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We have been discussing the cases of systems capable of oscillation. When the system is 

disturbed from its equilibrium position and subsequently allowed to oscillate freely of its 

own, that is when we call them, free vibration. The primary objective of that kind of an 

analysis had been to find out the frequency with which it oscillates of its own, that is 

what we call natural frequency. The importance of that comes from the fact that as we 

will see very soon. Any kind of situation where an external excitation matches in 

frequency with the natural frequency of the system can result in disastrous consequences. 

That is why, it is better to know beforehand what the natural frequency of a system is. It 

should be such that it never comes anywhere near the frequency of any kind of excitation 

the system is expected to be subjected.  

In this lecture, we will start with cases that are far more encountered in our engineering 

design. When a system is excited by an external agency, then what will be the response of 

the system when it is subjected to this external excitation? This we call forced vibration. 

Again to keep our discussions simple at the beginning, we take up the single degree 

freedom system subjected to unexcitation force. We should also beforehand know what 

does it mean by forcing? 



(Refer Slide Time: 03:15) 

 

Excitation of a system can be of various types. First of all, we will classify the situations 

according to the nature of the forcing function or the disturbance. If the forcing is purely 

a harmonic function of time, say if we call this is the force, so this is called harmonic 

excitation (Refer Slide Time: 03:39) because the excitation, the function of time is a 

harmonic function of time. 
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But before that, we should classify, in general excitation as periodic that means, where 

the forcing function is a function which repeats itself after a fixed period. This kind of 

excitation which repeats after a fixed time, which we call time period, is called periodic 

excitation. Another kind of excitation can be aperiodic excitation. Aperiodic excitation 

can be edited like this which does not repeat itself after a definite time. There is a very 

special case which we will not able to discuss but nevertheless very important called 

random. There are many cases where the excitation is of random nature, which has 

certain special characteristic. What is random? But we will not go into those things, 

because we will keep our discussions to the simplest possible situation. 

However, this periodic excitation can be further classified, as I was mentioning initially 

into two cases called harmonic, other is anharmonic. The second one, it is periodic but it 

is not a simple harmonic function of time (Refer Slide Time: 06:25). The classification of 

excitation can be again done from a different point of view. Here, we have been bringing 

it from the point of view of the nature of the excitation as a function of time. The other 

way of looking at the classification problems is what the manner in which it is excited. 

For example, I can take this and try to vibrate by applying a force. Sometimes, a system 

can be oscillated or disturbed by applying some kind of a disturbing motion to its support 

or the wall to which it is connected. Sometimes, a system vibrates by itself, only thing 

that we have to supply is force of energy. Sometimes, it is excited by a periodic variation 

of one of the parameters either stiffness or inertia or something. 

There is another way of classifying excitation based on the fact that from where or how it 

is being excited. There we can have force excitation, the other one where the support on 

which something is resting and that is oscillated is called base excitation. Other one is 

self-excitation, there are cases of course, which we call parametric excitation. Therefore, 

our problem of force vibration can be any kind of combination. It can be a periodic, 

aharmonic or base excitation problem.  

What we should do? As always it is advised to take up the simple possible equation. We 

have taken the simplest system, an undamped single degree freedom system, but 

vibration now excitation also we will take the simplest that we will take harmonic 



excitation and excitation is given in the form of either a force or a moment. Another 

reason why harmonic excitation is a very important problem is that any kind of periodic 

function of time can be represented in terms of a Fourier series where each term or 

component is a harmonic function of time.  

(Refer Slide Time: 10:20) 

 

As we are dealing with only linear systems, if a particular forcing function gives a 

response x1 and another forcing function F2 gives solution x2, then when both are 

combined they will give the response x1 t plus x2 t. This is a very important result, but 

valid only for linear systems. 

