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We have seen that determination of the natural frequencies and the natural modes of 

multi-degree freedom systems are quite computationally intense, particularly when the 

number of degrees of freedom increases. In many situations, the designers will be happy 

to have some approximate idea about the fundamental frequency, that is, the lowest 

natural frequency. 

In this lecture, we would like to present techniques of quickly and approximately finding 

out the lowest natural frequency. There are quite a few methods and we would like to 

discuss two methods: one method, which will give us the lower bound, that means, the 

actual natural frequency of the first mode will be higher than the value we find; another 

method by which we will get the upper bound, that means the value of the actual natural 

frequency will be lower than the approximate value. Therefore, if we apply both the 

methods it will be possible to get quickly a band and the actual natural frequency will be 

in that band or that range and that can sometimes be very useful in the designing stage. 

The first method which we will discuss is called Dunkerley’s Approach. 



(Refer Slide Time: 02:15) 

   

We will take up a particular case as an example, but whatever we discuss and derive will 

be quite general as you will realize. Let us take this 3 degree freedom system. For this 

particular system, for example, we can find out the influence coefficients. Now one thing 

is perhaps clear to you - that there will be two kinds of equations while finding the 

flexibility matrix and using the influence coefficients upwards. The cases which we solve 

like this, masses are there, but the other end is free. Those cases are relatively simpler for 

finding out the flexibility matrix because they are statically determinate. We can just 

apply the load anywhere, immediately we know the load under which each individual is 

being subjected. But a case like this when this end is also connected it becomes statically 

indeterminate. Still, it is possible to find out the deflection by applying unit load, only 

thing that it is slightly more involved, and therefore, I think one has to be careful. 

 The influence coefficients are a11 or aij. Now, we know that under normal mode 

oscillation, each coordinate or displacement can be written as xi and say the mode is jth 

mode is equal to Xi jth mode cosine omegaj t, which means, all i varying from 1, 2, 3 for 

the three stations and j is a particular natural mode. So, in this case, we will be mostly 

concerned with the fundamental frequency in the approximate method. We may consider 

this to be 1 and now onwards for the sake of simplicity, we will not put this as first, but 

we will understand that what we are writing is represented as first natural frequency or 



the first mode of oscillation. So, we can write that xi is equal to capital Xi cosine omega t. 

Omega, obviously, is then the first natural frequency because that is our concern; x two 

doti will be minus omega square Xi omega t and the inertia force at each station is Fi is 

equal to, [this i we should not substitute, so we call it F; F] will be minus mi xi two dot at 

the station I, which will be nothing but omega square mi Xi cosine omega t. Now, we also 

know that all the stations, all the masses reached their extreme position either way at the 

same instant when their velocities become 0 and of course acceleration becomes 

maximum. 

So, maximum inertia force equal to omega square mi Xi. At this instant, the deflection at 

the ith location will be due to all these inertia forces, because, there is no other external 

force acting. Therefore, it will be omega square mj Xj aij, this is the maximum inertia 

force at this instant at the jth station and the deflection at the ith station due to this force 

at jth station is multiplied by aij. This we sum up from j equal to 1 to N; this N is the 

number of degrees of freedom. In this particular case, N is equal to 3 or this we have 

done (Refer Slide Time 09:19). The equation will be this (Refer Slide Time 09:40)..  

(Refer Slide Time: 10:14) 

 

So, for three cases N is equal to 3, the equation in expanded form m1 a11 minus 1 by 

omega square (Refer Slide Time: 10:39). It is the same set of equations which we have 



derived earlier and you all understand now that a non-trivial solution will be possible 

with determinant being 0. So, for non-trivial solution the determinant will be 0, this we 

have done. 

So now, if you write the determinant the characteristic equation becomes like this (Refer 

Slide Time: 12:27 min). It becomes 1 by omega square power 3 plus a11 (Refer Slide 

Time: 12:33); you need not go to the higher modes. So, for the general case, N degree of 

freedom system, this will become 1 by omega square power N (Refer Slide Time: 13:30); 

we have not derived it, we have just written the calculation, but one can easily do the 

whole calculation for N degree of freedom system case and the characteristic equation for 

the first two terms will be like this. Solutions of this equation are the natural frequency of 

the system. So, if the solutions, (Refer Slide Time: 14:18) which represent the natural 

frequencies be omegan1, that is the first natural frequency; omegan2, that is, the second 

natural frequency and so on; omegan3 is the third natural frequency in this particular case; 

in general, it will be then these are the routes of … that means, the 1 by omegan square, 1 

by omegan2 square, 1 by omegann square these will be the routes of this characteristic 

equations. 

