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Another very common type of element which finds its usage in mechanical systems, 

machines or shaft, we will take up now, the oscillation of a very common type of 

element. We will consider, of course, the perfectly circular shafts of some length and 

uniform cross-section. 

(Refer Slide Time: 00:48) 

 

This is the uniform circular shaft in question and the mode of oscillation, as I have 

already explained in my previous presentation that it will be about an axis which is called 

the longitudinal axis x whose origin is here and that is o. We again consider an element at 

a distance x from the origin whose length or thickness is dx. If we imagine this element 

of infinitesimally small thickness, the displacements will be that if you take the plane 

which is at a distance x its rotation. Now, the displacement will not be linear 

displacement, but angular rotation. Let this be theta which will be a function of x and 

time. As we found in case of a bar it was u, that is, the longitudinal displacement. It was 



also a function of its position and also the instant we are considering. Obviously, the 

rotation of the other one will be the amount of rotation of this plus the slight difference. 

So, these are the displacements of the two ends of the element. Now, let us draw the 

elements separately. This is the element.  

Now, if you consider the motion of this element and find out the equation of motion 

which is a valid for all such elements at all position. Now, here, as we know that the total 

moment which will be resisting the rotation of this, from this side, we say M. The 

moment which will be trying to… (Refer Slide Time: 04:16). So, there will be two 

moments, we are seeing, one on this phase, because of the twist like this, this phase will 

be subjected to resisting moment and this phase will be subjected to moment in the 

positive direction like theta. Therefore, we can say, this is a shaft of length dx and we 

have not mentioned the size; let us consider radius to be r. Then the twist which this shaft 

is subjected to it may be element, but nevertheless it is a shaft will satisfy our standard 

relation; Moment on a shaft by the polar second moment of area is equal to clear modular 

G, amount of twist psi and the length is L. This is the standard relation we know for the 

torsional of a shaft. Length is L.  

If we now compare this with this standard formula, the moment on this space is M and 

this place is also M, just slightly a different value; so, M will be M. Second moment of 

area of a circle with radius r is half or pi, t is the clear modular. What is the amount of 

twist? Now, this end has moved by theta and this end has moved by theta plus something. 

So, the amount of twist of this elemental shaft is nothing but that extra something, 

otherwise this rigid body rotation is like theta and then an extra amount. So, this is the 

amount of twist, so that will take the place of pi (Refer Slide Time: 07:09 to 08:04).  The 

length of the element of shaft here is nothing but dx, or we get 2M by pi r to the power 4 

equal to this, or from this we get M is equal to pi r to the power 4 by 2 into G[.]. So, this 

is what we find; the expression of moment in terms of the displacement and the material 

properties, and the size of the shaft that is r.  



(Refer Slide Time: 08:47) 

 

Next, again, we find out the dynamics of this element; what is the total moment acting on 

this. Total moment acting on this is resisting moment M and a forward moment M plus 

something. Therefore, (Refer Slide Time: 08:49) this is the total moment acting on the 

element in the forward direction that is theta[.]. Therefore, this must be equal to 

Newton’s second law. This total moment must be equal to moment of inertia of this 

element into the angular acceleration. Moment of inertia will be how much? For this, we 

know it will be half mass of this element, that is, volume of the element is this (Refer 

Slide Time: 09:34) into rho; that is, the mass of the element into r square; this is polar 

moment of inertia of the element into angular acceleration. 

Now, what will be angular acceleration? The amount of rotation is given by theta. So, del 

theta del t will be velocity and del square theta and del t square will be the angular 

acceleration (Refer Slide Time: 10:02 to 11:22). From this, we get dx and dx cancelled, 

so, pi r to the power 4 rho by 2 into this. Now, M is this. Using M and substituting it here, 

we get, del M del x will be equal to G del square theta by del x square into pi r to the 

power 4 by 2 is equal to pi r to the power 4 by 2 rho or finally, we get this equation . We 

get an equation which is identical in form with the equation of motion for longitudinal 

oscillation of a bar. This is the equation of motion which is valid or that is the 

relationship between the angular rotation, time, material properties, location and so on. 



 If you remember previous one, in case of longitudinal oscillation it was exactly same, 

only here it was G by rho. So, the velocity of propagation of torsional wave is given and 

the equation is (Refer Slide Time: 12:18 to 13:18). So, this is the velocity of propagation 

of a torsional wave. Now, since the form of the equation is exactly same as the previous 

one, for normal mode oscillation, let us consider, all the elements will execute harmonic 

oscillation of same frequency. Therefore, theta x can be written as a product function of x 

only into a harmonic function of time, it can be cosine omega t or sin omega t. 

