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Approximate Method of Vibration Analysis: 

Rayleigh's Method 

We have started discussion on certain approximate method, using which we can get 

reasonably accurate values of the natural frequency of an elastic body system, where 

analytical formulation will not be possible. So, there are two approaches: one is in such 

cases, where the geometry is not simple enough, [amending] the problem or making the 

problem suitable for analytical solution as in case of uniform beams, bars, uniform shafts 

or that means two methods will be either used - computers are used or some quick 

approximate methods to get some idea about the natural frequency. For design purpose, 

sometimes this approximate method may be considered enough rather than going for a 

complete computation. So we have already demonstrated that we use the Rayleigh's 

principle. 
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Rayleigh's principle says that for an unknown system, in the steady state, the maximum 

kinetic energy during free vibration must be equal to the maximum potential energy, 

which in case of elastic bodies is predominantly the strain energy involved. Using this 

principle, what we found in case of bars that, this is equal to… (Refer Slide Time: 02:32). 

That means, the total kinetic energy of the whole elastic body, in its peak value, in the 

normal mode oscillation can be expressed like this, where Xa is the assumed deformation 

shape or mode shape; whereas, this will be in case of longitudinal vibration and we have 

seen by applying this method, longitudinal vibration of a cantilever bar or one end fixed 

bar, that our result was reasonably accurate, even though we assumed the mode shape 

which was not satisfying all the conditions. But one thing we should keep in mind to get 

meaningful values, that whatever mode shape we assume, they must satisfy the geometric 

boundary conditions.  

Geometric boundary conditions are those which depend on only these reflections or the 

slope of a particular cross-section; whereas, the other kind of boundary conditions, for 

example, (Refer Slide Time: 04:44) this end is free from a force, whereas, this end is free 

from any displacement. So, this is a geometric boundary condition. This end is free to 

move, but its force is 0 that is a non-geometric or dynamic boundary condition. So, at 

least the geometric boundary condition should be satisfied. So we solved something like 

this, very simple form and we reasonably got the answer. So, now I think let us go to the 

other type of vibration problem, which is more common, that is transverse vibration. 
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Now, in case of transverse vibration, the kinetic energy expression at the peak value will 

be same, that means, an element with x and the element mass is given by its volume, that 

is, A into dx that is the length of the element.  

(Refer Slide Time: 06:20) 

 

If we take one element of the length dx, in bend condition from here, it gets subjected to 

bending moment, which is M and here it is M plus is small [06:49 min] dM. The force is 



here, say for example V and here is again it is V plus, the resultant force is also very 

small and the displacement of this from here is given by U, which is a function of x and t, 

but which you write as this as a function of x and cosine omega t, we assume this normal 

mode oscillation to derive at the Rayleigh's quotient. Now, in this case the maximum 

velocity will be same as omega Xa. So the square of that will be, mass will be A dx into 

rho then half into velocity square for the whole minimum. So that will remain same as we 

have in this, but however, how much is the maximum strain energy that you have to 

derive and let us find out this element. 

Now, we all know that if element is like this (Refer Slide Time: 08:14) length is dx, its 

flexural rigidity at this particular location, it will vary along this path, but flexural rigidity 

is say EI, that means E is the modulus of elasticity of the material and I is the second 

moment of [area]. Now, this is subjected to a bending moment. We know that in such 

case the energy in this member will be half M into… [09:10 min] Now. the whole thing 

we know is going to be in the form of bending. So, if we fix one end, then the other end is 

going to rotate by an amount d theta, if we try to match it with this and try to rotate the 

other end, the total amount of angular rotation of the end where we are applying the 

moment is d theta. Therefore, it will be half M d theta, we know that, because it is a 

gradually applied moment and so the total work done by this moment will be half into M 

into d theta, because moment also slowly increases from 0 to maximum value, when the 

deformation or the rotation of the end is already there. 

Now if this is dx and if the distance of neutral axis is R, R is nothing but the radius of 

curvature, we know from bending theory M by I is equal to E by R. From geometry we 

also know that if this is dx and this is R then the relationship between these quantities are 

given like this (Refer Slide Time: 10:46). Therefore, dUmax that means maximum strain 

energy stored in this element is given by half into… [11:12 min]. Now here d theta we 

can write this now using dx by R. Now, R is nothing but EI by M; so, it becomes half M 

square by EI into dx. So this has to be now integrated for the whole member starting x is 

equal to 0 to L.  
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Now, how much is M? M we already have found out, let us first write this. Now, we have 

already shown earlier that M is nothing but EI by R and with the sign convention which 

we used for positive moment there and when the neutral axis bends in such a way that 

with x (Refer Slide Time: 12:34) its slope gradually, decreases, so then minus sign 

comes, and 1 by R we have already derived.  

