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We are at the lecture 12; what we had discussed till now was how to do the element calculations 

in the master element. We had transformed our equations from the physical domain to the master 

domain and in the master domain we had said that we will be defining the shape functions for the 

element and transform the integrals that we had over this domain. 

(Refer slide time: 00:23) 

 

The question was how to convert these integrals into computer implementable form, because for 

us to do the integration of polynomials and other functions by hand is easy, but how will the 

computer do that? Computer generally what does it do? It integrates some quantity by replacing 

it with a sum. A sum over some points 1 to n bar let us say; so sum of the function psi, the f at 

the point psii into the so-called weights wi. These points psii are called integration points and wi 

is the corresponding weight. 



(Refer slide time: 02:49) 

 

The question is fine, how do we choose points psii and the corresponding weights wi? What we 

use here is the so called Gauss Legendre Quadrature integration rule; what is the basic idea? I 

have now my master element spanning from psi equal to minus 1 to psi equal to plus 1. The 

centre of it is the point psi equal to 0. What I am going to do is I am going to choose points 

which are symmetrically placed on either side of 0, so I can choose this point and the 

corresponding point here (Refer Slide Time: 03:54). These are going to be our choices of 

integration points such that if I call this point as psi1 this point as psi2, this is psi3, psi4 then psi1 is 

equal to minus psi4, psi2 is equal to minus psi3. Further, for this set of symmetric located points 

we will have the same weights. So wi will be equal to w4 in the example that we have taken and 

w2 will be equal to w

 

3. 



(Refer slide time: 04:55) 

 

We will say that this, the feature of this method is (1) the integration points are symmetrically 

located on either side of zero. (2) The weights for a pair of such symmetric points is the same. 

How do you design the location and the weights of the points? The basic idea again is that, we 

would like our choice of points and weights to be such that for a polynomial of a particular order 

the integral comes out to be exact. If my integrant here (Refer slide time: 06:35) is a polynomial, 

if this is a polynomial then for a particular order of the polynomial this integral should be exact; 

that is the sum should be exact, therefore psi. Let us now go ahead and construct these sets of 

points, take the first example. 



(Refer slide time: 07:13) 

 

First example is let us take n is equal to 1. If I take n is equal to 1 then I notice that the point psi1 

can be nowhere else, but at the 0 location because it is a symmetrically placed point and the 

corresponding weight will be w1. Now w1 is what we have to determine. Let us take first a 

constant; I integrate the constant from minus 1 to 1; let us take the constant as 1. This integral 

will be equal to 2 (Refer slide time: 07:50). Now this I would expect one point rule to at least 

integrate the constants correctly. It is going to give me from the one point rule F at 0 into w1 

which is equal to 1 into w1; implies w1 is equal to 1. This is going to be our one point rule. So 

one point rule for n equal to 1 implies the following pair at the point is 0 and the weight is 2. For 

which higher polynomials does this one point rule do an exact job? Let us look at the next higher 

polynomial. If I take fpsi to be linear in psi, it is a0 plus a1 psi d psi (Refer slide time: 08:55). If I 

do this integral, I am going to call this integral as I1, is equal to this. This integral will turn out to 

be 2 a0

The second part will drop off because if you see this a

 (Refer slide time: 09:08). 

1 psi is an odd function and the integral of 

an odd function over this interval is going to be 0. My question is, is it equal to what I get out of 

the one point rule? Out of the one point rule f at the point psi equal to 0 is a0 into the weight at 

the point psi equal to 1 which is 2; this integral is exact. The one point rule not only integrates 

the constants exactly it also integrates the linears exactly. 



(Refer slide time: 09:58) 

 

Let us become a little bit more greedy, and ask whether this integral can also be obtained exactly 

using the one point rule. This integral (Refer Slide Time: 10:05) if you see it will be equal to by 

what we have done 2a0 plus this part will drop off; this part is an even part it will give me a 

value 2 by 3 a2. If I look at the one point rule, the one point rule gives what? One point rule will 

give me this integral equal to f at 0 into w1 which is equal to a0 into 2 which is not equal to I2. 