(Refer Slide Time: 13:40) 

 

If we substitute this here, we get (Refer Slide Time: 13:45 to 14:43). So, when you 

substitute this theta here and cosine omega t gets cancelled, this is the equation. General 

solution will be this; as before, omega can be found out from the boundary conditions of 

the shaft. So, the solution should be very similar, that means both ends free or one end 

free and one end fixed or both ends fixed, we will get similar kinds of things. So, for 

example, here also, we will find boundary conditions can be of two types; Free means no 

moment acting there and as we know moment is proportional to theta dx, forget about the 

cosine omega t and if that has to be 0 all the time. It means it is same as Refer Slide 

Time: 16:00) and for fixed ends will be equal to 0, for all kinds. 



 In case something else is attached, a disk, then the inertia force of that disk is the total 

moment acting at that end. Similarly, we can proceed to solve various kinds of solutions 

and we will get exactly similar expressions only. Here, C will be replaced by Ct whose 

value is equal to square root of G by rho. In case of longitudinal propagation, it was G by 

rho square root. We will not repeat that; rather, I think we would like to solve an 

example. So, one can easily solve various types of conditions; free free, fixed free, fixed 

fixed and a shaft carrying a disk at the end. The mode shapes also will be similar to what 

we got in case of longitudinal vibration of bar for the same condition, same form of 

solution; only X will be replaced by C. C will be replaced by Ct. 

(Refer Slide Time: 17:55) 

 

Instead of solving this type of problems which will be identical in form with the problem 

which we solve for longitudinal oscillation of bars, let us consider a case, where we have 

to deal with the other kind of problems. That means, a shaft carrying a disk at the end, the 

polar moment of inertia of the disk is J0 and the length of the shaft is L. Now, what will 

be the boundary conditions? We have to find out the natural frequency of disk. Here, the 

material density is rho and the modular is G. The boundary conditions, we find that we 

consider this x and this as origin. At x is equal to 0, theta x equal to 0, because it is a 

fixed end. At x equal to L, the moment which is acting on this will be equal to the inertia 



loading. Now, inertia moment, acting across, acting on this will be minus J0 into theta 

two dot at x equal to L. 

Now, if we know that theta which is a function of x and t written for natural mode of 

oscillation like this, then theta two dot is nothing but minus omega square (Refer Slide 

Time: 20:52). So, we can substitute it there and find out the value. The moment which is 

acting here, also will be dynamic moment, moment will be magnitude of the moment, 

because it is also a harmonic function of time into cosine omega t, so magnitude of the 

moment at this free end when you are dealing only with magnitude, then it will minus J0 

into minus omega square theta x. So you can say, when you are dealing with only the 

magnitude is equal to omega square J0 theta of L. We have to keep in mind that here the 

magnitude we have to find. We have already seen that theta of x we get as C1 cosine 

omega by Ct into x plus C2 sin omega by Ct into x; this is the form of the solution  

So we know (Refer Slide Time: 22:22 to 23:16) we differentiate once with respect to x 

and we get d theta x by dx. Now, if we use the boundary conditions, theta x is equal to 0, 

at x is equal to 0. If we put x is equal to 0, this term is 0, and here it is only C1, so, this is 

0. That means, this will give us this. Therefore, we will have theta x as simply C2 sin 

omega by Ct into x is 0.  

(Refer Slide Time: 23:40) 

 



Let us find out moment at x is equal to L. How do you find out moment? Magnitude of 

moment at x equal to L will be equal to (Refer Slide Time: 24:07 to 25:10). We have 

already seen the expression for moment was pi r to the power 4 by 2 G d theta by dx. 

Therefore, moment at x is equal to L will be the same thing when we calculate x. So, 

therefore, this is nothing but, now C1 is 0, so, d theta x by dx is equal to C2 into this. So, 

if you put x is equal to L here we get this expression. This we have found out already; 

this is equal to J0 omega square theta L. Now, theta L will be nothing but J0 omega 

square. This theta L will be nothing but C2 sine omega L by Ct. Therefore; we get an 

equation in this form. 

