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Module - 4 Lecture - 1 

This is the eleventh lecture in the series. Till now, what we have looked at was developing the 

finite element method to solve a typical one dimensional problem and the typical one 

dimensional problem that we had taken was an axial bar subjected to some end load P and a 

distributed axial force F. 

(Refer Slide Time: 00:26) 

 

The bar is of length L and we have said that the bar could be constrained at the end x is equal to 

0 and it could also have a uniformly distributed axial string that is it is lying on a elastic support 

which is going to apply a constraint to the motion or given a resistance to the motion. For this 

problem, we have developed a finite element method where our approach was to a make a mesh 

and for this we have made a uniform mesh and take approximations of order P. P could be 1, 2, 3 

anything and this was uniform approximation; that is all elements have the same P order of 



 

 

approximation and what we had done is, we had highlighted the fact that the solution, the finite 

element solution is given as (Refer Slide Time: 01:57) summation of ui phiix where this N is 

number of elements and P is the uniform order approximation 

(Refer Slide Time: 02:43) 

 

Then we had said that this phii(s) could be constructed by piecing together element shape 

functions. How I had been defining the element shape functions? If this is the generic element k 

so I will have this (Refer Slide Time: 03:20) as the first point, first node or this as the left end 

vertex or edge of the element as the node x1
 of k for the element, the last the other the right hand 

vertex is node xp plus 1k of the element and in between we have uniformly spaced p minus 1 

points so this (Refer Slide Time: 03:20) will be point x2k and this will be point xpk. This is how 

we have defined the element and over the element we had then gone ahead and defined the shape 

function which was like this. This would have been our N1

So, given a generic element we were able to define the shape functions of order P at the element 

level and we have said that the global basis functions are obtained by piecing them up and here 

we had seen the definition of the so-called edge functions and then the internal bubble functions 

and so on. What are the problems with this? Problems with using this kind of an approach, there 

are really no problems, but the basic difficulty that we are going to face is the following: that the 

k (Refer Slide Time: 04:15). 



 

 

shape functions as P increases, shape functions become more complex higher order polynomials 

and so does their derivatives. 

(Refer Slide Time: 05:04) 

 

When I have to evaluate what we had done after this, we went ahead and evaluated the stiffness 

entries at the element level, this we had done like this (Refer Slide Time: 05:50) we could have 

EA(x) dNjk by dx so when we evaluate this integral to obtain the entries of the stiffness matrix, 

we find that this expression integrant the expression dNjk by dx dNjk by dx even EA need not be 

constant all the time; EA could be anything. It could be coming out of this kind of profile or it 

could be coming out of this kind of profile (Refer Slide Time: 06:30), anything. So EA also has a 

complicated expression may have problem of the interest. In all these cases to obtain each entry 

of the stiffness matrix we have do this integration manually. This integration may not be so easy 

to do. By hand we can do it but it will take some time. Also this integration cannot be automated 

which means that we cannot convert the procedure that we have followed till now to obtain the 

stiffness matrix entries. That cannot be converted into a computer program because the computer 

is not capable of doing these integrations in such a nice symbolic way as we can do. That is one 

problem. 



 

 

(Refer Slide Time: 07:40) 

 

The other thing is if we take the load vector entries we see that here (Refer Slide Time: 07:45) 

the load vector has this distributed force term, it could be anything; it could be a cosine kind of a 

load, it could be a sine kind of a load, it could be polynomial load, it could be unsmooth, it could 

be anything. In each of these cases if I have to use a finite element method to get a solution I 

have to do these integrations specifically, for the kind of load which is applied on the member. 

This job will become very cumbersome. We do not want to do this job over and over again 

separately for different loadings, separately for different material constants etc., for different 

order of approximations P. We would like to bring it into a common platform which could be 

automated. So automation is something which we would like to aim for; that is computer 

implementation becomes mandatory. 