(Refer Slide Time: 12:00) 

 



So once we have integrated, then this becomes (Refer Slide Time: 13:08). Now putting 

the same here we get half EI into this [Refer Slide Time: 13:30]. Thus the Rayleigh's 

when we equate the two equations the natural frequency square we get as this. So it is 

slightly different in this case we are having half EI into d 2 Xa dx whole square into dx. 

We get the expression for the natural frequency. So, this is for transverse vibration. Let us 

see what kind of result we can get from this.  

We will take up an example, first, let us for the sake of comparison, we will take up that 

type of example for which we know the exact solution. 
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Let us take this example - a simply supported coordinate system is like this, the total 

length - L and modulus of elasticity is EI, cross-sectional area is A and density is rho. It 

happens to be so, that in this particular case of simply supported uniform beam EI, A and 

rho - they are all constant. 

So, now what are the boundary conditions? Because the assumed mode shape Xa or the 

deformation pattern has to satisfy as many boundary conditions as possible and at least 

the geometric boundary condition. So boundary conditions are like at x is equal to 0. We 

know that at this end (Refer Slide Time: 17:07), what we know is deformation or 

displacement is 0; similarly, at x equal to L, again at the other end displacement is 0; 



these are the boundary conditions of geometric [17:35 min]. Now the other boundary 

conditions which comes that here again there is no moment acting; that means, if moment 

is not here that means, the second derivative d square Xa which is proportional to the 

moment should be also 0 and since it is simply supported at both ends, so these are the 

four boundary conditions. 

Now, we have to assume mode shape. Let us take a case I, Xa is simply this (Refer Slide 

Time: 18:49). If you assume like this, the first boundary condition that X is equal to 0, 

capital Xa is 0…. Similarly, at x is equal to L, Xa is 0, which is again true. So the 

geometric conditions are satisfied. Let us see how much is d 2 Xa dx square? That is 

equal to minus 2C by L. If we differentiate this twice with respect to Xa we get this, so 

which is not equal to 0; neither at x is equal to 0 nor at x is equal to L. So these two 

boundary conditions are not being satisfied. Now once we have assumed Xa and we have 

found out the expression for x two prime a only thing we have to do is to substitute Xa in 

this expression and get the value of omega square.  

(Refer Slide Time: 20:39) 

 

So, to do that what we find that EI is constant, but in reality if it is not constant and it is a 

function of x we can keep it inside that. This is equal to EI into… now d 2 Xa dx square is 

minus 2C by L; if we make it square, we will get this (Refer Slide Time: 21:15). So what 



remains inside is simply 0 to L dx which is nothing but simply L; that is, 4C square EI by 

L - that is the numerator; the denominator is - rho A is again constant, because it is a 

uniform beam what remains inside is this. If we do this integration we will get this (Refer 

Slide Time: 21:29). Equating the two or rather finding out the omega square like this, 

omega square will be 4C square EI by L or omega is approximately equal to this. So this 

gives the value we obtained from this assumed mode shape Xa which satisfies only the 

geometric boundary conditions.  

We should remember our exact value of omega. What you found out from our 

mathematical analysis, it was phi to the power two phi square; so it is 9.86. This is 

actually phi square; that is the exact. You see that it is reasonably accurate - 9.86 and 8.95 

- approximately 0.1 difference in 10, that means, if it is 0.1, it is just 1 percent error, in 

spite of the fact we made a very approximate assumption. If we know, for example, if we 

try to improve upon that suppose let us take up an expression for Xa, which satisfy all the 

four conditions. So let us see what happens. [26:10 min] 
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If we take another choice Xa, if we make this choice, then when Xa is that and d 2 Xa dx 

square is this. Now you see that if we put x equal to 0, Xa is 0 and if you put x is equal to 

0, d 2 Xa dx square is also 0. So it satisfies both the conditions at x equal to 0. Next, if 



you put x is equal to L, this is L4, so 2L4 minus 2L into L cube. So minus 2L4; so X is 0 

at x is equal to L; this is satisfied.  

