is applied and the value of the load 

P

 

This way we can upto a quadratic loading as a distributed load that we want. 

1? Both these data has to be given. If I do not want the point load, then in case I do not want it 

then I will set P1 equal to 0 and xp equal to xp plus 1. I am going to make this value 0 and I am 

moving this point where this 0 load is applied which is meaningless to the end of the load, just 

for our convenience. We have to remember that when P1 equal to 0, I will have to set xp is equal 

to x1 we do not give xp equal to some point interior of the domain; this data is available to us. 



We have the domain data, the material data, and the load data. What else do we need? We need 

the boundary data because we need to specify the various boundary conditions. Let us now say 

End 1 (Refer Slide Time: 17:21) this corresponds to the point x0. If I take member, what 

boundary conditions can I have at this point x0

(Refer Slide Time: 17:46) 

? I could have (1) the displacement is given it 

need not be 0, it could be some value. 

 

I could have a second candidate here; Q is given at the end, and the third candidate that the end 

has a spring with a constant k0 and an initial compression delta0 given. We are going to call them 

this (Refer Slide Time: 18:10) if we remember that we had introduced this as the Robin boundary 

condition and the previous one if I go up this is Dirichlet and this one is Neumann. 



(Refer Slide Time: 18:13) 

 

We have to have the feature that at this end I should be able to give any one of the boundary 

conditions and along the boundary condition type I should be able to input the data that goes 

with it. Here if I say Dirichlet means, u0 is given as u0

(Refer Slide Time: 18:46) 

 bar. 

 

Let us say that we will specify the boundary condition type at End 1 by the following number: it 

is 1 when it is Dirichlet, it is 2 when it is Neumann, and it is 3 when it is Robin or mixed. When 



it is Dirichlet we have to input the value at the end - the displacement u0 bar; if it is Neumann I 

have to specify what this end load is. It is Q, it is positive if it is tensile. If it is Robin then I have 

specify the spring constant k0 and initial compression delta0. These are the information that we 

need to have at the boundary. Similarly, at the other boundary at end x1 we say is given by the 

boundary node 2, I will say of type 2. This would be again 1, 2, or 3 depending on whether it is 

Dirichlet Neumann or whatever or Robin. If it is Dirichlet then at this end (Refer Slide Time: 

20:38) it is u1 bar, if it is Neumann then it is the end tensile load P and if it is Robin then we 

have to give the end spring constant k1 and the end compression delta1

For completeness sake specify what this means at the other end. Here (Refer Slide Time: 21:44) I 

mean that when it is 1 then I am specifying the displacement here. When it is 2, I am specifying 

the end load P, when it is 3, then I am specifying this spring constant and the initial compression 

delta at the end x

. So all these data has to 

be input, so this has to be given, this has to be given, this has to be given, and this has to be given 

the type the boundary condition type has to be specified at each of the end. What is the type and 

accordingly these data has to be input? 

1. As far as the boundary condition is concerned this is the information we 

would like to have. The boundary condition site and the corresponding data, how do we input 

this data? We could have one input as the boundary condition type the other input as the two 

parameters alpha and beta. For the Dirichlet site, it will give alpha equal to u0 so at each of the 

end alpha equal to u0 bar. For the Neumann part, at n1 it will give alpha equal to Q and for the 

Robin, it will be alpha equal to k0 beta equal to delta0. Similarly, I will do at the end x is equal to 

x1; at the two ends we have to give these two parameters. The second parameter for the first two 

types is irrelevant parameters but anyway we can specify anything and it will not be used. After I 

input all these data, I have to create some information which is needed. In the read data program 

itself we construct that information; what is that information? The information is as follows. 



(Refer Slide Time: 23:11) 

 

Let us say this is the point x0, this is the point x1, this is the point xm, the xp could be here (Refer 

Slide Time: 23; 39). The xp could be here but I have to honor this transition as we have said. 

Transition means if the xp is here then this is now a piece by itself, this is a piece by itself and 

this is a piece by itself. We have the 3 pieces which are given by in this case x0 to xp, xp to xm 

and xm to x1 and the length will be given by l1, l2, l3; this information has to be available to us. 

