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We have seen in our previous lecture that study of oscillatory motion or what we call 

commonly a vibration of mechanical system is very important; primarily because, the 

characteristics or the behavior or the response of the system to dynamic loading can be 

very different from that when the loading is static. A successful design will require, for a 

study of the system, from oscillation point of view or vibration of the system, what is 

being designed. We also have seen that vibrations can be of various types depending on 

various parameters. So, what we propose to do now? We suppose to start a detail analysis 

of vibrations of mechanical or similar systems and to begin with, we take up the simplest 

of all; that is the free oscillation of simple single degree freedom system. 
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Before we start the detail modeling and analysis, let us see that, there can be different 

types of system. Based on the nature of restoration - that is what brings it back to its 

equilibrium or another stable equilibrium position - it can be divided into two groups, one 

type of system where the restoration is through elastic members or spring. The other can 

be field restoration which means, there is no elastic member or there is no strain energy 

stored in the system, which brings it back to the original equilibrium position, but it is a 

field which acts on mass or the inertia that is responsible for restoration. The most 

common type of field, what we encounter every day is the gravity, other is others: 

electromagnetic field, electrostatic field, magnetic field; which we did not go into the 

details. In both cases, we will find that the oscillation can be again classified into two 

groups based on the geometric nature of the motion; that is linear motion which means, 

that the mass moves in a straight line or angular motion, same may be the case here. 
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What we will do? We will see the popularly encountered system of these types. Say, one 

example could be cantilever thin beam carrying a mass at its end or the parametrically 

lump parametric module of a system. In this case, mass is moving like this; in this case, 

in both cases the motion is rectilinear (Refer Slide Time: 05:31). In case of angular 

motion is something like that, a disc mounted at the end of a shaft, other end of the shaft 

being rigidly mounted or simple model, we can have is torsional spring and an inertia 



here of course, we know that the oscillation will be angular, same thing here oscillation 

will be angular. 

Here if it is represented by x; we will represent by theta. In this case, the inertial property 

is represented by mass; here the inertial property is represented by moment of inertia. The 

stiffness in this case is represented by k, which gives force per unit deformation. Here the 

stiffness will be represented by capital T which will be torque or unit angle of rotation. 

Again, you will find, if you take for example, a tube, here is some kind of fluid. If we 

depress the fluid level little bit, we will find that it will oscillate after we leave it. This is 

example of the linear motion which is gravity restored (Refer Slide Time: 07:05). The 

angular motion which is gravity restored is very commonly known and almost everyone 

is familiar with that; here the motion is angular. There are other types of gravity restore 

system which can be considered to be… Suppose, we take half cylinder lying on a rough 

horizontal plane, if we disturb from the equilibrium position, we know that it will rock. 

These are the elasticity restored system; these are the gravity restored system. There are 

many other examples, we did not consider now. 
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Solving these problems, let us first take up one approach which is familiar to all of us, 

that is Newtonian approach; that is Newtonian mechanics, which means that we will use 



this relationship: force is equal to mass into acceleration or torque is equal to moment of 

inertia into angular acceleration, both are the commonly known forms of Newton's Laws 

and we use this laws and try to solve these problems. 

What we will do, we will try to find out first the basic equation of motion, say this one. 

Now, one thing we have to keep in mind that we have to consider the system to be in 

stable equilibrium. This is the simplest possible system we have taken now. As mention 

that, this is the equilibrium position, what does it mean? It means, if it is left alone it will 

remain in its rest position. If we disturbed little bit, it will try to come back to this 

position because this spring is there. Therefore obviously, under this situation total force 

action on this mass will be 0; that is in this particular case, that is spring force will be 0 in 

the horizontal direction, which means that this spring is in the natural length. 

Now, we displace it little bit, first thing is that how do we measure the displacement? 

Now, almost as a rule unless otherwise is a very special reason to do so. We should 

always measure the displacement or change of position from the equilibrium position of 

the system. Therefore, if this be the equilibrium position then the displacement will be 

this much; there will be only. Now, in vertical direction the reaction by the ground and 

the weight is continuously balancing each other because, we are now interested only in 

the horizontal motion and here the only horizontal force which is acting on the system is 

the spring force. The spring force is given by the stiffness into its elongation from its 

natural length, which is nothing but x. 