 

 

(Refer Slide Time: 09:26) 

 

How do we go about doing it? The idea is simple. Let us take a generic element ik such that the 

first load of it is x1k and the other one, the last node of the element is xP plus 1k. This we will call 

our Physical Element because this is the actual domain that is given to us. What we are going to 

do is, we need to say that this generic physical element comes from something called a master 

element. That is, we are going to define an element like this (Refer Slide Time: 10:10) so this I 

can say is the point psi1, psiP plus 1. This master element again if we see has an interval which is 

of size 2 and it always goes from the point minus 1 to plus 1. This is called the master element 

and every point in the physical element, that is, if we take any point here x could be obtained 

from a corresponding point in the master element by a Linear Map or a fine map. We say that x 

is a function of psi and this is linear; that is it is given by a psi plus b; so given the point psi, I can 

find the point x. How do I define this linear map? This linear map, what does it do if I go back? 

It takes the point x1
 k - that is the point psi1 to the point x1k; the point psiP plus 1 to the point xP plus 

1k. To define a linear we have to give its value at two points. So we are going to give its value at 

the point psi1 and psiP plus 1. 



 

 

(Refer Slide Time: 12:22) 

 

Let us go back and say that we know that x1k is equal to a into psi1 plus b which is equal to 

minus a plus b. Similarly, the point xp plus 1k is equal to a psip plus 1 plus b this is equal to a plus b. 

From here I would like to find out what is a and what is b. So, b if we see it will come out I am 

simply adding up these two things as half of ( xp plus 1k plus x1k) and a will come out to be if I go 

back and put it in there as (xp plus 1k minus x1of k). In this case we can define now x psi, I will put 

the a and b in the expression and I will collect terms and I am writing the final expression. It is 

going to be x1k into half of 1 minus psi plus x2k into half of 1 plus psi. This is mapping by 

which any point psi when it is given to us in the master element, we can find the corresponding 

point x in the physical element. 



 

 

(Refer Slide Time: 14:39) 

 

Since, this is a linear map it also implies a polynomial of order q in the physical element remains 

a polynomial of order q in the master element because the mapping is linear. Remember that, it is 

a linear map that is why it is true. If I have the shape functions defined in the physical element as 

we have done earlier Nik(x) which is a polynomial of order P, will by employing this mapping, it 

should map to a polynomial of order P in the master domain. This is order P (Refer Slide Time: 

15:50) and this is also order P. The shape function if I transform it using this mapping from the 

physical to the master element it remains a polynomial of the same order. Further, what do we 

know? The shape function, if it had a particular value at a given physical point xi it also will 

have the same value at the given master point psii. So we say that the polynomial Ni
 at the point, 

we had given these points, xl of element k it will be equal to Ni
 hat at the master point psii where 

xlk is now obtained by the suitable linear map from the point psii. 



 

 

(Refer slide time 17:17 min) 

 

For example, if I had a quadratic element, this was my x1k this is going to be x2k this is going to 

be x3k and in the master domain, the corresponding point will be psi1 psi2 psi3. Now we know 

the way we have defined things earlier that this point x1 of k is at the midpoint of the element. If 

I do the mapping this point psi2 will be at the location 0 (Refer Slide Time: 17:52) which is the 

midpoint of the master domain and if I define the function, the shape function in the physical 

domain, let us say the first shape function like this (Refer Slide Time: 18:10) which had a value 1 

at the point x1 of k and 0 at the point x2 of k and x3 of k then in the master domain it will have 

the same feature that this value at the point psi1 will be equal to 1, at the point psi2 and the point 

psi3 the values going to be 0. 

Since this N1 hat is a polynomial of the same order as N1k and so on, can we define the shape 

functions in the master elements, the shape functions defined in the master element. First, let us 

look at the linears. How do we define linears? Well, linears correspond to P equal to 1. Here we 

had the physical element (Refer Slide Time: 19:42) and this was N1k, this was my N2k, this was 

my point x1k, and this is the point x2k. Similarly, this is my master element; this is a point psi1, 

this is a point psi2 and this (Refer Slide Time: 20:20) is the function N1 hat, this is the function 

N2 hat. 