The computer does not know whether the xp is happening before xm or it is coming after xm. 

This information has to be created for the computer to understand that this partition has these 

points xp, xm and so on as the end points. Let us now find the three points; x0 is fixed, we will 

say x1 is fixed, x2 is equal to minimum of xm and xp and x3 is equal to maximum of xm and xp. 

When we say x2 is the minimum of xm and xp along with it we will carry the flag, whether it is 

material point or it is the point of point load. Let us make the flag, let say that this will have an 

indicator x2 will have an indicator iflag type it is equal to 1 if this is xm or it is equal to 2 if it is 

xp

Similarly, here we will call it iflag type 1. Here for the max again, we will have the 

corresponding flag associated with it iflag type 2 this is equal to 1. If this is the point x

 (Refer Slide Time: 26:15). 

m and it is 

equal to two if it is xp. This is very useful information that we are creating along with this point 

x2 and x3. It is going to be very useful when we are further constructing the mesh and deciding 

the element where they lie in, which material domain they lie in. Let us have this flag and along 



this point; what do we have now? I look at the domain I have the point x0, the point x1 then I 

have x2 and I have the point x3 and the flag tells me whether it is xm or xp here and here (Refer 

Slide Time: 27:38). This is the flag telling me this thing, but as far as the partitioning the domain 

is concerned we have this distinct partition. I will measure the length l1 is equal to x2 minus x0, l2 

is equal to x3 minus x2 and l3 is equal to x1 – x3. These lengths we are going to measure; note 

something that this l1, l2 and l3

For example, if I say that my material point and both the material point and the point load are at 

x

 can each be either 0 or l. 

1 that is I do not have two material domain and I do not have point load applied in that case this 

x2 minus x0 is going to be l, x3 minus x2 is going to be 0, x1 minus x3 is going to 0 only l1 going 

to be coming out to be l in that case and other two things are coming out to be 0. If I say that 

point load does not exist, I only have a material transition. If I have material transition then I will 

only get, in that case, x2 is equal to x3, x3 is equal to x1. So I get l1 is equal to x2 minus x0, l2 is 

equal to x3 minus x2 which is perfectly fine, l3

(Refer Slide Time: 29:53) 

 is equal to 0. I will get only the two partitions. 

With this is data, now do we have all the information that we need? We now need to get one 

more data which is the mesh data. 

 

We have defined the three partitions of the domain remember that these are not nodes, but these 

are the partitions of the domain honoring the material boundaries the point of application of the 



point load and the extremities of the domain so it is x2, x3, x1 with length l1, l2, l3

Let us say that in each of this region, we are specifying the number of elements we need n

. We can ask 

the following question; in each of the partition, how many elements do we need to put? This is 

an input data which has to come from the user. User decide to put different number of elements 

in each of the partition based on his needs, based on certain apriory information that he has about 

the smoothness of the solution and so on. 

1, n2, 

n3 and we are assuming piecewise uniform mesh. What we are saying is, scalar as an input data, 

what number of sub division we want in the first piece which is length l1 in the second piece 

which is l2 and the third piece which has length l3; so these are given by n1, n2, n3. Take in each 

piece a uniform sub division so that I get n1 number of elements in the first piece, n2 number of 

elements in the second, n3 number of elements in the third. The total number of elements if we 

see will be equal to n1 plus n2 plus n3,

We see that in case, one of these lengths or two of these lengths become 0, then this partition 

even though we specified it is going to be trivial information; we really not use that information. 

What more we need to specify? We have specified all the information that we needed to have 

with respect to the domain, with respect to the material, with respect to the loading data, with 

respect to the boundary condition, and here with respect to the number of elements we want in 

each of the pieces. The last thing that we need to specify is the order of approximation, (small) p 

this we are assuming is uniform in the whole domain (Refer Slide Time: 33:14). This is very 

important that we are going to certify the order of approximation to be uniform. We need not do 

that, we could specify different orders of approximations which can also be easily handled but, 

let us stick to that we are going to fix this order of approximation to be uniform. 

 if all these partitions are distinct. 