The acceleration of this is identical in this direction and the Newton's law says that mass 

into its acceleration must be equal to force in this direction. How much is the force in that 

direction? It is minus k x, minus because the force is acting in the negative direction. So, 

the basic equation, what you get is x two dot plus omegan square x equal to 0, where in 

this case omegan squared is k. If you take up the other systems - this one; here the 

moment of the inertia is I and torsional stiffness of this spring is capital K and this is the 

equilibrium position. 
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When it rotates, suppose we measure the displacement in this direction from here and this 

is the equilibrium position. So, when the angular displacement is theta, as it torsional 

spring is now to form it will apply the moment in this direction is M. The equation of 

motion that means, I moment of inertia into angular acceleration; that is, theta two dot 

must be equal to total moment acting in that direction, which is nothing but minus k theta. 

Here again, we find the basic equation theta two dot plus omegan square theta equal to 0 

where omegan square is equal to capital K by I. So, the form of the equation both cases is 

exactly the same. 

Let us consider the angular case. We do only one - that is the pendulum others, we will 

take up later. Here, the equilibrium position obviously, this is the equilibrium position 

and we have to displace it by an angle theta in this direction. When you take this mass the 

force acting on this will be gravity and the tension in this direction that is the hinge. 

Now, what will be the equation of motion for this? We can do it in two ways; we find out 

the total moment of the external forces about this point O and then we can apply this 

moment of inertia of the system about this into the theta two dot must be equal to the total 

moment acting in that direction. So, what is the moment of inertia about this point? It will 

be m l square and the angular acceleration in the algebraically positive direction is this; 



this must be equal to the total torque acting in this direction (Refer Slide Time: 16:50). 

Total torque about this point is actually clockwise, that means in the opposite direction 

and it is equal to minus mg sine theta into l; mg sin theta is nothing but the component of 

this in the normal direction and this angle being theta; this is mg sine theta and this into 

the arm length l is the total moment acting in this direction and putting a negative because 

it is minus. 

Here again, we get the equation in the basic form. We find something interesting here 

that the forms are somewhat different and moreover this is a non-linear equation. 

However, for a small oscillation, which is always the case unless otherwise mention, we 

can write sin theta is approximately equal to theta and theta two dot plus g by l theta is 

equal to 0 or theta two dot plus omegan square is equal to 0 (Refer Slide Time: 19:10). 

We find in gravity base system also the basic equation is of the same form. 
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Let us take up another case where the equilibrium is not in the undeformed condition of 

this spring. What happens in such cases? We are discussing this particular situation where 

the system is at its equilibrium position, but corresponding to that position the elastic 

members are already deformed. Now, such system comes quite often and in many cases 

there is confusion that whether the gravity force should be taken into account or not; that 



is why I am separately discussing to remove any confusion which may be otherwise may 

be created. Let us take a simple spring mass system but now, it is suspended rather than 

being put on a horizontal table; it is now suspended. What will happen next, if we 

suspend this; the spring will stress little bit and the mass will come here, because due to 

gravity there will be force acting on this spring and this spring will be stressed so the 

equilibrium position - this is the position which corresponds to un-deformed spring length 

- but this is the equilibrium position when it gets deformed by an amount delta (Refer 

Slide Time: 21:35). 
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Now, what is the equilibrium situation? What does it signify? The total vertical force on 

this mass, one is the weight mg and other the spring force which is k into deformation of 

the spring delta. Since it is equilibrium, mg must be equal to k delta. We measure the 

displacement always from the equilibrium position. Now finally, we give some further 

deformation or displacement to the mass from its equilibrium. 