(Refer Slide Time: 26:31) 

 

I think C2 will get cancelled and it can be written in this form, or we will get omega L by 

Ct (Refer Slide Time: 27:13 to 29:32). Ct, we have already found out that Ct was Ct 

square is equal to G by rho. If you use it here, we get this. How much is this? This will be 

1 by 2 pi r square into L into r square. Now, this is pi r square is the cross sectional area 

and L is the total length of the shaft. This is nothing but the total volume of the shaft into 

rho. This is the total mass of the circular shaft and 1 by 2 into mass of the shaft into r 

square is nothing but second moment of area of the shaft. If we treat the shaft as a rotor 

then polar moment of area will be this. Therefore, the equation finally we get, beta into 

tan beta J sin t by J0. Thus, we get a transcendental equation and this transcendental 



equation can be solved only by computational techniques or in the earlier days it is used 

to be solved by using standard table instrument, one standard book of instrument. 

What we will do here, we will give the solutions, first three solutions. First three 

solutions, of course in this state will require the two values. Here, we do not have and we 

have not described. If we want to keep it in this form, then it is alright. But for solving a 

numerical problem, it will be essential for us to give the numerical values of the length, 

the values of the moment of inertia etc. 

Then, this can come and given to be beta. Once you know beta, beta is equal to (Refer 

Slide Time: 31:02), we know beta is equal to omega L by Ct. Therefore, you will get 

infinite number of values of beta. Therefore, from this, we will get particular value of 

omegai is nothing but betai by L into square root of G by rho. Substituting the value of 

beta here, what we get from that transcendental equation will give us the corresponding 

frequency, and of course, i will be 1, 2, 3 and so on. This is just an example.  

So, there can be another problem in which both sides of a shaft carries two discs; one 

with J1 moment of inertia, other side will be J2. The shaft dimensions for given 

materialistic types, we can find out again, the equation for which that means, a 

transcendental equation we will get and again solving this, we will get ultimately the 

natural frequency. Thus, we find that torsional vibration of shaft are very similar in its 

form and general form of solution also and equation also, as in the case of longitudinal 

vibration of mass.  



(Refer Slide Time: 33:00) 

 

The next type of commonly used elements we find in machine with be beam. As I have 

mentioned, in case of beam, the direction of moment of the particles of the machine 

object will be perpendicular to the longitudinal axis of the element.  

Next, we take up vibration, that kind of vibration is almost common in machines and 

structures. Therefore, we should pick up cracking more details. It is true that longitudinal 

vibration of bars etc., are important but in reality what happens, we get most of the time 

lateral vibration of the structure moment. 

We come now to transverse vibration of beam and such problem, again as mentioned 

earlier, we will take up uniform beam with a straight and we represent this beam by this, 

its longitudinal axis is x, with origin at one end as before, now the displacement of the 

member or the element will be in the transverse direction. Let us consider one particular 

element. As we have been doing for the other cases, we will derive the equation of 

motion valid for this element. So, this element comes at sometime here. So that the space 

which is at a distance x from the origin is displaced by an amount u and the space which 

is at a distance x plus dx is displaced little bit more than the previous one. Obviously, it 

will be u plus del u by del x into dx, where dx is the distance between the two ends of this 

element.  



Now, if we consider a free body diagram of this element. The two ends, now when a 

beam bends like this, the moment acting here will be M and bending moment not twisting 

moment in the other will be same as M plus little difference from this (Refer Slide Time: 

35:04). Then, we also know that during bending, this phase will be subjected to a shear 

force, which is say V; the other will be also subjected to V plus del V by del x into dx. 

Now, all this quantities V, M, u they are all continuous functions of x and of course at 

each point there is a value depending on that x and subject to multiplied by a harmonic 

function of time. So that everything fluctuates harmonically with time.  

Now, let us now consider the relationships between various components. First of all, you 

see that the total moment we neglect rotary inertia. It means that in this direction rotation, 

first of all it is small vibration, so this u is very small. It hardly moves too much away 

from the original location and the slope etc., are all very small; slope of the bending. 

Therefore, the angular motion of the element is ignored. If this rotary inertia rotary 

motion is ignored, then the total moment which is subjected to must be 0. So, what is the 

total moment? 

 If we take the total moment in the clockwise direction it will be M minus anti-clockwise 

direction which is M plus (Refer Slide Time: 37:02). That is, the moment in the anti-

clockwise direction plus there is a clockwise moment because of the two Vs. This is 

slightly different from V, but nevertheless the total moment produced by two parallel and 

opposite forces will be V into dx. This behaves like a couple with arm length dx. This 

must be equal to 0, because there is no rotary inertia and this gives us the shear force is 

equal to del M by del x. That is the relationship we get. 

