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So far we have been discussing systems with no mechanism for energy dissipation. That 

means, the total mechanical energy in the system always remain constant. However 

unfortunately in reality such an idealized situation is never possible and all practical systems 

will be subjected to certain amount of dissipation of energy when it oscillates. Sometimes it 

may be very small almost we can consider it to be of negligible level. Sometimes it will be of 

reasonable magnitude, so that its effect is very pronounced. But you should always remember 

that all practical systems are subjected to this energy dissipation, which a common term is 

damping and therefore all practical systems are damped. 

What we will do now, we will analyze or investigate systems oscillation assuming for a 

certain amount of damping to be present. Before you do that, before we make a mathematical 

model, which ultimately we will solve and we will investigate, we have to first see what are 

the various ways energy is dissipated from a system during its oscillation? The various 

mechanisms which are common are as follows. 

One is a viscous drag which results from the friction of a solid object when it moves in a spin 

and when it can be treated to be laminar motion. That means, number is low or the system 

behaves in a linear fashion, we will see that very soon. So this kind of damping is called 

viscous damping.  

The next mechanism is energy loss due to solid friction between sliding solid surfaces. This 

type of damping is called Coulomb damping. Say for example here, if a pendulum oscillates 

here, the pendulum its whole body, the rod extra, they are all having relative motion with the 

surrounding air or whatever fluid it may be immersed in. That will give rise to dissipation of 

energy and it will give rise to a viscous damping. 
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Sometimes we may find say for example, the pin of the pendulum in its hinge. If it is not 

properly lubricated, that may give rise to a solid friction between the housing or the journal of 

the bearing and the bearing itself of the spline. Similarly, there can be other situations where 

vibration or vibrating system may involve two solid objects rubbing against each other and 

that will give rise to Coulomb damping. 

Now for example, if you take a simple beam and go to space, hit it and it start vibrating and 

you leave it there. Whether that vibration, neither there is not any fluid surrounding it, so that 

there exist any viscous damping, nor it is having any contact with any other solid objects to 

give rise to solid friction damping or Coulomb damping. But in such case, will vibration 

remain constant or whether the energy will remain constant? There will be no dissipation, no 

there also there will be dissipation because during any deformation of a solid object there will 

be internal friction that is a very complex mechanism we will not go into it. That how, when 

the layers of molecules rub against each other, the gain boundaries may have relative 

movement against each other. All these things give rise to certain amount of conversion of 

mechanical energy into lower forms of energy, like heat. Such damping or such energy 

dissipation is called internal friction.  

This is called hysteresis damping or material damping. Other possibility of dissipating energy 

is in the form of radiation that can also give rise to energy dissipation. However, we should 

keep in mind that the first three are of much bigger importance where engineering systems 

are involved. There are also most commonly involved problems we will consider, we will 



involve viscous damping, the reason I will discuss. Then we will also discuss Coulomb 

damping or the dissipation due to solid friction. We will also discuss quickly about internal 

friction or hysteresis damping in material.  

First let us take viscous damping. Let us consider this is the sectional view of a cylinder with 

a piston inside. Now piston is connected to one rod and cylinder is connected to another rod.  
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The inside of this is filled up with some kind of a viscous fluid, some oil or something like 

that. Now the cross sectional area is say A and A1 is the cross sectional area of the holes all 

together, this piston has fine hole drilling to that through holes. The total cross sectional area 

of all these holes which have been drilled is said A1. Now if I get this end fixed and try to pull 

this end with a speed say x, that end is fixed now. We know that, to draw it in this direction 

with a speed x dot, we have to apply a force Fd. How Fd depends on x dot that covered from, 

so what happens when we pull this piston in this direction? Fluid in this side goes through 

these holes to the other side because fluid is incompressible.  

When we try to reduce this volume obviously the fluid has to go to the other side where a 

similar amount of vole is created. So the velocity of the fluid passing though the holes which 

have been drilled in this piston will be how much?  

Now we know that, what is the amount of fluid which has to go for a unit time? It will be 

speed with which it is coming to this side into cross sectional area. You ignore the cross 

sectional area of this rod extra, which we can ignore. Therefore, the rate at which total 



volume of fluid must flow to this side, is how much? It is cross sectional area A and the rate 

at which this volume is reducing is x dot into A. The cross sectional area through which it 

flows is A1, total amount so the velocity through these holes must be this now. We also know 

that the fluid resistance or resistance to fluid flow between, if it will be something which will 

depend on the cross sectional area of each hole, length of the hole, surface finish, but over all 

we designate it by quantity R. We know that any passage, if fluid flows at a rate V and the 

fluid resistance of this part be R, then the difference in pressure from this side to this side to 

P1 this side, say P high, P low. 