Therefore, if this period be function of time can be split into a series of harmonic 

functions of time, then for each harmonic function of time, we can get the response and 

so the resultant response will be the total of all the responses. If we know how to solve 

the problem for the case of harmonic excitation, we can solve for all periodic functions of 

time. Even aperiodic function of time can be represented in terms of an infinite Fourier 

transformation and they are of course not discrete frequencies, but the frequency 

spectrum will be continuous and we will see such cases. The conclusion is that within this 

problem can be solved using the result of the system response to a harmonic function 

because this can be also be represented in terms of harmonics functions of time using 



Fourier transformation. Therefore, if we are handling linear systems, knowing its 

response to harmonic functions of time can give the result of any type of coefficient. 

With this little introduction, let us solve the problem one by one. We will first take up the 

case of an undamped system with a single degree of freedom which is excited by a force 

that is a simple harmonic function of time. It is a very simple problem. Let us find out the 

value of or the expression for x, that is, the response of the system.  

(Refer Slide Time: 12:00) 

 

At any instant of time, the forces acting on this will be kx. So, total acceleration in this 

direction x two dot multiplied by m has to be total force in that direction.  



(Refer Slide Time: 15:58) 

 

This is the differential equation which we have to solve now and we all know that the 

general solution will have two parts. One is the complementary function, which is the 

solution of the homogeneous part of this equation, that is mx two dot plus kx equal to 0 

plus the particular integral which for this case, we have to find out. The complementary 

function, that is the solution of x to the homogeneous part of the equation is we know that 

already from our previous lectures. This is the complementary function and this is the 

particular integral. Here of course, omegan is a gain with natural frequency of the system. 

We also define another quantity r, that is the frequency ratio given by the ratio of the 

forcing frequency with the natural frequency. Now, these constants A and B will depend 

on the initial condition. Initial conditions mean the starting velocity and solution. Let us 

now try to solve this problem. 



(Refer Slide Time: 16:15) 

 

We know x (t) and x dot t from the above figure. Let us consider, relax condition to begin 

with, so at t equal to 0, let both x and x dot equal to 0. 

This is something which is possible in forced vibration. In free vibration, if we give 

initial condition as x and x dot, both are 0, system will be continue to remain at rest. 

Since we are disturbing the system, it will oscillate. So putting this, what we get is 0 

equal to B plus (Refer Slide Time 17:38).  



(Refer Slide Time 17:46) 

 

If we put t is equal to 0, x dot equal to 0, then 0 equal to omegan A. So, we get the two 

conditions, A equal to 0 and B equal to minus F0 by k divided by 1 minus r square. The 

solution becomes as mentioned in the above slide. It can be written in the slightly 

different form, this pure trigonometric manipulation. This is our final solution that how 

perfectly undamped single degree freedom system will respond to a purely harmonic 

floating function. Let us plot it.  

(Refer Slide Time: 28:28)  

 



Now, one thing we can find is this is a constant for a given value of r or r is nothing but 

omega by omegan. This is again a harmonic function of time where the frequency is 

almost approximately equal to omega because this, when omegan is not very different, it 

will be something like that. On the other hand, this is another harmonic function of time 

which is changing with a very lower frequency because it is the difference of the 

frequency. In a crude manner, we could say that this is a harmonic function of time where 

the magnitude or amplitude fluctuates slowly with this form and that is how we are 

getting (Refer Slide Time: 21:49). 

The fluctuation of the amplitude is a slow process with a time period 2 pi by omegan 

minus omega. This whole thing will be 4 pi by omegan minus omega when it completes 1 

and this fluctuation phenomena is known to you, perhaps which we call beat and the 

beating period is this one (Refer Slide Time 22:25). Suppose, what happens when we 

start from a low value of omega, omega is nearing 0 that means r is nearing 0. This will 

be approximately 2F1 by k and this will be approximately sine omegan by 2 and this will 

be more or less same. But what we find here is that as omega increases and approaches 

towards end, when r approaches 1, what happens to the beat frequency? Beat frequency is 

this (Refer Slide Time 23:13). So, when omega approaches omegan, beat frequency or 

beating period approaches, since beat period is 2 pi by this, the beating period will 

approach infinity. Another thing we find that the amplitude with the maximum value to 