For the problem that we have written, that is I have drawn on the black board for that problem 

what is the weak formulation? The weak formulation will come out to be integral from x0 to xm 

(Refer Slide Time: 34:00) according to the figure on the board. I will have E1, A1(x) du dx dv dx 

plus integral xm to x1 E2 A2 (x) du dx plus I will have integral of x0 to x1 k0 u v dx. This is the 

part due to the spring, this is stiffness part due to the spring; this will be equal to integral x0 to x1 

f v dx . From the figure on the black board, we have an end load at the point x0 that will be the 

tensile load so it will be, Q into this will give work, Q into v at x equal to x0. At the other end at 



x equal to x1, if I look at the end there let me draw here end x1, (Refer Slide Time: 36:05) here I 

have k1 and initial compression delta1. If there is an initial compression delta1 then further 

displacement of this end due to the applied force as the reaction to the applied forces of an 

amount u at L. The spring actually compresses by an amount delta1 plus u at l so the total 

compression is delta1 plus u at L. The force applied by the spring is back on the member P equal 

to minus k1 u at L plus delta1. The u at l is an unknown, so this part minus k, let me first write it 

here, minus k1 u at L plus delta1 multiplied by v at l. This part (Refer Slide Time: 37:05) minus k 

into u of L because this is in terms of the unknown, I am going to carry it over to this and I am 

going to leave to this into v L obviously, I am going to leave minus k1 delta1 

Remember this part because this is going to be important as far as applying the boundary 

conditions is concerned. Similarly, at the end 0 we can do the same thing; where this end load Q 

which can be now given in terms of the compression of the end x

into v of L on the 

right hand side. This part goes to the left hand side because we are collecting all the unknowns 

on the left hand side. 

0 if I had a spring load there. 

Let us now see if this is the weak formulation. In the weak formulation which we could also 

derive using the variational principle something else is missing here (Refer Slide Time: 38:28). 

We have not added the part due to the point load at point x0; so v at xp

(Refer Slide Time: 38:51) 

 so this part has to be 

added to the load vector site. 

 



If I look at this weak form in its complete entirety, it will be x0 to x1 E1 A1 (x) du dx. dv dx , dx 

plus integral plus x0 to xm here xm to x1 E2 A2(x) du dx, dv dx plus k1u at L, v at L this is equal 

to integral from plus, I have to add another part let me add, plus the part due to the spring x0 to 

x1 k0uv dx. This will be equal to the load part integral x0 to x1 f v dx minus the right hand side 

will be integral x0 to x1 f v dx minus Q into v at x0 minus k1 delta one v at x L plus P1 

We see that this thing should reflect in what we are doing in the program. In the program we are 

going to do the integration piecewise for this material constant because the material constant is 

changing so I have to go from x

v at xp. 

This is going to be our complete weak formulation or variational formulation whichever way we 

decide to obtain. 

0 to xm from xm to x1 and this anyway will be added from the 

boundary conditions, this is not a problem. This part, (Refer Slide Time: 41:20) since, we are 

doing this piecewise we could do this from x0 to xm xm to x1; again it can be piecewise and this 

is the same thing. Here also in the load I am going from x0 to x1 which means I can do it x0 to 

xm and xm to x1

(Refer Slide Time: 42:22) 

 and this part is from the boundary condition, this part is from the boundary 

condition. This (Refer Slide Time: 41:44) I will have to add as an extra part due to the point load. 

With this in mind, what we have developed till now as far as leading the data is concerned; the 

data is going to be used. Once we have read the data then what is the first thing we have to do? 

First thing is given that the data that we have read we have to make the mesh. 

 



In order to make the mesh we have said that as far as the computer is concerned it has these 

points x0, x1, x2, x3; with length l1, l2, l3. How do we go about constructing the mesh? We want a 

certain amount of partition in each piece. Let us say in the first one I am putting three elements 

so here I am going to put three equal elements so here n1 is equal to 3. Let us say n2 is equal to 4. 

I want to put elements here so let us say n3 

Further, we are going to say that let the total number of nodes in the element will be given by n 

node; we are going to initialize this also. The initialization of the quantity is very important. We 

have written the program, we have to know what material properties to use in a particular 

element? If I am interested in this element, how does the computer know what E to put there? 