That is the difference of pressure on the two sides will be given by the quantity or 

proportional to this, whatever we may say. Therefore, what we find now the piston, the two 

sides will have different pressure. What will be the pressure on this side, higher pressure will 

be on this side. The lower pressure will be this side because fluid is going from this side to 

that side. This side is higher pressure. How much is that? P high into cross sectional area A, 

again we have a merit approximate, ignoring the cross sectional volume on that.  

On the other hand, pressure from this side, which will be a lower pressure, the total force will 

be and the force which we are applying here Fd. The whole thing has to be an equilibrium 

because there is no acceleration and so this force balance tells us Fd is equal to (Refer Slide 

Time: 16:28). This is equal to the resistance of the total resistance of the part, all the holes 

together, into the speed of the fluid passing through that, which is x dot A by A1 into A 

square. Therefore, we find that this is nothing but R A square by A1 into x dot.  

Effectively what we find, that Fd is propositional to x dot. All these things of course are valid 

as we know only for laminar force. Therefore, we are considering that for a suitably viscous 

speed, the flow will be less laminar or we can write the constant of proportionality, which is 

represented by this, by a coefficient which we called c. The coefficient is a special property 

or coefficient for a particular damper, its dimension, kind of fluid, everything will depend on 

that. Therefore, we find that we get the damping force, linearly dependent on the velocity of 

the output. The viscous damping need normal form, provide a force which is a linear function 

of the velocity. That is why it is so easily amenable to solution, because the differential 

equation which we will get will be a linear differential equation that we can solve. 

With this little introduction to viscous damping mechanism and the job of a damper, we will 

now take up our single degree freedom system and its damping parameter model. Generally 



viscous dampers are represented by this diagram. When this is moved with a velocities x dot, 

it needs a force Fd, which is equal to, which of course, this side fixed. Therefore, this damper 

here, its prominent property is providing a damping force. We will ignore its mass, we will 

ignore the elasticity of the whole system, that is any kind of stiffness which will be present. 

Therefore, this becomes again an ideal situation without any mass, without any stiffness. That 

means it is perfectly rigid. Its only job is to provide a damping force to the lumping of this 

damping parameter will be to this idealized situation.  

Let us now take up the simple phase of a single degree freedom system with viscous damping 

and its free vibration. We take up now the case of free vibration of a viscous the damp, single 

degree freedom system. We just go one step ahead of our first and the simplest model where 

there was no energy dissipation.  

This is the lump parameter model of the system. Of course, in its equilibrium position will be 

such when it has been left to itself. That means these spring has taken its equilibrium 

position.  

(Refer Slide Time: 29:25) 

 

The natural length position, because if the spring is stretched or compressed, it will again 

slowly either go out or come back, so that this mass can come to that position when no force 

is acting on it. That means when it is stationary, so no viscous damping force and this spring 

is at natural length to known compression or tension force in that. When we displace it, mass 

is here, there will be two forces that will be acting. As we know, at any instant its position is 



x, so therefore there will be a spring force which will be k into x. If at this instant it is moving 

at a speed x dot, then here this damper will provide a damping force also like this, will be 

full. It will try to prevent its expansion. This will be the force and its acceleration will be 

algebraically positive acceleration in this direction.  

Therefore, the Newton’s second law for this will be m x 2 dot must be equal to the total force 

in this direction, which now is minus Kx minus Cx dot. Or this becomes the equation of 

motion of the mass when viscous damping is present. That means this term has come. Now to 

solve this differential equation. We proceed the standard way, that means let the solution be 

of the form e to the power st. When we substitute it here, we get ms square e to the power st 

plus cs e to the power st plus k e to the power st equal to 0. The characteristic equation what 

we get for s is a quadratic equation.  

This quadratic equation will yield two values of this s1,2 which you can write. You know 

minus c plus minus c square minus 4 km. Sometimes you can write it like this and the general 

form of solution or the motion that is xt, we can write as A e to the power e to the power 

minus C by 2 m plus c by 2 m 1 minus 4 km plus B. So, A to the power e to the power s1 t 

plus B into e to the power s2 t. This is the general form of solution. What will be the nature of 

solution? Let us first see before we proceed further.  