If this is equilibrium position as mention before, we should measure the displacement 

from this position. This is the instantaneous position and therefore this must be equal to 

this, which is measured from the equilibrium position (Refer Slide Time: 22:45).Now, let 



us see, what is total force acting on this; one is the gravity and other is the spring force 

which is k into delta plus x. 
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Now the total deformation from its un-deformed condition or position, that means delta 

plus x. The equilibrium in this direction will be m x two dot, is the total force 

acceleration of the body into the mass in this direction and that must be equal to total 

force in this positive x direction; that is mg minus this or when you expand(Refer Slide 

Time: 24:13). Now, as you can see this is equal to 0. Finally, we again get back the same 

form of equation. So this is a very important point we should always keep in mind that 

even if the system is under equilibrium under the action of the gravitational field and we 

measure the displacement of the configuration or the mass from it equilibrium position 

there is no need to account for the gravity at later stage. 

The gravitational pull which was already balanced by the spring force while it was in its 

equilibrium position is always there and gets nullified by each other. When we write 

down the equation of motion, there is no need to put this, what you could do? You could 

just simply ignore that existence of gravity. We will consider the case that there is only 

the displacement of the spring from its equilibrium position of the mass, which is kx and 

we will not consider that the total displacement stretch its delta plus x, that is will be k 



into delta plus x. We can forget about gravity everything and that way we should get the 

correct solution. This is discussed in great detail because; this is a source of the problem 

and difficult for many students. Now, let us come to the question of solving because if we 

find that all the single degree freedom system in some form or the other we get the same 

equation of motion. We will now solve this equation of; so the equation is same, so 

therefore you have to find out the solution. 
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The equation which we will solve is of this form x two dot plus omegan square x equal to 

0. You have all solved this equation, which is a very standard one and we know that the 

solution is a harmonic function of time. We all know that A and B are constants and this 

constant are determined from the initial condition. The values of the position and velocity 

at t is equal to 0; they have to be specified otherwise the problem is not completely stated 

and once there are given, we can find out the values of A and B. How do you do it? We 

find out x dot t is equal to (Refer Slide Time: 28:32). So, at t is equal to 0, x equal to 0. If 

we put t is equal to 0 here, this goes out; only this B remains; so that tells us that B is 

equal to 0. 
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Similarly, at t is equal to 0, x is equal to x dot of 0; we cannot say both are 0, then what 

happens? We get the substitute t is equal to 0, so omegan A is equal to x 0 dot; so we get 

omegan A is equal to x of 0. That gives as A equal to x dot of 0 by omegan. The form of 

the solution in this case will be (Refer Slide Time: 30:06). If we do the other way that 

will give initially some displacement, but no velocity; then what happens? At t is equal to 

0, x dot is equal to 0. Now, if x dot is equal to 0; if you put t is equal to 0, what remains 

omegan A; now omegan A is equal to 0, that means A is equal to 0; if A is equal to 0 then 

if you put t is equal to 0, this goes and only B remains; B is equal to x of 0 so the solution 

in that case will be (Refer Slide Time: 30:18). 

So, depending on the initial condition, we can have the solution the general case will be 

(Refer Slide Time: 31:44). Solution to this is quite straight forward, you can solve it that 

means, we will get at t is equal to x; x is equal to two x 0, so B is equal to x 0; this is 0 

only B remains that is x 0. Similarly, this will become this; this is 0; this is omegan A; A 

is equal to x of 0 divided by omegan and the solution is finally (Refer Slide Time: 32:50). 

This will be the most general solution (Refer Slide Time: 32:26). However, we can 

express the solution with two constants as A and B to be determined for initial condition 

in another way. 
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Say, we take the solution and let us substitute A by squared root of A square plus B 

square is equal to cosine pi (Refer Slide Time: 33:57). What you can get x t is equal to. 

Now, you can first multiply by square root of A square plus B square and divide this by 

A square plus B square; divide this by A square root of A square plus B square which are 

nothing but cosine pi, sine pi. 