Next if you put x is equal to L here (Refer Slide Time: 27:57) this is minus 12L square, 

this is plus 12L square; so d 2 Xa dx square is also 0 at x is equal to L; thus all four 

boundary conditions are satisfied. Now, still it is not a very complicated expression, but 

obviously integration etc., will be a little bit involved and let us see what we get. If we 

substitute Xa and [X the] whole prime a in the expression and find out this numerator and 

denominator we get this (Refer Slide Time: 28:55).  

Now let us compare the result with the exact value what we received from analytical 

method done in the previous module. If you compare this with the exact which is this 

(Refer Slide Time: 29:27) you find after second decimal place, there is no decimal. The 

difference will be found only in the third decimal place and that to again having the… So 

when you satisfy all the boundary conditions, the result what we normally receive is very 

accurate except for some special situation. One thing of course you should remember we 

have not calculated up to this third decimal place. If we do it, we will find still this will 

be slightly higher than the first natural mode we find by exact method. Therefore, what 

we get from this is that whatever value we get by the method of Rayleigh's approach - we 

have shown it earlier also - it is always slightly higher than the exact value. So, as a result 

what is happening, this Rayleigh's method will give us a limit, whatever value we get the 

actual value of the first natural frequency will have to be below this.  

By Dunkerley's method if we get the value of omega1 like this, then we know the actual 

value of omega1 will have to be above this. Thus we get a band and the exact omega1 

must lie in this. Therefore, if we can make by some method this band as narrow as 

possible, then omega1 can be estimated in a very accurate way. Now, the question is that 

in all these cases we could solve the problem exactly, so what we have gained by this? 

We only got an approximate answer; that will be apparent if we take another example. 
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This example is that let us take a tapered cantilever beam, the length of the beam is x, 

length of beam is L as before and the depth, that means, in reality this beam is a 

cantilever beam with constant width. So the width is constant and the thickness is 

uniformly varying and at the other end it becomes H and at this end it is 0. So, that means 

the depth is increasing and it becomes H; the width remains constant. So the material 

property remains constant, which is rho, that is the density and E that is the modulus of 

elasticity. 

So, with this, one thing we have to show - what are the boundary conditions? Now this is 

an example to indicate that in reality boundary conditions are not on Xa or these things; 

boundary conditions are deflection, slope, shear force and moment. These are the real 

conditions, but they get translated into conditions on Xa. So here we will find sometimes 

it may be important to note the condition on the actual condition; that means, at x equal to 

0 moment is 0, bending moment is 0, because it is a free end, shear force is 0. At x is 

equal to L that is the fixed end, deflection is 0 because it is a fixed end and slope is 0. So, 

we now we assume a mode shape Xa in such a way that all the boundary conditions are 

satisfied. 



We will do it here like this - if Xa is this, then Xa prime that is dXa dx will be equal to this 

(Refer Slide Time: 36:03). d 2 Xa dx square is this. Now let us see the conditions which 

are being satisfied. At x is equal to 0, is the moment 0? Now, if you try to see whether 

this is 0 or not, that is not the condition here. Here the cross-sectional area is 0; since 

cross-sectional is 0 because it is coming through a point or thin edge, so whatever maybe 

the value of this, moment applied will be not thus this, but we have to the take care of EI. 

So let EI is 0 because I is 0 at this end. Therefore, bending moment at this end is 0, 

though the second derivative is not 0; this is a very important point to observe.  

Secondly, shear force will be then whatever; you will find shear force will be given by 

this third derivative, which is 0 here; of course, even otherwise if it had been 0 because 

the area is 0. So, both the boundary conditions at this end (Refer Slide Time: 37:37) are 

being satisfied. Let us go to x is equal to L, x is equal to L, what happens? Deflection is 

0; so we find from this expression (Refer Slide Time: 37:50) that deflection is 0. 