The one point rule is only exact for all polynomials which are linear, for higher polynomials it is 

not exact and it will not give you the exact value of the integral. So for this; let us go to the next 

step. We go to the two point rule. If I take the two point rule what do I know? The points are psi1 

and minus psi1 and the corresponding weight for the two pair, because these are symmetric 

points, so both will have the same weight. This is my point (Refer Slide Time: 11:35) if I want to 

call it as psi2 is equal to minus and the weight of w1 is equal to w

What we want is this two point rule to be atleast exact for the quadratic. Because the one point 

rule could not do it so I expect the two point rule to do it. Let us take I

2. 

2 which we got as 2a0 plus 

two third a2. This will be the function, the integrant evaluated at psi1 plus the integral evaluated 

at minus psi1 into weight 1. This is equal to fx psi1 plus fx minus psi1 will be equal to if you 

work it out 2 a0 plus 2 a2 psi1 squared. 



(Refer slide time: 13:08) 

 

If we compare the two the coefficient of a0 and a2 I get this whole thing into w1. If I compare the 

coefficients then I will get 2w1 is equal to 2 and if I look at the second part it will be 2 psi1 

squared w1 is equal to 2 by 3. From here w1 is equal to 1 and from here by substituting 

everything (Refer Slide Time: 13:58) I get psi1 equal to plus-minus root of 1 by 3. So choosing 

these points psi1 equal to plus-minus root of 1 by 3 and w1 is equal to 1, the summation for the 

two point rule gives us an exact integral for I2. Our two point rule n is equal to 2 will be 

equivalent to saying I have the point psi1 equal to minus 1 by root 3 and the weight w1 is equal to 

1 and the point psi2 equal to 1 by root 3 and the weight w2

Let us see whether this two point rule can give us an exact integral for a cubic polynomial. What 

will the cubic be? This integral (Refer Slide Time: 15:00) if I do it will come out to be exactly 

the same as the integral I

 is equal to 1. 

2 or it will be given as 2a0 plus 2 by 3 a2 and we will see by taking the 

two point rule, I will get the exact integral for n is equal to 2. 



(Refer slide time: 16:10) 

 

Let us ask if it will do the same job for I4 which is the integral of a fourth order polynomial. It is 

a0 plus a1 psi plus a2 psi square plus a3 psi cube plus a4 psi to the power 4 d psi. If I do this 

integral it will turn out to be 2a0 not plus 2 by 3 a2 plus 2 by 5 a4. And if I do the two point 

integration rule it will give me the two point integration rule it will give me 2 a0 plus two third a2 

this one should check and this is not equal to I4

The two point integration rule can give us an exact integral for all polynomials up to a cubic. But 

for a fourth order it does not do the job. Then we naturally go to the three point rule. If I take the 

three point rule what will be the points? I will have psi

. 

1, psi2 is equal to 0, psi3 is equal to minus 

psi1, and here I have weight one, weight two, weight three is equal to weight one. If I look at this 

here is my psi is equal to 0 (Refer Slide Time: 17:50); this is my psi2, this is my psi1 and this is 

my psi3 equal to minus psi1. 
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If I take this and it should give us an exact integral for the fourth order one; I4 was equal to 2a0 

plus two third a2 plus two fifth a4 what I want from the summation is equal to f at psi1 into w1 

plus f at psi2 into w2 plus f at psi3 into w3. This (Refer Slide Time: 19:00) will be equal to w1 f 

at psi1, plus f at minus psi1, plus w2 into f at 0. f at psi1 plus f at minus psi1 you see that this is 

also a symmetric quantity. This will be equal to 2a0 plus 2a2 psi1 squared plus 2a4 psi1 to the 

power 4. This will be 2a0 

If I match the coefficients of a

(Refer Slide Time: 20:10). 