We can see that a situation that when 4 km by c square, this quantity is less than 1. So case 

one, where 4 km by c square is less than 1, that is c square is more than 4 km. Under this 

situation, this whole quantity is a real quantity because this is real, these are all real and as 

you can see, since it is 1 minus something, this quantity will be less than c by 2 m. This is 

because this is less than 1 and since this is negative and this is positive, this whole quantity 

will be a negative real quantity. So e to the power a negative real quantity into t is nothing but 

an exponentially decaying torque with time. x, the first term, will decay as we progress. 

Go to the second term, here again you find that this is a positive quantity less than 1. This is 

negative, this is negative and so this 1 again is a negative real quantity. Therefore, this is also 

nothing but an exponentially decaying term but here the decay will be fast. Both the terms are 

exponentially decaying with time, so we will have this kind of motion. That means, it is 

going to just asymptotically going to zero is called R square dt, which is not going to be a 

periodic motion, where the equilibrium position is crossed again and again repeatedly. There 



is no question of any period and this situation which results in this kind of a motion, this 

condition is called over damped. 
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When the damping is very strong and it is so large that it is more than this quantity, then the 

system does not execute any oscillatory motion. It decays as the time increases resulting in a 

periodic motion.  

The next possibility is case two when c square is equal to 4 km. This is a critical condition 

and with this condition, what we may say, which satisfy this condition c is called cc and the 

system is critically damped system. In this case, when c square is equal to 4 km, that is when 

c is a particular value which you could indicate by the letter c, we call it critical damping 

coefficient. With this situation the system is called critically damped system.  
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What will be nature of solution in this case? We know that s1 will be equal to s2 will be equal 

to minus c by 2 m. When the two roots are equal, the general solution is xt is equal to A plus 

Bt into e to the power st, which is minus c by 2 m into t. Here again we see that as t increases, 

this increases perhaps linearly. Of course we have to find out what will be nature of A and B, 

we will discuss that later. But this is an exponentially decaying term and so as a result here 

also we get a periodic motion. Here for example in an over damped phase, we displaced the 

mass and leave it, so it will go and approach the equilibrium position asymptotically. Here 

also, if you just pull it and leave it, it will again go a periodically and asymptotically 

approach the equilibrium position. The only difference with the over damped phase, this will 

be here and it will approach equilibrium position at the shortest possible time.  

In situations of where we want a system not to execute oscillatory motion, there are many 

such situations. We will take up some examples like say door closing, when you open a door 

and if we leave it, which has to execute an oscillatory motion, it will go through the door 

frame with the maximum velocity which you do not want because then it will then bang 

somebody, which is not a very desirable situation. 

On the other hand what we would like, we would like it to go and close at its equilibrium 

position with zero velocity or negligible velocity. Therefore, we will try to put damping 

which will provide a periodic motion. At the same time we do not want this closing to take 

place enormous amount of time. We want this to close as quickly as possible, say the room is 

air conditioned we want the door to close in shortest possible time. If somebody comes in and 



he leaves the door, it is going to close at the shortest possible time. Therefore, in such 

situations, we provide the system with critical damping.  

Another example is cannon recoil system. When cannons are fired, they get a recoil and then 

if it is only a spring, then it will keep on oscillating. We do not want that, you want the 

cannon to recoil and then while it goes around this side, the damper is attached. It should go 

asymptotically at the quickest possible time and again due to high critical damping, same as 

the case which shock absorbers, in many ways we saw in suspension system, where we want 

the system to approach the equilibrium position without oscillation, at the quickest possible 

time.  

That is where the importance of critical damping lies. In fact, this, we keep it slightly above 

critical damping because due to temperature rise or something, if the viscosity of the oil 

which has been put inside the dashpot, they reduce. Then it may go below the critical 

damping and its system may have oscillation.  

Therefore, generally it is get very near critical damping slightly apart. It is now important to 

see that what happens in the other case that is the only case left. When damping is small and 

it is less than c square root of km, then the system is called under damped system. What will 

happen to this, we will have roots will be, if c square is less than 4 km and obviously this 

quantity is positive or more than 1. Whatever we put inside this square root is a positive 

quantity and that is ok. But we have multiplied the whole thing by minus 1 and so this has 

come. Therefore, now we find that the two roots are complex. There is a real part and there is 

a complex part of the solution.  