which it fluctuates depends on this quantity and here when r is approaching 1, then this is 

gradually excluding amplitude which depends on this (Refer Slide Time 24:18). That also 

is approaching infinity. Therefore, if we want to plot this under this situation, this is a 

case where r is equal to 1. (Refer Slide Time: 24:45). This angle is tan inverse and of 

course this is still. Now, we find when r is equal to 1, that particular case, bit period is 

infinite. That means it never comes back, it keeps on increasing. The maximum value to 

which we reach also keeps on increasing. It can be shown mathematically, we will not go 

into those things. This amplitude will keep on increasing linearly and the rate of increase 

can be decided by this angle of the tangent to the… [Refer Slide Time: 26:05].  

This particular phenomenon, what is going to happen, if such system is there, then it will 

keep on increasing in its oscillation amplitude indefinitely. That is what we call 



resonance. We should remember the earlier caution that a forcing function when it is 

acting, you should be careful that the forcing frequency never really goes anywhere near 

the natural frequency of the system. That is why, when something is being designed its 

natural frequency should be estimated and it should be ensured that the system is never 

subjected to a kind of forcing function or excitation where there is a chance of resonance 

and these are the kinds of things, perhaps you have heard that when a military marches 

through a bridge, this left right thing and normally on a solid ground, they keep on 

marching, all in unison, that means everybody is in place. But, once they cross a bridge 

they are always told not to be in place or unison and they are not supposed to march, they 

walk back because in case all these hundreds of soldiers keep on marching with the same 

frequency in same pace, then the forcing function will be enough and it can match the 

natural frequency, at least go somewhere near the natural frequency of the bridge and it 

can cause the disaster and therefore this is the point which we wanted to. For the 

comment view that which is held sometime that if the resonance takes place, there is 

amplitude or vibration is infinity, which is not so.  

Actually, what happens in resonance is that the intensity of vibration keeps on increasing, 

indefinitely. If you allow infinite time, if the system is capable of taking infinite 

deformation, it will go to infinity. But mainly what happens that the system gets damaged 

because of large scale oscillations taking place. However, this is very idealistic situation 

because in nature it is impossible to make a system which is absolutely free from any 

energy dissipation. Therefore, to make our analysis somewhat more realistic, what we 

can do is that, even if we consider the system to be notionally undamped, that means, we 

do not show a specific damping agent there or damper. But still we have to keep in mind 

that there is certain amount of dissipation, it may be very small and so in reality what 

happens, even the very minute amount of damping present in a system will damp out the 

complementary function or the free vibration part and how the response will look will be 

this. (Refer Slide Time 30:15)  
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Of course I have shown this x in short time, but in reality, it may happen that it will 

continue for a large time. Eventually the initial free vibration part will gradually damp 

out and what will remain is only the complementary or the particular integral. The 

response in the steady state situation will keep on maintaining its nature and character 

that is called the steady state.  

In the steady state, the solution or x t is in a particular integral part because the natural 

vibration part which was represented by the complementary function has gradually died 

down, that is, the response and this is what we call transient. It is a passing phase, so this 

does not repeat itself. After it reaches the steady state, there is no further change and there 

the response is this. (Refer Slide Time 32:36). In general, our primary concern is the 

response of a system in the steady state, which in this particular case happens to be this, 

of course, r is not equal to 1.  

Now, we see this F0 by k here, we find that the forcing function is cosine omega t F0 and 

response is also similarly, some quantity into cosine omegat. Therefore, if we plot in the 

steady state function will look like this.  



(Refer Slide Time: 34:25)  

 

If we plot both x and the forcing function in the same graph, it will look something like 

this and the response will look, where the magnitude of this is F0 and magnitude of this is 

F0 by k. This is the situation when r is less than 1. When r is more than 1, then what will 

happen?  

(Refer Slide Time: 41:22) 

 



This case x will be as shown in the above slide. I want to keep this always a positive 

quantity, so we can write this as r square minus 1 and take minus sign here. We can write 

this as Fo by k divided by r square minus 1 into cos omega t plus pi. Therefore, what will 

happen now is that the forcing function and the displacement or response will be just out 

of phase. 