 

 

(Refer Slide Time: 20:40) 

 

Tell me now, what is this function N1 hat? As a function of psi what is it equal to? It is very easy 

we will follow the same principle that we followed in the physical element that is we will use the 

definition of Lagrange polynomials that we had given in the physical element. Now the 

definition will be applied to the master element. Here obviously, what we are going to say is that, 

it is a linear which has to vanish at the point psi2 and it should have a value 1 at the point psi1; so 

psi1 minus psi2. What is psi minus psi2? It is going to be equal to minus of 2; so this is going to 

be minus 2 and psi1 minus psi two. What is psi2

Similarly, N

? - 1. It is going to be equal to minus of half into 

psi minus 1; this is going to be equal half of 1 minus psi. This is the definition of the first shape 

function (Refer Slide Time: 21:53), the linear shape function, first linear shape function. 

2 hat of psi is equal to psi, it is a linear which vanishes at the point psi1 ; psi minus 

psi1, and it has the value one at the point psi2. psi1 for us is equal to minus 1 and this is (Refer 

Slide Time: 22:30) equal to 2 so it becomes half of 1 plus psi. So the second shape function and 

first shape function can be defined using exactly the definition of the Lagrange polynomials, but 

applied to the master element and remember that here the values have to vanish at points which 

are appropriately obtained by mapping from the physical element. Similarly, if I want to go to P 

equal to 2 (Refer Slide Time: 23:03). For P equal to 2, how are we going to define this shape 



 

 

function in the physical element? I am not going to do it in the physical element; I will do it in 

the master element. 

(Refer Slide Time: 23:36) 

 

Here is psi1 which is equal to minus 1, here is my psi2 which is equal to 0 and here is my psi3 

which is equal to 1. The first shape function for the quadratic is going to be 1 at the point psi1, 0 

at the point psi2 and the point psi3. This is going to be my N1 hat (Refer Slide Time: 24:02). 

Similarly, the second one is going to 1 at the point psi2 and 0 at the points psi1 and psi3 and the 

third one is going to be 1 at the point psi3, 0 at the points psi1 and psi2. Again we use the same 

definition of the Lagrange polynomials that we had defined earlier. I know that my N1 hat as a 

function of psi will be equal to psi minus psi2 which is 0 into psi minus psi3 that is it has to 

vanish at point psi3 which is 1 and here we will have psi1 minus psi2 so minus 1 minus 0 (Refer 

Slide Time: 25:00) here I will have psi1 minus psi3

We see that this will become equal to this is minus 2, so it becomes equal to half of psi into 1 

minus psi, minus half of psi into 1 minus psi, so this is what our definition of N

. 

1 hat for P equal 

to 2 will be. Similarly, I can define N2 hat this (Refer Slide Time: 25:52) has to vanish at the 

point N1 and N3 so its psi minus, this is going to be psi minus of minus 1 so psi plus one into psi 

minus 1 and it has to have the value 1 at the point psi2 so 0 minus of minus 1 is 0 plus 1 so 0 



 

 

minus 1 so this (Refer Slide Time: 26:30) is going to be equal to one minus psi square. Similarly, 

N3 hat psi will be equal to, if I go ahead and do the same job it will be equal to, psi minus 0 into 

psi plus 1 divided by one minus 0 into 1 plus 1. This is going to be half of psi into 1 plus psi. The 

same job can be done for the cubics. 

(Refer Slide Time: 27:36) 

 

For the P equal to 3 also we can define the 4 cubic shape functions in the master element. The 

only thing is one should remember that in the master element the points psi1 equal to minus 1 

this is psi2, this is psi3, psi4 is equal to plus 1. So we have the gap between these points is equal 

to 2 divided by 3. This is minus 1 (Refer Slide Time: 28:28), this point becomes minus one third, 

this point becomes plus one third. As we had given the algorithm earlier we can apply the 

algorithm here that the point for an element of order P, psi1 is equal to minus 1 and psi1 plus l 

equal to psi1 plus 2 by P into l for l equal to 1, 2,… upto P actually, this 2 by P is nothing but the 

interval length between two consecutive points. 