These will be the general solutions. We can rewrite it slightly in different form. Before we 

proceed further, it will be desirable to have certain symbols or certain concept developed 

here. It is not generally very convenient to say c square is more than or less than or equal to 4 

km because this particular critical damping coefficient, what we are telling, which is only for 

the particular configuration here. A different configuration can get a different relation as we 

will see while solving problems. There should be a better way of telling whether a system is 

damped or under damped or over damped or critically damped.  
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What you do, at least for this particular case, say if we find that cc is equal to 2 square root of 

km and this quantity c by cc, the ratio of the actual damping coefficient and the critical value, 

which just distinguishes between the aperiodic and periodic motion, as we will see is defined 

as damping factor. When zeta is more than 1, it is over damped. When zeta is equal to 1 

critically damped and when for a system zeta is less than 1 it is under damped. Before we 

proceed further, just to comment on this nature of solution what we have got. As you can see, 

this is an exponentially decaying term but inside this we have a quantity into e to the power I 

theta plus B into e to the minus I theta. We all know that this represents a harmonic function 

of time. We will write it down later, after we use this concept and do the necessary changes 

here. Therefore, here we will find quantity c by 2 m can be written as c by cc into cc by 2 m 

and here this is zeta of st and cc is 2 square root of km for this particular system, we are doing 

divided by 2 m and this is equal to 2 zeta. This becomes square root of k by m and is equal to, 

we know it is the undamped natural frequency of the system. 

That means the system we are investigating if we take out the damper whatever will be the 

natural frequency will be the square root of k by m, wherever we have c by 2 m, we can 

replace it by this term. Therefore, for the three cases, let us write the solution using this 

concept. For case one, the general solution will be A e to the power minus; c by 2 m is 2 zeta 

omegan. We have already seen c by 2 m is 2 zeta omegan plus, again c by 2 m is 2 zeta 

omegan square root of 1 minus. This is critical damping coefficient square cc square which 



will be 1 by zeta square plus Be to the power minus 2 zeta omegan minus 2 zeta omegan 

square root of 1 minus 1 by zeta  square.  

This is the general solution, we can write it in this form. Then e to the power minus 2 zeta 

omegan t is common in both the cases. So it goes inside A outside e to the power. Now if I 

write it z raised to the power e 1 minus zeta square or zeta square minus 1 here, we get 2 

omegan zeta square minus 1 t plus B e to the power 2 omegan zeta square minus 1.  
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Depending on the value of zeta, whether it is more than 1, equal to 1 or less than 1, our 

solution will depend. Of course when it is equal to 1, then we have to follow this form of 

general solution that we have to keep in mind, not this form. 

When we have the case three, that is zeta is less than 1. xt can be written as e to the power 

minus 2 zeta omegan t and A e to the power. Now zeta is less than 1 so this quantity is 

negative. We can write this in this form 2 i omegan 1 minus zeta square t plus B e minus 2 i. 

This is nothing but of this form, if we express e to the power i theta and e to the power minus 

i theta, you will ultimately get it to be something like A1 sine. But in this 2 cancelled, sine 

omegan 1 minus zeta square into t plus B 1 cosine omegan. Now observing this, what we have 

got now in the under damped case, we find that the system is oscillating with time. But if it 

had been all of this, it would have oscillated like the case when we solved first without any 

damping.  
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But the whole thing is multiplied by an exponentially decaying function with time. The 

resulting motion we find is slowly decaying, whereas in the previous case is we know that 

they are aperiodic motion, same thing in the over damped case. Now we have oscillation but 

the magnitude of oscillation is gradually decreasing. Therefore, what we have done till now is 

that for viscously damped simple spring mass dashpot system, depending on the magnitude of 

the damping coefficient of the dashpot, there can be three possible situation. One is called 

over damped. When the damping factor is more than 1, then the resulting motion of any 

disturbance is a periodic motion; whereby, the system approaches its equilibrium position 

asymptotically with the critical damping coefficient. When zeta is 1, it is the similar kind of 

wave here. Only thing, it happens with the quickest possible time. On the other hand when 

the damping factor is less than 1, system is under damped and it executes an oscillation when 

disturbed, but with a diminishing magnitude as time progresses.  

We also noticed another important thing besides the fact that the vibration diminishes in its 

magnitude with the progress of time. The frequency of oscillation, which we call damped 

natural frequency is also slightly lower than the natural frequency of the system, if we take 

out the damper. Without damping it will oscillate little faster with higher frequency, whereas 

if damping is present, then it will be little less than the natural frequency without damping for 

the same system. This is called damped natural frequency which is nothing but omegan into 1 

minus zeta square root.  