What A

is equal to 2 so I put one element here. We should be 

able to construct these partitions using our program and along with this partition we should be 

able to construct the coordinates of these nodes we have created. How do we number the nodes? 

We are going to say this is going to be node 1, this is going to be node 2, 3, 4. We are going to 

number them sequentially 6, 7, 8, 9, 10 so this thing should be possible while we are making 

mesh as we are numbering the node we should be able to give the coordinate of the node. Let 

total amount of element in the mesh will be given by the parameter nelem that is the total number 

of elements. First we are going to initialize it. 

 to put there? So somehow I have to inherit the information for each of the element from 

somewhere. We are going to have an ID or a pointer or an indicator of which material domain a 

particular element lies in through this vector imatid, this is the integral. To this we are going to 

set this is of size, so we fix some total number of elements. Let us say we say the maximum 

number of elements in the mesh cannot be more than hundred. We will initialize, we make this 

vector of size hundred and initialize all entries to 0. Further, we will have the nodes of each of 

the points also initialized to 0. Also, we will have another information which we need; we will 

say it will create these array nodes, this is also initialized to 0 (Refer Slide Time: 46:50); so all 

entries of this array which is if we see this element is based so this total number element is 100. 

This is 100, 2 array; all entries of this is set to 0. These are all the initializations that we will have 

to do. 



(Refer Slide Time: 47:37) 

 

After this initialization, we are going to construct the nodes. The first node is given the value x0

If l

 

which is equal to 0.0. I am going to set, because I already created this node, n node is equal to 1 

(Refer Slide Time: 47:47). I am incrementing the total number of nodes in the mesh as I am 

making the nodes. 

1 is greater than 0, if l1 is equal to 0, I do not do anything. If l1 is greater than 0, then I find 

the mesh type because this is uniform meshing in this case l1 divided by n1. For i equal to 1 to n1 

that is I take all these partitions, I am going to increment the number of nodes and I am going to 

say x n node is equal to x n node minus 1 plus h. Given the first node which is x1, I created the 

coordinate of x2 is equal to x1 plus h and so on. I construct all the n plus 1 nodes in this piece. As 

I am constructing these consecutive nodes I am also incrementing the number of elements. So I 

am going to say nelem is equal to nelem plus 1 that is two consecutive nodes have formed an 

element in between. I am going to say nodes nelem comma 1 is equal to n node minus 1 nodes 

nelem comma 2 is equal to n node. I am telling what are the two n nodes for this two particular 

element are. Then I am going to end this loop. I have found the mesh size in the piece, looped 

over to load in the piece, found what the loads are, and constructed it and so on. 



(Refer Slide Time: 50:24) 

 

I repeat the same process for l2; we will say is l2 is greater than 0 then I will find h is equal to l2 

by n2 and continue. Similarly, I will do for l3 for each of the piece. While I am constructing the 

element, I am also going to check whether the first point that is the x2 if we remember x2 and x3 

that is the first point it is due to a material interface or whether it is due to a point load. If it is 

due to a material interface then we know that l1 is from x0 to x2

This way I continue here also (Refer Slide Time: 51:50) I assign while I construct the node, so 

construct nodes, elements and connectivity and then material information which material domain 

it lies in. In this case for l

 so here I am going to give 

imatid of element is equal to 1 or 2 depending on where it interfaces, at least here depending on 

what this flag was (Refer Slide Time: 51:38). This I am going to appropriately assign atleast in 

the first phase it is always going to be free element, the material one. 

2 we know that l2 actually goes from x2 to x3. If x2 was a material point 

then here my imatid of all the elements will be equal to 2. If x2 was x3 that is, it was a point load 

point, not a material point then it remains as 1 because the material is not changing because only 

the point load has been applied and so on we continue doing. This gives us all the information 

about the mesh, the elements, nodes, the coordinate, connectivity, number of elements, all these 

information comes out at the end of the program. This is a very important component of the pre-

processor that is we have made the mesh and all the relevant information that has to go with the 

mesh as far as our computations are concerned. We will continue with this in the next lecture and 



we are going to now talk of how to construct the degrees of freedom information for the given 

mesh for the given order of approximation. From there we will continue further, talk about 

assembly solver and so on. 

Thank you. 