0 a2 and a4 you see that by matching the coefficient of (Refer Slide 

Time: 20:32) this won’t be equal to 2a0, f0 will be equal to a0 by what we have done. If I match 

the coefficient I will get 2 w1 plus w2 is equal to 2, this is my first relation that comes out. Then 

coefficient a2 I will get two third is equal to 2 psi1 squared w1 coefficient of a4 will give me two 

fifth is equal to 2 psi1 to the power of 4 w1. If I take the ratio of these two things this will give 

me psi1 squared, so divide this by this is equal to what will I get? psi1 squared is equal to 3 by 5; 

implies psi1 is equal to plus-minus root of 3 by 5 (Refer Slide Time: 22:00). See it is very easy to 

get these integration point locations though as the number of point’s increases the task becomes 

more and more laborious. 



(Refer slide time: 22:25) 

 

If I have that substituting this expression for psi1 squared from our previous equation we will get 

that 2 into psi1 squared w1 equal to 2 by 3. So psi1 squared into w1 is equal to 2 by 3, implies w1 

is equal to 5 by 9 implies by our first equation. Since 2w1 plus w2 is equal to 2 implies w2 is 

equal to 8 by 9. We have found the locations of the points and the weights. So psi1 is equal to 

minus root of 3 by 5, w1 is equal to 5 by 9, psi2 is equal to 0, w2 is equal to 8 by 9, psi3 is equal 

to plus root of 3 by 5, w3 is equal to 5 by 9; (Refer Slide Time: 24:00); this is three point 

integration rule. 



(Refer slide time: 24:48) 

 

It turns out that if I go and check now for the fifth order polynomial, this was derived using the 

fourth order polynomial, if I find I5 which will be the fifth order polynomial for this also the 

three point rule is exact. If I write it down, the order of the rule and the polynomial order P bar 

for which it is an exact; the one point rule was exact for the linear. The two point rule was exact 

for all polynomials which were at most cubic; the three point rule is exact for all polynomials 

which are at most fifth order. This way we can continue, can we come up with a generic rule? 

Yes, we can come up; you see that if I have n (Refer Slide Time: 25:36), if I have a polynomial 

which is 2n minus 1 P bar equal to 2n minus 1, then the n point rule does an exact job. If P bar is 

less than equal to 2n minus 1, then n point rule is exact. Out of this how do I choose the 

appropriate integration rule? 



(Refer slide time: 26:36) 

 

It is very easy now that you say that if I have a polynomial of order P then n should be greater 

than or equal to order P bar plus 1 by 2. If I use integration rule with number of points greater 

than or equal to P bar plus 1 by 2 then I know this integration is going to be give us an exact 

integral for that particular polynomial. 

Let us say that if P bar is odd then n terms have to be P bar plus 1 by 2. So n is equal to P bar 

plus 1 by 2 will do the job. I am going to fix my polynomial integration rule to n equal to P bar 

plus 1 by 2. If P bar is even, that is the order of the integrant is in even, then I would choose n 

equal to P bar plus 2 by 2. That is it goes to the next higher integer point. So with this choice of 

integration points I can expect that whatever integrals I have to do, if they are polynomials I will 

get an exact value of the integral. This is very important from our numerical computational point 

of view. Question is, can we construct these integration points easily through some other means? 

It turns out that yes, these points psii are the roots of Legendre polynomials defined in the 

intervals minus 1 to plus 1. 



(Refer slide time: 28:59) 

 

Here we have an example of the Legendre polynomials that can be used to obtain the locations of 

the integration points. For example, if you look at the first polynomial it has its root nowhere in 

this interval from minus 1 to 1. Second one has the root at the point x plus 0 which for us is the 

point psi equal to 0. This is nothing but the point for the one point rule. If you look at the third 

one, the second polynomial which is a quadratic polynomial you see that the roots of this appear 

at plus-minus 1 by root 3. These are nothing but again the points - the coordinates of the 

integration points for the two point rule. The third one here can be written as half into x into 5x 

square minus 3. The roots are x is equal to 0 and x equal to plus-minus root of 3 by 5. This is 

exactly what we had derived using the long approach. Once I have these points then I can go 

back to what we have done there and obtained the weights for the integration rule. I can go on 

with the Legendre polynomials and I can get the integration rules. 