 

 

(Refer Slide Time: 28:48) 

 

If I define these points psi k in such a way then I can define my Langrange polynomials which 

are nothing but the shape functions quiet easily. Before defining the shape functions, we should 

define these points psi k and then go ahead and define the shape functions. 

If I have this definition of shape functions, how is it going to change things? What we know is 

that we were in interested in finding (Refer Slide Time: 30:10) for a given physical element, the 

derivative of shape function with respect to x because that is what went into our element 

calculations. So, this will now become equal to this (Refer Slide Time: 30:25). The derivative 

with respect to x will now be given in terms of the derivative of the shape function defined in the 

master element with respect to psi into the derivative of psi with respect to x. If we go back to 

our definition of element transformation (Refer Slide Time: 31:10), here if I apply the derivative 

if I try to find the derivative of this with respect to psi, what will I get? 



 

 

(Refer Slide Time: 31:29) 

 

I will get dx from the expression that I had written earlier is equal to minus x1
 of k by 2 plus xP 

plus 1k by 2 into d psi. This is equal to, what is xP plus 1 minus x1 for the element k? It is nothing 

but the size of the element k so I can write it as hk by 2 in to d psi. dx becomes hk by 2 d psi. The 

derivative can I substitute? So, d psi dx becomes equal to 2 by h of k. 

(Refer slide time 33:01) 

 



 

 

We will have dNik dx as a function of x is equal to dNi hat d psi into 2 by hk. Once I have done 

this transformation then, we have to also do the further transformation that EA of x because the 

material constants could be different. EA as a function of x is equivalent to EA hat x of psi. What 

does this mean? I can write by using the transformation properly that the function EA as a 

function of x can be written as a function of psi given by EA hat. Similarly, if I had the 

distributed springs k(x) that would be equivalent to k hat is a function of psi and f of x which is 

the distributed load it will be equivalent to f hat which is a function of psi. This we can do and 

take all our material constants, the loading data from the physical element to the master element. 

Let us use these transformations, now redefine the integrals over the master element. Remember 

that, we have done all this to bring the integrations from the physical element to the master 

element. 

(Refer Slide Time: 34:59) 

 

Our earlier Kij for the element k was integral x1; I am going to drop the superscripts may be 

added, I will added x1 to xp plus 1k EA of x d Nik dx d Njk dx. This we are going to evaluate in 

the master domain. Obviously, when I transform the transformation will take us from minus 1 to 

plus 1 instead of x1
 k to xp plus 1

 k; integration domain will be from minus 1 to plus 1 all the time. 

EA will be replaced by EA hat which is a function of psi. d Nik dx will be replaced by d Ni hat 

by d psi into d psi dx and what is d psi dx? 2 by hk , dNj dx will be replaced by dNj hat d psi into 



 

 

d psi dx which is 2 by hk and dx will be replaced by dx d psi; I will explicitly put it as dx d psi d 

psi. What is dx d psi? dx d psi is called the Jacobian (Refer Slide Time: 37:00). Physically, what 

does the Jacobian of the transformation mean? It means that the ratio of the length of the original 

element to the new element. The ratio of the length if we see that, if I go back to the expression 

that we had derived for the dx in terms of d psi, this quantity will be equal to hk by 2 (Refer Slide 

Time: 37:30) where if we see this is the length of the master element and this is the length of the 

physical element. The ratio of the original element, length of the original element to the length of 

the current transformed element is called the Jacobian. 