If we want to investigate further cases we will look into the general solution. Before we 

attempt the general solution a further discussion of the impact on the resulting motion of the 

nature of the initial conditions on which A and B will depend. Before that let us quickly look 

into the matter of under-damped vibration as we have seen here. Now if a system vibrates, 

which is given by x or say we can write it another form. That equation can be written in this 

form. This 2 constant A 1 and B 1 can be replaced by 2 constant as x and fi to m series when 

discussed the harmonic oscillation in the earlier lecture. The amplitude, for example, suppose 

this is the energy amplitude and say the next 1 is n plus 1, 2 successive peaks we are taking. 

What is the time taken for a system to go from one peak to another? Obviously it is nothing 

but the time period.  

How much is this time period? Time period we know the 2 pi by the damped circular 

frequency or undamped natural frequency into 1 minus. So your xn by xn plus 1. How much? 

xn is this for a particular time so therefore, it will be e to the power minus zeta omegan t into 

x. What will be the time for the next peak? It will be t plus tow and this is nothing but e to the 

power zeta omegan. How much is zeta omegan tow? You can see it from here, that omegan 

tow is equal to 2 pi 1 minus zeta square here. Therefore, if I take natural log of this quantity, 

we get 2 pi zeta.  
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Now this is a measure of the intensity of the damping that means how fast the amplitude is 

reducing. Higher the value of this ratio of the two successive amplitudes, larger is the 

damping and when you take the natural logarithmic of the ratio of the two successive, you 



can see it does not depend on the end. It depends of any two successive amplitude will 

provide this quantity. This is called logarithmic damping and this is a measure of the intensity 

of the damping. As you have seen, which is of course it has to depend on zeta, as zeta 

represents the damping. When zeta is small, which happens in many of the situations then, 

this quantity logarithmic damping delta that is the standard symbol is equal to 2 pi zeta. 

Another method of representing the intensity of damping is by how much energy is being 

dissipated power cycle and its ratio with the maximum energy during that cycle. When the 

system is vibrating, any cycle you take say either this or this. Any cycling, the energy is 

obviously maximum at the beginning of the cycle because energy is continuously being 

dissipated. Of we take the loss of energy divided by the maximum energy, suppose at the 

beginning of the cycle, energy is E 1 and at the end of the cycle the energy E2.  

This is E1 minus E2 by E1, this is this quantity which is again nothing but 1 minus E2 by E1. 

We know that the peak position all energy is in potential form and obviously it is nothing but 

this strain energy in the spring. That is half k and x say n plus 1 square, if that is the energy at 

the end of the cycle.  

That means with the next peak divided by energy at the beginning of the cycle, that is the 

previous peak. What we get here is nothing but delta E by E1 equal to 1minus xn plus 1 square 

by x n square and this is equal to 1 minus, how much is xn  plus 1 by xn?  e to the power minus 

zeta omegan t or since omegan tow is equal to 2 pi zeta. This will be 1 minus e to the power 

and this quantity is delta. This will be minus 2 delta, if we expand it 1 minus, what will be 

this infinite series so approximately 2 delta.  

Again we find that this quantity, the amount of dissipation of the energy for a torque, during 

the cycle divided by the maximum energy during the cycle is nothing but double the 

logarithmic decrement. This is another way we can represent energy dissipation to the 

amount of energy dissipated per cycle and you can see the relationship is again there, with the 

logarithmic decrement. The measure of the intensity of damping, which we do with the help 

of damping factor but during experiment when we do, we try to figure out how quickly the 

amplitude is decreasing. We take two successive amplitudes and find out the logarithmic 

decrement. Sometimes it may happen that two successive amplitudes are very close to each 

other and therefore there may be a large amount of error involved.  



What we can do then, we can take a p number of cycles in between. We can take the ratio of 

logarithm and take the logarithmic of xn by xn+p, just the next 1 but after p side. Obviously we 

will find this will be p tow. That means omegan tow is 2 pi by 1 minus zeta square. So it will 

be 2 pi p and obviously this is going to be or simply p delta. 
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Delta can be found out in such cases and finding this ratio between two amplitudes widely 

separated can be much better in the accuracy. That is another technique by which logarithmic 

decrement is found out. Now if you want to find out the damping factor, you can do so from 

delta by using this equation. The delta is given by this or this to get zeta. If zeta is really very 

small, then we can even use this directly. You divide delta by 2 pi, you get zeta and so on. 

Then you can also find out the amount of energy dissipated per cycle and all types of 

investigation are possible.  

What we will do in the next lecture is that we will investigate in great detail that what kind of 

initial conditions can lead to what kind of motions based on the amount of damping present in 

the system.  