(Refer slide time: 30:33) 

 

The location of the points corresponding to the integration rule of choice and it is given here in 

the form of a nice table, you see that if I have the one point rule there is nothing big that have to 

be done the location is psi is equal to 0 and the weight is 2. If I have two point rule here (Refer 

Slide Time: 30:51) I have two points with plus-minus Xi as my coordinates. This is the 

symmetric points and the weights are this. Here the efforts have been made; this has been 

borrowed from a book, to obtain the points with sufficient precision; if you see 1, 2, 3, 4, 5 so up 

to 15 decimal places this has been obtained. That is very important from the computational point 

of view because we would like to do our computation in double precision. If you want to do our 

computation in double precision we should ensure that these points the gauss points, or the 

integration points that we have and the corresponding rates are also obtained in double precision. 

Very nicely all these points are given here you see for the three point rule you have these things 

(Refer Slide Time: 31:38) and so on. 
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Here in this table, I think the points are given up to n is equal to 10 to the ten point rule. 1 2 3 4, 

up to the 10 point rule and in whatever we will do in this course and most practical applications 

we do not need more than a 10 point rule. 

(Refer slide time: 32:20) 

 



The question is, given this 10 point rule, you should be able to write a program where if I give 

you what is the n that I need n specified then you should return the corresponding points psii and 

the corresponding weights. Let us call this program or routine or the sub program whatever you 

want to call it as intake points where the input is n and the output is the values of the psii(s) and 

wi

Once we have this program where we input the n, I should be able to output what are the 

coordinates, all the integration points and corresponding weights. Then I should be able use this 

in the program. Remember we are going to use this in the finite element computations. More 

importantly, in the element stiffness matrix and the element load vector calculations; we have to 

first specify what is n. This question has to be first answered in order to obtain the n which will 

pass to this routine and this routine will return back the coordinates of the point’s integration 

points and the corresponding weights. How are we going to determine this n? 

(s). 

(Refer slide time: 34:50) 

 

Let us say that the objective of our program is to handle a material parameter which is linear at 

most. That is it corresponds to tapering bar. I can have this kind of a situation which I would like 

to handle, a tapering bar. 



We will say that our distributed spring support or the elastic support is constant (Refer Slide 

Time: 35:15). We do not want this to be anything more than a constant. And when we say 

constant and linear we mean that to be piecewise. That is I could have this kind of a tapered bar 

or I could have elastic support in only a particular region of my member (Refer Slide Time: 

35:40). As long as it is satisfied piecewise we are happy. So k(x) has to be piecewise constant we 

are going to fix it which is what our code is capable of handling, the finite element program that 

we are going to develop. EA is linear and this distributed load f(x) you say it is almost quadratic. 

Again when you say quadratic it need not be quadratic in the whole domain, it may be quadratic 

in one piece, 0 in the other piece and linear in the other piece but not more than quadratic 

piecewise. If we have these things, then what is it that we have to do at the element level? If you 

remember that in the stiffness calculation at the element level we had these integrals (Refer Slide 

Time: 36:50) we had 2 by h of the element d psi plus integral psi equal to minus 1 to 1, if I am 

are putting k to be constant, it will k0 into which a constant value Ni hat Nj hat into h of the 

element by 2 d psi. This is from what we have already developed. If I want to now fix the order 

of the integrants here what are the integrants? This is an integrant, this is an integrant. If you look 

at the order of the first one what is the order? The order of this one (Refer Slide Time: 38:00) is 1 

it is linear, the order of this one is P minus 1, the order of this P minus 1, the order of this one is 

0. The total order of this integrant is equal to, for this one, I will have the order of the integrant is 

2P minus 1; I simply sum up this order. So 1 plus P, 1 is P 2P minus 1. If I look at it here, this 

one of order 0 this is of order P, this is of order P, this is of 0. Sum of the orders this integrant is 

of order 2P. This order I will call it as P1 bar this I will call it as P2 bar. 