(Refer Slide Time: 38:00) 

 

If I club everything together, I will get this Kijk is equal to by doing suitable cancellations 2 by 

hk integral psi is equal to minus 1 to plus 1 EA hat, Ni derivative of Ni hat with respect to psi 

derivative of Nj hat with respect to psi d psi. If I have the elastic support also present then it is 

not difficult, in the case of elastic support I will add this extra bit. Integral psi equal to minus 1 to 

plus 1 we will have k hat of psi into Ni hat into Nj hat, k dx d psi will be hk

Similarly, the load vector for the element will now look as integral psi equal to minus 1 to 1 f hat 

of psi into N

 by 2 d psi. If I have 

the elastic support, this extra term also has to be added to the element stiffness matrix entry. 

i hat d psi and here I will have the effect of the Jacobian which is hk by 2. The 



 

 

simple transformations this we have all done in our calculus courses. The advantage is that from 

the integration over the physical domain now we have brought all the integrals over the master 

domain. For any element this is how we are going to do the integration. 

(Refer Slide Time: 40:44) 

 

Once I have the entries of the element stiffness matrix and the element load vector, then I can go 

and follow the same procedure of assembly that we had followed earlier, then apply boundary 

conditions; nothing else changes. It is only in the integrations that we have come from the 

physical element now to the master element. So before we go ahead let us pause and look at the 

motivation for doing this. The motivation, we remember is that we want to go for a computer 

implementation, that is automation of this whole process of doing the element calculations; doing 

the assembly, applying the boundary conditions and so on. With that in mind we have defined, 

we have converted the integrals from the physical element to the master element. 

The following exercise (Refer Slide Time: 41:45) should be done at this stage, now that we are 

conversant with what a master element is. I give the following inputs, the point in the master 

element, a particular point psi bar, I will call it psi bar this is the point lying in the master 

element which I give and I give order of approximation P. P let us take is either 1 or 2 or 3. Now 

given this input what I want as output is the values of the shape functions Ni hat at the point psi 



 

 

bar and the values of the derivatives of the shape functions at the point psi bar. One has to write a 

program or a sub routine which will take the position psi bar in the master element and the order 

of approximation P as an input and returns as an output dNI that is the value of shape function in 

the master element and the value of the derivative of the shape functions in the master element 

(Refer Slide Time: 43:10). Getting this expression out of this is a little cumbersome but it is 

easily doable. This should be done and out of this the sub routine that comes now will able to 

give us the values of the shape functions and the derivatives at any point in the master domain. 

(Refer Slide Time: 43:41) 

 

Let me remind you that for Pth order element, the shape functions by definition will be what we 

had done earlier; j equal to 1 to P plus 1 (Refer Slide Time: 44:00). From this finding the 

derivative is easy but here we want to do this exercise only for P equal to 1, 2 or 3. 



 

 

(Refer Slide Time: 44:32) 

 

Once we have the shape functions, we have the shape functions routine. What are the checks that 

one can do is that for the given psi bar check whether the sum of all the shape functions is equal 

to 1 or not. The second check that we have to do, at least these checks can be done, this could be 

incorporated in the program that sum of the derivatives of the shape functions at the point psi bar 

is equal to 0 or not. If it is not 0 and if this is not 1 then there is something wrong in the program 

so one should go and check, whether the program is doing, what is wrong? Where is the bug? 

And the bug has to be fixed. 



 

 

(Refer Slide Time: 45:57) 

 

One should also take this program and output at suitably located points in this interval so I can 

take smaller set of points and at each of these points, output the value of the shape function each 

of the shape function and the derivatives and then plot it so output value and derivative and plot 

it using a suitable plotting program. See whether, these functions actually look the way we have 

been drawing them. That is they have a value 1 at a particular point, the shape functions and they 

vanish at the other psi x. These things one should do before using these programs. Once this is 

clear then it will also gives us graphical image of how the shape function look. Then what we are 

going to do is, this integral that we have defined over the (so now I am calling) generic integrant. 
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This integral that we have defined where g psi is generic integrant, this will be now given in 

terms of a numerical integration. Numerical integration means we will replace this integral by a 

sum. Sum of the value of the integrant evaluated at certain points. This is the topic of our next 

lecture where we will talk of numerical integration and how to do it for the given integrants that 

we face in finite element calculations. 

Thank you. 