Therefore, it becomes sine of omegant plus pi. We can write this quantity as one quantity 

capital X sine of omegan t plus phi. Here, you know that x is nothing but; tan phi is equal 

to B by A (Refer Slide Time: 34:59). We could do it other way also all kinds of things are 

possible, we could write A by square root of A square plus B square is equal to sine psi, 

for example. Then x of t will be equal to X cosine of omega t plus psi where x is the same 

and tan psi equal to A by B. Getting sine, cosine or such combinations there are basically 

saying as we can guess than all simple harmonic functions of time. 
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Generally, we can write this solution in any form and start from there. Therefore, we can 

write the solution in this form x of t is equal to X sine of omegan t plus phi or X cos of 

omegant plus phi or any of this forms can be used, here actually in the same thing. I think 

once we get this. Therefore, we find our solution in graphical form; will look like this, we 

plot x versus t (Refer Slide Time: 36:53). If it is a sine function, simply then obviously 

that means when we get it already we have seen is that this is the situation when x 0 is 

equal to 0, x dot 0 is equal to x dot 0. This is that means, since we start it without any 

initial displacement, but higher by a velocity. 

Similarly, it is possible to have a solution like this, where x will be equal to Xi cosine 

omegan t (Refer Slide Time: 37:58). This is the case, we get when we initially start with 

some displacement but no velocity and then you get cosine function. If both are present 

that means, initially we have given some displacement and velocity. 
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Therefore, what we find that say a harmonic - the solution to this is simple harmonic 

function of time either sine cosine or a combinations of that - where the circular 

frequency in radian per second; this is the natural circular frequency; the actual frequency 

is in cycles per unit time. Now to complete one cycle, the omega or the angle of the 

angular displacement of the vector representing this will be 2pi; that means, from here to 

here you will find that it requires 2pi radians for each cycle. If there are so many radians 

per second, the number of cycle per second which we call as Hz, is omegan by 2pi. 

Now, if you want to find out the time period then, what is the duration of the one cycle? 

Time period will be obviously, that if 2pi is the angle to cover one cycle and omegan be 

the speed at which it is covering angle. So obviously, this will be the time, these are the 

quantities. Therefore, we have found very important thing that all single degree freedom 

systems without any damping, if disturbed from the equilibrium position executes 

oscillatory motion; where the displacement or small oscillation can be represented by 

simple harmonic function of time and it vibrates through a particular frequency of the 

time period, which is the characteristics of that particular system and its value depends on 

the parameters. We will solve problems to find out that how this omegan or fn or T are 

found out that will solve some problems.  



 The importance of this study - one thing to be kept in mind is that you have noticed that 

not the determination of x. It is not a system property; it will depend on how much 

displacement you initially gave and how much energy you have put into it of the system 

to initiate vibration. 

On the other hand, this frequency which is oscillating that is a property of (()). Our 

general objective of studying free vibration problem of system is to find out this natural 

frequency of system (Refer Slide Time: 42:12). We will see in the subsequent lectures, 

why it is so important for us to know in natural frequency of system which perhaps, we 

are designing that we will see later, but it will be enough for present to know 

determination of natural frequency of the system is a very important task for the designs. 
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Now, I think before taking up some other thing at this stage will be desirable, so we have 

some discussion on the representation of harmonic quantities or harmonic functions of 

time by rotating vectors. We will make use of this in subsequent lectures that is why we 

are discussing, so that at later stage we don't go as our mainstream of discussions and 

take up this, which is not exactly related to vibration. Here, we want to represent 

harmonic function of time as graphical, very convenient way of doing this, if you take a 



vector A and it is rotating with a constant angular speed omega and we have started 

measuring time at this; this line represent t is equal to 0 (Refer Slide Time: 44:47).  

If that be the case, how much is this angle? omegan into t, because when it was here, time 

was 0 the amount of angle it has covered will be nothing, but the angular speed and the 

time. Now, let us find out projection; if you take this projection; how much is this; this is 

obviously A cosine omega t and sorry omegan and y component at this instant is A sin 

omegat. 
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Now, if it is rotating we will find this component; y component will vary as the sine 

function of time and x component will vary as a cosine function of time. The same thing 

you can do in more general way. Let us consider this free vector of magnitude A is 

rotating at a constant angular speed of omega and let us also pickup this position which 

corresponds to time t is equal to 0. That means, when vector A was here then only we 

started our clock. Therefore, the angle it has travelled is omegat and let this angle be phi. 