(Refer Slide Time: 15:46) 

 



We already know that sum of the routes; we can write them like this: 1 by omegan1 

square plus 1 by omegan2 square plus for this one it will be omegan3 square will be equal 

to this (Refer Slide Time 15:55). This is the known result of algebra, but one can easily 

do this by this technique. That means this equation for 3 degrees of freedom then it 

becomes 1 by omega (Refer Slide Time 16:30). Now, this is an equation of the same 

order and if we expand it, the routes of this equation are very obviously this, this and this. 

Therefore, this equation is same as the characteristic equation for 3 degrees of freedom 

system; that means that equation will be same as this (Refer Slide Time: 17:10 min). 

When you compare these two equations, you will find that first term will be the same and 

this second term, whose power is 1 by omega square to the power 2, its coefficient will 

be this; that you can see easily. From that the coefficient will be this and that equation 

coefficient will be this (Refer Slide Time: 17:31 min). [Therefore, the… will be…].  

Now, comes the main logic of Dunkerley’s equation. Generally, omegan1 much less 

compared to omegan2 which is again much less compared to omegan3; generally, they are 

gradually increasing. So, 1 by omegan1 square is much more than 1 by omegan2 square. 

So, this is the largest term when compared to these. These are approximately equal to this 

(Refer Slide Time: 18:41); that means, these two terms can be ignored since they are 

much smaller than this. This, of course, can be written like this (Refer Slide Time: 

18:55). 



(Refer Slide Time: 19:30) 

 

For a general case, Dunkerley's equation says that the fundamental natural frequency, that 

means, 1 by omegan1 square is approximately equal to sigma1 aii mi I equal to 1. From 

this, we can calculate the approximate value of fundamental natural frequency. Now this 

value is going to be what, upper bound or lower bound? We can see here that, of course, 

this 1 by omegan1 square is less than this, because, two terms we have ignored; we have 

assumed this whole thing to be 1 by omegan1 square. So the real omega1 by omegan1 

square, actual value will be less than this. When you take the inverse, the actual omegan1 

square will be more than the value of omegan squared what we get from here; that means 

it is nothing but a lower bound (Refer Slide Time: 20:45). We can say that the real natural 

frequency for the first mode is never going to be less than this. It will be always more 

than that and approximately equal to this.  

We can apply this to our one example we have taken. Let us see that how we get that. Let 

us take the same problem which we have already solved; then you can compare the 

results. This is the problem which you have solved and its first natural frequency is this. 

If you remember it is equal to this; we found out by matrix equation method and which if 

it is done accurately, it will give an exact answer. Let us apply this: this is x1, this is x2 

and this is x3 (Refer Slide Time: 22:35). So what will be a11 we have already found out 

earlier, but let us find again. a11 is the deflection of session one when unit load is applied 



to session one itself which is nothing but the stretch of this. (Refer Slide Time: 22:55) 

This will also be the deflection at session two due to a unit force at one, also deflection at 

… because this shift just like a rigid body. Again, we know that deflection at here due to 

unit load here and here are going to be same. That is why, actually the flexibility matrix 

[here]. a22 is equal to stretch of this string plus stretch of this string that will be the 

deflection here if a unit load is applied at station two. This is 1 by k plus 1 by 2k and 3 by 

2k equals a33 because we will not require others; we will require only a11, a22, and a33. 

This will be 1 by k plus 1 by 2k plus stretch of this string 1 by k equal to 5 by 2k.  

So by Dunkerley's approach (Refer Slide Time: 24:19) which is this - 1 by omegan1 

square is approximately equal to a11 m1 plus a22 m2 plus a33 m3. We also know that m1 

equal to m, m2 is equal to 2m and m3 equal to 3m. So this will be equal to a11 is 1 by k 

into m which is simply 1 by k; a22 is 3 by 2k and this is 2m, it will be simply 3 m by k 

plus a33 is 5 by 2k and m 3 is m, it will be 5m by 2k and this is equal to (Refer Slide Time 

25:54). If we find out omegan1 from this we will get square root of 1 by 6.5 (Refer Slide 

Time 26:40). When you compare this result, the actual value is here. We find that this is 

slightly lower than the actual value, but we find it is quite close; it is 0.4 here and it is 

0.425 here; that means the difference is in the second and that too not much. You can 

calculate the percentage error and also that point is revealed here that it is a lower bound. 

That means the real value is above. You can see that this is a very quick method of 

estimating a very approximate value of fundamental frequencies of a system, because, 

calculating the influence coefficient, it is generally very simple if the case is statically 

indeterminate like this. Then also it can be done; only it will involve little bit more 

analysis, not very complicated. Mass matrix is a diagonal matrix and finding the mass is 

very simple; just by observation and calculation of this term is also a straightforward 

calculation. Thus, we can solve or get the approximate value very quickly. Here, the 

advantage may not be very clear, but if you have a 10 degree freedom system, you will 

find that this is a very quick method compared to the earlier one. 