Similarly, the slope dXa dx is also 0 at x is equal to L. Therefore, all four boundary 

conditions are being satisfied. So this is a very special case, so keep in mind that we need 

not all the time be carried away by the expression of this and trying to see…; it also 

depends on the cross-sectional area and this is a case where we find that without 

satisfying all the conditions on Xa because I being and A being 0 here….[38:29 min] So 

four boundary conditions are being satisfied. Now let us apply this to the expression 

for… [38:33 min]. 
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Before we do that, the two quantities A is a function of x, which is B that is the width into 

the depth; depth will be x into H by L. That means, if we go here, at x, this will be 

linearly at x is equal to L depth is H, so at x is equal to x this will be H by L into x and if 

the width is double B, then we just multiply by B; so this is the cross-sectional area.  

Similarly, the second moment of area, that is I, will be xH by L cube; B is a constant. So 

if we substitute this in the expression for omega we will get omega equal to this (Refer 

Slide Time: 40:44). So this is the answer we obtained with that function as the assumed 

mode. Now this is a particular case, where it is possible though it is a non-uniform cross-

section being linear, you can solve the problem exactly by analytical method and exact 

value of omega is found out to be this (Refer Slide Time: 41:36). Thus, we find that the 

result we get by a reasonably simple mode shape assumption is quite accurate and the 

error is very low, but all the time we notice that the frequency, which we get by assuming 

a mode shape which is not the exact one, will be always higher than the exact value. 

I think more problems can be solved, but that is predominantly an algebraic manipulation 

most of the time and solving integrals. So we will not go further in that direction, rather 

what we will try to see that if there are methods by which you can improve the accuracy - 

that should be our concern. The one very important or rather I will say very convenient 



way of improving accuracy of the method following the Rayleigh's approach is if we use 

Grammel's modification. 

Now, we have seen that omega square we are expressing, which is the Rayleigh's 

quotient as 0 to L (Refer Slide Time: 44:13); here with little bit of thinking it can be 

found out that the error is getting introduced, because of this double differentiation - one 

is of course that Xa itself is not the exact mode shape, which is valid; it is slightly 

different from that, that is a source of error plus whatever may be that this double 

differentiation is a source of error in the whole process. So, what Grammel did, he tried 

to formulate the same thing that means equating the maximum kinetic energy or 

maximum potential energy during a normal mode oscillation, but formulate it in such a 

way that this double derivative is not necessary. So, what was done is that it considered 

that the system or the beam or flexural member, is subjected to a peak inertial loading, 

that means, during every cycle there is one period when it goes to the extreme, it is 

subjected to inertia forces. 
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Say for example, if we take any kind of beam, but we will take an example like the 

cantilever. So what will the inertia force acting on any particular element be? It will be 

the mass of the element into acceleration of the element at that peak point, that means. 



peak acceleration minus. So, it can be either in that direction or in this direction; so it will 

be something like this - inertial loading. Inertial loading can be written as omega square 

and the elements here will be the d mass dm into this (Refer Slide Time: 46:36). So it will 

be a distributed one; this is the inertial loading. What we will do, we will consider that 

this is the loading on the whole thing. Now, if this is the loading on the flexural member, 

we can find out the bending moment due to this as a function of x due to the inertial 

loading; it is a distributed load and let M be the bending moment due to that. 

Now, we have already seen that dU of an element is half M into d theta, which was equal 

to half M into dx by R, where R is the radius of curvature, at that bend condition, at one 

extreme end. Now, from [beam] theory or rather simple expression that M by I is equal to 

E by R. If we keep this element as a beam, the length of the beam is dx, radius of 

curvature in bending is R; then we have seen just now, that R is or rather we can replace 

R as dx by d theta or simply we can write this as R d theta is dx equal to…. We will come 

to that later. So, using this now, we get for the elements maximum strain energy stored is 

half. Here R is equal to M by EI. So now let us use this here; it will be half into M square 

by EI dx. So now from this we will get maximum potential energy whole will be this 

(Refer Slide Time: 51:10) and Tmax of course remains as it is. 

So the procedure is now that if this will be the inertial loading, which is in terms of 

omega and Xa square, let us find out the bending moment in terms of Xa square omega, 

no differentiation is involved and then substitute it here and integrate it. Then when we 

equate Umax and Tmax, this will yield the value of omega; an equation, which will be better 

in accuracy. The reason is this: that we are avoiding this double differentiation of Xa 

which has been assumed. So, in any kind of assumption of a car, the slope, the order of 

error in that will be more than the order of error in the actual function. That is why we are 

now getting a better result, as we are doing a whole calculation without differentiating 

Xa. 
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