Now, still we have to get the relationship of this quantity in terms of the deflection. So, 

we know that for bending theory, beam equation says bending moment by second 

moment of area I is equal to E by R, where M is the bending moment; I is the second 

moment of area of the cross-section is equal to E is the of the module of elasticity of the 

material and R is the radius of curvature. Now, if we see the radius of curvature in terms 

of displacement, how do we find out? (Refer Slide Time: 39:15) At one point, here for 

example, the slope is, if this displacement is tan inverse del u by del x in this direction it 



is u. So, del u by del x is nothing but the slope of the tangent to the point to that curve, 

which is nothing but the central line. So, at this point, we can find out the slope and the 

slope will be tan inverse. Because you know this tan angle is equal to del u del x. If you 

go to this point (Refer Slide Time: 40:20) this angle will be equal to tan inverse, what 

will be the slope? It is del u del x and here it is plus del 2 u by del x square into dx, the 

slight difference.  

Now, only thing we have to keep in mind that when we are taking this (Refer Slide Time: 

40:55to 42:00) if we draw two perpendicular to a two different locations, this angle will 

be the difference between the slope at this point and this point. All amount of rotation of 

this because this is also perpendicular to this; this is also perpendicular to this. So, this is 

nothing but the difference in inflation of these two tangents. That is given by simply this 

one. Since, this is all small, so you call it delta theta. Of course, the two ends of the two 

elements are dx. So, we know that R into delta theta equal to dx; delta theta we can 

replace by d. Now, in terms of u, what we get here? Since these angles are all very small, 

we can always write tan theta is equal to theta. Therefore, the difference between this and 

this will be d theta will be del 2 u by del x square into dx. Only thing we have to keep in 

mind that, as x is increasing; slope is decreasing. So, this is definitely a negative quantity, 

because if you go to increasing x, del u del x decreases. Therefore, del 2 u and del theta 

square must be a negative quantity. Now, that you have to keep in mind. Finally, we have 

to shift that here.  

Therefore, you will get minus R del 2 u del x square dx equal to dx or 1 by R equal to 

minus del 2 u del x square . So, you can write in this equation, using this is a standard 

equation and now you have got another relationship. Using this and this, we get M is 

equal to minus EI del 2 u by del x square. This is the positive definition of M. Therefore, 

to maintain this sine equality and this is always negative. That is why for positive M, del 

2 u del x. Therefore, V will be del M del x. So, it will be minus EI del 3 u by del x cube. 



 

Next, we come to again as usual to Newton’s second law. So, total force acting on this in 

the transverse direction is V plus del V by dx minus V. So, resultant force is only del V 

by del x into dx. That will be (Refer Slide Time: 45:39 to 48:51) and this must be equal to 

the acceleration of the element in the transverse direction multiplied by its mass. Mass 

will be A into dx is the volume into rho that is the mass and del 2 u by del t square is the 

acceleration. So, using this del V del x into dx we get this expression. This is the equation 

of motion for the element. It depends on modulus of velocity, second moment of area I, A 

of cross-section and the density like this. So, for normal mode oscillation, we can take 

obviously as before that this is composed of function of X. When you substitute this here, 

we get minus x into omega square, cosine omega t gets cancelled from both sides, a final 

form you can write like this (Refer Slide Time: 48:51). 



(Refer Slide Time: 49:41) 

 

The general solution, what we can get, if you take e to the power st form solution. Then, 

that gives us the characteristic equation as x to the power 4 equal to beta to the power 4. 

So, this gives us s equal to either plus minus beta or plus minus i beta. There are four 

rules; plus beta, minus beta, plus ibeta and minus ibeta. Therefore, the solution will be of 

the form C1 e to the power beta x plus C2 e to the power minus beta x plus C3 e to the 

power i beta x plus C4 e to the power minus i beta x. Therefore, the solution will have 

both hyperbolic term and harmonic term. This will be lead to either hyperbolic function; 

this will be lead to harmonic function. Or we can write like this, A cosine hyperbolic beta 

x plus B (Refer Slide Time: 51:11) and the A B C D etc., including beta will be 

determined by the boundary conditions. In case of beam, boundary conditions will be 

four in number two ends; each end you have to tell either deflection or the slope. There 

will be two conditions or in the case where it is force is free, then force will be 0 and 

bending moment will be 0. We will take up this in the next presentation along with the 

solution of some problem. 