When the forcing frequency about the natural frequency of the system, that is r is more 

than 1, then the response will be out of phase by 180 degree of pi as indicated in this. 

Now, what is this quantity F0 by k? This is nothing but the static deflection of this. (Refer 

Slide Time 36:47); if applied this force, that is F0 static energy, x F0 by k is the 

displacement of the mass from equilibrium, if the same load is applied in a static way not 

dynamic.  

On the other hand, if the same force is applied dynamically, the deflection or the 

maximum deflection of this is nothing but the amplitude of oscillation, which is F0 by k 

divided by its quantity. This ratio, the amplitude of oscillation, which is nothing but this 

divided by the displacement, which is static when the force is statically applied is and we 

take its magnitude, that is X divided by F0 by k magnitude and this is nothing but as can 

be seen here. This is X divided by F0 k is nothing but 1 by 1 minus r square. This is called 

M or magnification factor. It means that when a load is applied dynamically, the 

displacement of the system gets magnified compared to the situation when the load was 

applied in a static manner. 

How this magnification factor looks like? This magnification factor when we plot as a 

function of r, it starts at r is equal to 0. Magnification factor is 1, r is equal to 1 and it 

shoots up to infinity. Again, when r is more than 1, it will become negative, but we are 

taking only the mod. So, it becomes positive and it asymptotically approaches 0, as r 

tends to very large values. Of course, if we just want to plot the ratio of the amplitude 

with the static deflection, then when r is less than 1, X is positive and this quantity is 

positive, it goes. But, when r is more than 1, then obviously X is negative because this 

quantity is negative.  



If you take the mod of this, then we get back this term. This is called the steady state 

response of a single degree freedom undamped system, which response characteristics is 

indicated by this plot where the magnification factor or the amplitude at a particular 

frequency is given. For the whole range of possible frequencies or the possible frequency 

ratio r the magnification factor has this kind of characteristics. This is the simplest 

situation which we had discussed.  

 (Refer Slide Time: 41:40) 

 

Next, I think if we have to take up more realistic cases. What we will do is that we will 

now consider a viscously damped system and subjected to a harmonic force. We will now 

take up a more realistic case where there is some certain amount of viscous damping 

present and again we will subject it to a simple harmonic function of time as before. This 

is the situation or a lump parameter model, its viscous damping, its thickness, mass 

subjected to simple harmonic force, a harmonic function of time F0 cosine omegat. 



(Refer Slide Time 43:40) 

 

We can write the equation of motion without going into again the free body diagram. We 

can write, but it is not going to be 0 as in case of free vibration or the external forcing 

function. 

We have seen and we can keep it in mind that any kind of response of a simple system to 

harmonic function or harmonic force like this will be also again a harmonic function of 

time with the same frequency. This is a principle which we should keep in mind that the 

response to a harmonic force will be a harmonic function of time with the same 

frequency. That is the only thing which we have to keep in mind. But before we go 

further, we will write it in a slightly different form. We can write this as or dividing the 

whole thing by m. 

Now c by m can be written as c by cc, that is, a critical damping coefficient into cc, which 

is nothing but in this particular case 2 into root of km by m. That is equal to zeta, 

damping factor into 2 and root over km by m, is nothing but root over k by m, that is, 

omegan. Similarly, k by m is omegan squared. This equation can be again written in this 

form x two dot plus 2 zeta omegan x dot. We can always write the solution. Let the 

solution be a harmonic function of time with the same frequency. We can write X equal 

to that is the amplitude cosine, now a harmonic function of time with same frequency. 



But, there is now guarantee that it will be with the same phase. So, we cannot write 

cosine omegat with a different phase here, rather what we will do, we can see that this is 

again harmonic function of time. 

(Refer Slide Time 46:46) 

 

They respond, but not at the same phase as what we had in case of undamped system. 