(Refer slide time: 39:10) 

 

Again let us look at from the element k what is my load vector? Its load vector goes from minus 

1 to plus 1 f hat function of psi Ni hat into h k by 2 d psi. By what we had done, this is of order at 

most 2 this is of order p this is of order 0. This one if I look at the order of the integrant here the 

order is P3 bar, I will call it, is equal to P plus 2. For our integration rule the order of the 

integration rule to choose that I will have to take that the maximum of all this polynomial orders, 

because I would like to integrate the highest order polynomial exactly. What I will get is the 

order q is equal to max of 2P minus 1, 2P and P plus 2. You see that q is equal to for P is equal to 

1. If I take this one is 1, this one is 2, this one is 3. So 3 for P equal to 1(Refer Slide Time: 

40:40). If I take P is equal to 2 then this one is 3, this one is 4, this one is also 4. If I take P is 

equal to 3, then this one is certainly less than this one the second one, second one is 6 and this 

one is 5. This is equal to 3 for the choice of the variation of EA F and K that we have chosen and 

the order of the polynomials that we are picking for the approximations. The integration order, 

the maximum order of polynomial for which I would like to have exact integrals is given by 

either 3 when P is equal to 1 have or 2P when P is greater than or equal to 2. 
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Then our n is equal to q plus 1 by 2 will do the job; this is true when q is odd and this is equal to 

q plus 2 by 2 when q is even. You see that in our approximations apriory, even before doing our 

computations we can fix what is the order of the integration we need because polynomial order 

of approximation P the material data that is EA and k and the load data are available to us a 

priory as input data; using those data I should be able to determine n. 

The next task is if I know n, I know how to construct the integration points and the rates, given 

the n. I pass this n (Refer Slide Time: 43:09) to my routine integ- points and it will output to me 

the integration points psii and wi. Once I have output these integration points in order to do 

smart computation; you remember that finally all this will be done by a computer. And the 

computer should not be subjected to repeated tasks over and over again. It is a good idea when I 

am using sufficiently large number of elements in the mesh and then to construct the shape 

functions at the integration points. How do we do this? 
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We can use another routine which we can call as Shapall which takes as input the P that we have 

and which outputs the following things (Refer Slide Time: 44:29). These arrays I am giving it 

some name P, psitot, dpsitot where pistot can be an array of size the number of integration points 

into P plus 1 and dpsitot is also size n and P plus 1. What am I am going to do here? For each 

integration points psii

Similarly, here (Refer Slide Time: 45:40) I am going to load at each integration point the values 

of the derivatives of shape functions with respect to psi at this integration point. How do I do it? 

You start loop over integration points. For each integration point you have already obtained or 

programmed, the routine which will give you the shape functions at a given point. So here (Refer 

Slide Time: 46:20) I will put psi equal to psi

 I am going to load the value of all the shape functions of order P obtained 

at these integration point. 

i which is the integration point; call shape function 

routine to give Nj psi and dNj d psi at the point psi. For j equal to 1 to P plus 1, I am going to do 

the following: psitot I, j is equal to Nj at this point psi. 
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Similarly, dpsitot i, j is equal to d Nj

In the next class or in the next lecture we are going to extend this further. We have if you 

remember; we have now developed capabilities to get the shape functions and the derivatives at 

any given point psi. Similarly, we can give you the integration points given the order of the rule 

n and thirdly given the order P we can get all values of shape functions at integration points. We 

are going to use this information in the next lecture to obtain the suitable routine which can do 

the element stiffness matrix and the load vector calculations. Once we have that routine then we 

 d psi at this point psi; then I can end the loops. This is a 

program which are a routine again which will take the integration points, the order of the shape 

functions that we want. Which order shape functions? It will go to my shape function routine 

return the value of the shape functions and the derivatives of the shape functions with respect to 

the master coordinate at each of the integration points and store it in a array where we give it 

some name. The first array is the array of the shape functions the psitot and the second one is the 

array of the derivatives dpsitot. Once we have loaded it then you see that all elements when you 

do the integration then we do not need to call the shape function routine over and over again 

before we do the integration. We can simply use these two arrays that we have created and these 

are not big, these are very small in size. We can simply use them over and over again in each of 

the element calculation.  



would have done a significant bulk of our one D computational program finite element program 

that we want to write in one dimension. This we start off in the next lecture. Thank you. 