Now the x component and y component; it is x component, which is A cosine omega t 

plus phi and this component is A sine of omega t plus phi. 

The general representation of a harmonic function of time can be done by taking the 

projections of a rotating vector; here the angular speed of this rotating vector whose 



projections are varying as harmonic functions of time, that corresponds to the circular 

frequency in radian per second. Each component and the phase difference phi we can 

always have by suitably taking our location of the vector, with respect to the x and y 

direction along which we are taking the projections that angle whatever select that gives 

as these phase phi. 
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Now as I mention, let us take a particular example. We will take a very simple example 

to begin with; the problem is like this, we have a cantilever beam being of length l and 

the flexural rigidity; that means the product of its second moment area of the cross 

section and the modules of elasticity of the material EI. At the free end of the cantilever 

beam we have placed a block of mass m. We also mention that the mass of the cantilever 

beam at this stage we can ignore compare to mass of block at the end. Therefore, we will 

treat a cantilever beam as a simple spring element and if does not process any inertia. We 

know in this case motion is going to be up and down motion of this (Refer Slide Time: 

50:45). 

We can actually treat this problem the lump parameter module, we can make the 

cantilever beam n which can move up and down, but it is subjected to some constant 

force which is proportional to the deflection and multiplied by the stiffness represented 

by this. Therefore, we can represent it by the equivalent mass-less spring with stiffness, 



simply kequivalent. How much is kequivalent? How to find it out? We take the same actual 

beam and apply a load, say load F then what happens? The beam deflects and this 

deflection; let me call as small delta (Refer Slide Time: 52:10). 

 If we apply this same force here, it should deflected by same amount. Here the deflection 

delta is equal to how much? F by kequivalent by definition of the spring (()). How much is 

the deflection of this, here we know delta is equal to - you know the flexural rigidity of 

this is given therefore, it is going to be - l cube by 3EI. It is from beam theory for simple 

cantilever beam the deflection at the free end is given by this. If this has to be replaced by 

this, the deflection of this end because of same force must be same. Therefore, we will 

get kequivalent is equal to 3EI by l cube. 

This is module link and we have now replaced the actual system by a lump parameter 

module (Refer Slide Time: 54:16). Now, you have seen the equation of motion, this is the 

equilibrium position and we measure x from here. We should remember now about 

previous analysis and recognize fact that we don't have to consider gravity anymore 

because you are measuring the displacement from the equilibrium, which was under the 

action of gravity. 
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What is the equation of motion? You all remember that m x two dot is equal to minus 

kequivalent x or omegan square is simply that will give you x two dot plus omegan square x 

equal to 0, where omegan square is square root of kequivalent. Now kequivalent , we have 

already found out, so this is nothing but square root of 3EI by m l cube. Frequency is 

equal to 1 by 2pi square root of 3EI divided by m l cube. For a cantilever beam the 

natural frequency of oscillation when it carries a block of mass m at its free end is given 

by this quantity. 

 If the material is harder, that is E is higher, frequency will be higher. If the system cross 

section is thicker I is more, it will again become higher. Otherwise if the length is more, 

than it slows down and it increases or decreases at a very (( )) position. If l is large 

frequency will decrease and it is inversely proportional to the l to the power 3 by 2. On, 

the other hand if l is increased again the frequency will decrease as squared root l. The 

most sensitive factor in controlling the frequency of a cantilever beam is explained. 

This is a fairly simple example, but I wanted to tell this step which normally one has to 

take sometimes we do it very quickly without going in detail to the intermediate step like 

this, but first thing is developing the mathematical module, lump parameter module, then 

framing the equation of motion and solving this equation. I think in the next lecture, we 

will take up more complicated problems particularly we will also like to take situations 

where the restoration is by gravity. We will also try to figure out, if there are other 

approaches of solving such problems particularly in case, where there is no damping or 

no dissipation. We have noticed that we are solving the simplest possible that there is no 

damping. In such case, the total mechanical energy is conserved; either you can use that 

to make use of that particular condition of conservation of total energy in solving some 

problem. We will look into that in the next lecture. 