This is the most general situation and I think there should not be any problem with this; 

this is the response (Refer Slide Time 48:16). Our job will be to find out the magnitude of 

the amplitude X and the phase that is what we wanted to do.  

What we will do now is we will substitute this solution which we have assumed into the 

equation. Substituting the solution in equation what we will get is x two dot. If we 

differentiate this twice, what we will get is minus omega square X cosine omegat minus 

phi into, there is nothing else. Therefore, this will be the first term plus minus twice zeta 

omegan omega. 



(Refer Slide Time: 53:07) 

 

This is x dot multiplied by 2 zeta omegan x dot, is minus omega x sine omega t minus phi 

and they were multiplied and this is equal to F0 by m into cos omega t. Therefore, we 

have converted the differential equation into an algebraic equation. What we have to 

solve is for two quantities: 1 is x, other is phi. The technique is generally that we will see 

on both sides of equation, the coefficient of cosine omega t on both sides must be same. 

Coefficient of the sine omega t on both sides of the equation should be same. If we split 

this, what we will get is (Refer Slide Time 50:56). If we want to equate the coefficients of 

cosine omega t on both sides, what will be the coefficient of cosine omega t on this side? 

It will be minus omega square X cosine phi plus 2zeta omegan X sine phi plus omega 

square X cosine phi. 

This is the coefficient of cosine omega t on the left-hand side and that must be equal to 

the same in the right-hand side, which is F0 by m. Again, we have to equate the 

coefficient of sine omega t (Refer Slide Time 52:38) and the coefficient of sine omega t 

on the right-hand side is 0 from this. If we take sine phi and cosine phi, we get so we get 

tan phi is equal to (Refer Slide Time 53:47) and if we divide the numerator and 

denominator by omegan square what we get, 2 zeta r by 1 minus r square, that is, the 

second equation. 
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The first equation will tell us X is equal to (Refer Slide Time 54: 10). So, we take X 

common and divide F0 by m by the coefficient of X. So, if we take cosine phi common 

outside, we get F0 by m by cosine phi, if we take 1 by cosine phi, then it is omega square 

minus omegan squared plus 2 zeta omegan into tan phi. Tan phi is already determined, is 

2zeta r by 1 minus r squared. 

We can easily find out cosine phi. It is equal to 1 by sec phi, that is 1 by square root of 1 

plus tan squared phi. Now, tan phi has been already determined. If we substitute this here, 

finally, X we will get as (Refer Slide Time: 56:08). After simplifying we get this. This is 

the response, it request two things to be given. O is the amplitude which is this, the 

frequency is same as the forcing frequency and the phase difference is this. (Refer Slide 

Time: 56:51) 
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The characteristic looks like this, if we plot it, magnification factor is defined the same 

way here, X by F0 by k. As we can see, when r is tending to 0 when it is simply, this is 1, 

this is 0, so it will be 1. This way now of course, we have a parameter like zeta, for 

different values of zeta, we will get different result. So, zeta is increasing in result and 

this is zeta equal to 0. 

Let this, so far at the magnification factor, phase difference characteristic, if zeta is very 

small it will be like this. Now, as zeta gradually increases and so on, so zeta increases and 

this is the case when zeta is 0.  

There are special cases where you know this is where it is tangential, this is a special 

value of zeta, which is 0.707, same thing, this is zeta 0.707 here. We will discuss about 

this things later. The frequency response characteristic of a viscously damped system is 

like this, it depends on the magnitude of zeta. The peak value is now restricted, it is no 

longer infinity, [Refer Slide Time: 1:00:03] even at omega is equal to omega, which is no 

longer infinity. The peak value is also not coinciding with r is equal to 1, gradually it is 

shifting.  

For zeta is equal to 0.707, the peak value of the response is at r is equal to 0, that we will 

prove later. Therefore, this is the general characteristics here. Again, we find the phase 



difference is always 90 degrees at r is equal to 1 and it is asymptotically approaching pi. 

So, this is the situation. What we will do next is to look at this problem from a different 

angle using a different approach, which we will be taking up in the next discussion. 