(Refer Slide Time: 28:55) 

 

Now let us take up the other method. This is an extremely important approach and we 

will refer to it at a later stage also, but understand the case here. Now, under normal mode 

oscillation condition, we have seen that all masses are oscillating with the same 

frequency and almost they are either same phase or exactly opposite phase. It means that 

each mass attains its maximum speed at the same instant of time which is the maximum 

velocity of it. If the normal mode can be represented like this (Refer Slide Time 29:44), 

then xi dot is velocity omega Xi sine omega t and this maximum value of this t dot of 

each one is x dotimax is omega Xi is this, because maximum value of sine omega theta will 

be only 1. 

Similarly, all these masses attain their extreme position which represents the extreme 

stretching of all the elastic members. Or if there is gravity then the extreme position in 

the gravitational potential energy as well. Therefore, we know that extreme positions are 

all equal and they happen at the same instant and the values are nothing but the capital Xi. 

So, that is also quite straightforward, because, the maximum value of the kinetic energy 

is 1.What will be maximum kinetic energy of the whole system? The maximum kinetic 

energy of ith mass will be half mi into velocity is going to be half omega square mi Xi 

square. So, for all the total kinetic energy of the system will be just sum of all this (Refer 

Slide Time: 31:45), it has N degrees of freedom or N masses. This can be in matrix form. 



It can be written like this (Refer Slide Time: 32:17). This is a straightforward 

demonstration of this and I am avoiding it to find out that this is nothing but this (Refer 

Slide Time: 32:43). 

Similarly, maximum potential energy of the system, each one will be stiffness matrix. If 

stiffness matrix be k (Refer Slide Time: 33:25), then this can be also easily seen through 

a little bit analysis that total potential energy maximum for this stiffness. We know that 

for a conservative system where there is no dispersion and now when the kinetic energy 

is maximum; the potential energy is 0. Similarly, when the potential energy is maximum; 

the kinetic energy is 0. Therefore, both of these two must be equal to the total mechanical 

energy of the system and so they must be same; that we have used even in the solution of 

single degree freedom. 

Remember, all these things that we are doing are not mentioned during the case of normal 

mode oscillation, then only this is valid; then only they all will be attaining 0 velocity and 

maximum velocity at the same instant. Though we are not showing any i here as in 

particular mode, this is only valid for natural mode oscillation. So if it is natural mode we 

can show like this (Refer Slide Time: 34:45). Therefore, for the first mode omegan1 

square can be expressed as this (Refer Slide Time: 35:30) because then it will be natural 

mode technique. Now, Rayleigh's principle says that if we assume column matrix X as 

the first natural mode and evaluate this quantity we will get a quantity which we call as 

Rayleigh's quotient. 

Rayleigh's quotient R is for an assumed mode say, X transpose k X which need not be 

exactly same as the first mode and divide this by this quantity (Refer Slide Time: 37:01). 

Then R tends to omegan1 as X approaches first mode. The most important thing is it will 

approach from the higher side and when the assumed x becomes identical with the actual 

first mode then R becomes equal to omegan1. So for an assumed shape X, whatever value 

of the Rayleigh's quotient we get, it will be always slightly higher than the real natural 

frequency. Of course, I must say R is not [38:15]. So, determination of fundamental 

frequency using Rayleigh's principle will always give us an upper bound. 



(Refer Slide Time: 38:50) 

 

There is another very important point to be noted here is that the value of Rayleigh's 

quotient as it is nearer to omegan1 is somewhat insensitive to the choice of X, that means, 

even if the choice of X is somewhat different or quite different from the first mode, the 

value of this quotient will be somewhat nearer to this. That means a large error in X will 

not be reflected as a large error in this natural frequency. Therefore R is also (Refer Slide 

Time 39:54). Now, let us solve the same problem using Rayleigh's. 

(Refer Slide Time: 36:02) 

 



So Rayleigh's technique says [40:36]  (Refer Slide Time: 40:48). So, let us find out what 

we get for solving the same case. As you can see, we will need the k matrix and the m 

matrix; m matrix is quite straightforward. 

(Refer Slide Time: 42:00) 

 

Let us solve the same example. To find out the k matrix, best way for us will be to derive 

the equations of motion. So, for mass one force acting are 2k into x2 minus x1, for mass 

one it is m; for mass2 it is 2m; this force will be same as this and for mass3 it is again the 

same. The equations of motion can be written. For the three masses it will be m x1 two 

dot equal to 2k into x2 minus x1 minus k into x1; 2m x two dot. The second mass is k into 

x3 minus x1 minus 2k into x2 minus x1 and for the third mass it is this (Refer Slide Time: 

44:33). So, now we rewrite them in a manner and for normal mode oscillation. [So that 

we can….]. (Refer Slide Time 44:53) omega square m X1 plus 3k X1 minus 2k X2 plus 0 

X3 is 0. This one will be 2 omega square m (Refer Slide Time 45:51), here, this X1 term 

will be plus k X1 plus X2 term will be 2k X2 and k X3 (Refer Slide Time 46:35) and third 

one will be minus omega square m X3, (Refer Slide Time 46:54). There will be no X1 

term; so 0 X1, for X2 it will be minus k X2 and for X3 plus k X3 and so we are not 

interested. 



(Refer Slide Time: 48:10) 

 

This becomes minus omega square m X plus k X equal to 0. This is the equation in 

matrix form. So, obviously, this is nothing but m 0 0; 0 2m 0; 0 0 m into X1 X2 X3 plus k 

matrix: 3, minus 2, 0; minus 2, 3, minus 1; 0, minus 1, 1; m matrix is this (Refer Slide 

Time 49:36) and k matrix is this (Refer Slide Time 49:47). 

Now, from the application of this, the choice of x is true that we will assume some value 

of x. If we make the choice somewhat logical then obviously the results are going to be 

better; otherwise, if we take some extremely wild choice deliberately, we will get 

something. Here, when it moves in the first mode we will find the inertial load here is 

proportional to m; here it is proportional to 2m, but not exactly because the amplitudes 

are different and amplitude here is more. Again here it will be. Therefore, everywhere 

you will find the force acting is somewhat related to the mass and the deflection is also 

related to the stiffness. So, one quick way of having a reasonable [51:04] is…. Let us see 

what is the phase of each position or displacement at each position due to a gravitational 

pull; that means if we hang it what will be the deflection of these in the static equilibrium 

position? That is one very common technique used (Refer Slide Time: 51:27).  

Gravitational deflection that means if it hangs what will be the X1? X1 will be something 

like mg, 2mg and mg; I will not do the detailed calculations. So here it will be 4mg by k; 



X2 will be 11mg by k; X3 will be 13mg by k. So we can take.. it will be 1 1.38 1.3…; it is 

in that ratio 4 11 13. If divided by 4, first one will be 1, second one will be 1.38  in this 

ratio. Let us use this as first mode which is just due to gravitational problem; using this 

we get… I will not calculate the whole thing. R is going to be k by m and 1.35 in the top 

and 7.47 in the numerator. This will be equal to .181 and R is supposed to be square of 

the natural frequency. So first natural frequency we get approximately equal to square 

root of this becomes 0.42 (Refer Slide Time: 54:38). Now, this is extremely revealing, 

because, even using an approximate method to use the first mode by just using the 

gravitational pull and the subsequent information, the natural frequency we get is very 

close, rather, almost same, but there may be difference in the higher order third, fourth 

and fifth. You can see… Now again to demonstrate, as I mentioned, this value accuracy 

is not very sensitively dependant on the correctness of the choice. If I now say let us have 

quick method of finding out this. Even for finding the gravitational pull and doing it you 

have to do some calculation. 

(Refer Slide Time: 54:54) 

 

Let us say that X1 X2 X3 be 1. Then this one being the same force we apply everywhere 

for example, then this will stretch by another half amount of this. So, the next one will be 

1 plus half of it, so it will be 1.5. The other one, again, we approximately say another half 

will go; so therefore this. This is a very crude way of [56:27] as you can see. If we use 



this, we will get Rayleigh's quotient as k by m into 1.75 by 9.5 equal to 0.1842 k by m 

and this will result in approximate value of this (Refer Slide Time: 56:52). So surprise - 

that even if we make such a crude way, we assume the mode shape you can see it is only 

in the third place. This is the actual merit of Rayleigh's principle; otherwise, this 

expression is not the real thing, but it is actually insensitivity to the errors in the choice of 

X in the result. That is the main merit of this Rayleigh's principle and as you said that you 

will always get it. Here it was very close. You did not see the difference, but here you can 

find we have made some errors in the choice, more errors compared to the previous one. 

This is also a static deflection case; this is not the real mode.  

We have found out the real mode. In the previous lecture, you can compare and find out 

what was the real mode. Even if you make this, you will get some value which is always 

more than the real mode; that is why, we get always an upper bound. The proof that why  

it is in upper bound shows that truth can be found in [58:20 – 58:30]. Thus, for a 

designer, the quick way of estimating the first natural frequency even for a complicated 

system can be done without going to computer and running a whole program. Just by this 

(58:45) which gives some ideas. So therefore, if we say that this is the Dunkerley's 

method and this is the Rayleigh's method, then we know that it must be between this and 

this (59:00). We narrow the gap and the designer can satisfy whether this is in dangerous 

zone or not, that means whether there is some excitation from outside is possible (59:11).  


