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Field Balancing of Rotors 

In the last lecture, we have seen how it is possible to dynamically balance rotating 

objects, which are of large size and it is not possible to place them on balancing 

machines. Now we have seen how disc-like objects of large size can be balanced in its 

own position that is what we call as field balancing. In today's lecture is that the same 

technique can be extended to rotor-like objects for complete dynamic balancing, keeping 

the object in its own position. Here also we keep the rotor in its own position and the 

instrumentation required will not be very elaborate, but just like in the case of discs, you 

can connect it to a small device, which we call sine-wave generator. We have pickups at 

the two ends and we have dual beam oscilloscope. So the sine wave generator is 

connected to one and the vibration pickups either connected to this pickup which we call 

the near end pickup, near-end means it is nearer to the sine wave generator and this is the 

far-end and this is the pickup. 
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We can rotate the rotor at sufficient speed so that we get measurable vibrations through 

the pickups at the near-end and far-end and at the same time, the sine-wave generator 

produces a reference sine wave. The first test is first round. The first round is run around 

the rotor at a suitable speed omega to the near-end, so that we get measurable vibration. 

Then the near-end, as you know already that oscilloscope output will be giving a 

reference sine wave and the other one say near-end will be something like this and this 

for the far-end 
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This oscilloscope signals tells that this is the phase lead of the near-end response or near-

end sine wave, which you get and this is the far-end. The near-end response we get as N1 

vector and obviously, the reference is here. Reference vector is nothing but the sine-wave 

generator, so this will be phi subscript N. Similarly, at the far-end again the reference will 

be same, this will be phi subscript F and the vector representing the vibration of the far-

end is F1. 

So let us see again, what we have done, it is being rotated at a suitable speed so that the 

near-end pickup and far-end pickup produces reasonably measurable signal. So, the sine-

wave generator is producing a signal as a reference. Then the vibration of the near-end is 

being measured like this and the vibration of the far-end is given by this. All of these are 

harmonic functions of time because it is a case of force vibration and in all cases the 

frequency of vibration is matching with the speed of rotation, so all these signals are of 

same frequency. 

Next, we start the machine and let us see the near-end and far-end faces. This is the near-

end face, this is the far-end face. We have a data or reference line marked and attach a 

trial mass mt at the near-end at a known radius, at a known position. This is a data. After 

attaching this trial mass at the near-end face. Of course you have to keep in mind that 



these are also the chosen planes for putting our balancing masses or taking out material 

just diametrically opposite location of the balancing mass as we have been saying in the 

previous lecture. 
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Now, if we run the rotor at the same speed and again we measure the vibration of the 

near-end and far-end. What we will find is that the effect of this trial mass, which you 

place at the near-end, will be obviously more at the near-end of a vibration. The vibration 

of the near-end is now N2. This is the reference, this angle is the lead angle of the wave, 

which is found in the oscilloscope with respect to the reference sine wave signal. Now, 

when we did not attach the trial mass, the vibration of the near-end was this N1 vector. So 

this vector: N2 vector minus N1 vector, represents the effect of on near-end vibration. 

This is the original vibration without any trial mass mtN, this is the vibration of the near-

end with the trial mass, so obviously this difference is the effect of the trial mass. 
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Similarly, the vibration measured at the other end that is the far-end will be something 

like this. The original vibration without mtN was F1, so therefore this extra, the increase 

that is F2 minus F1 that represents the effect of mtN on far-end vibration. Remember these 

vectors have all rotating like rigid body in the same speed as this and real quantity is the 

component along this, this is the way we represent a harmonically quantity. 

Next, we take out this mtN. Remove it and put another mass and we call that mass as 

motion mtF, at another known radius distance at a known position from a datum drawn on 

this. Then again we run at the same speed and the vibration at the near-end and far-ends 

are again measured both in amplitude and in phase. 
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Second run: attach a trial mass at the near-end at a known radius and at a known angular 

position given by phi subscript mtN run at omega. Then the third run is remove mtN and 

attach mtN to the far-end at a known radius and angular position phi subscript mtF run at 

omega. Now we again measure and we get N3 vector. If this is the vibration at the near-

end without any attached mass, N1 vector, then this N3 vector minus N1 vector is the 

effect of mtF on the near-end vibration. 

Similarly, at the far-end the vibration is measured and we get the far-end vibration F3 

vector, the original one was F1 vector without anything. This F3 vector minus F1 vector is 

the effect of mtF on far-end vibration. Now let us see what we can do after this. What we 

have to do ultimately, we have to place balancing masses, like say mbN and mbF. 
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How do we do it? We have to remember that once this mtN is changed to this mbN and mtF 

is changed to this mbF, then when both have placed there, the total vibration at the near-

end and far-end should be 0. That is the effect of mbN on near-end vibration and far-end 

vibration, plus effect of mbF on near-end vibration and far-end vibration. When you sum 

total, the near-end vibration should be just minus N1 to cancel the original effect when no 

mass was attached. The total effect here on the far-end should be minus F1 to cancel the 

effect of the original unbalance present in the rotor. 
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Now we have seen in the previous class that how we represent the vector quantities. We 

will have two vector operators: alpha vector, which is equal to alpha e to the power i phi 

subscript alpha and beta vector, which is equal to beta e to the power i phi subscript beta. 

When two vectors like: A vector is represented by A e to the power i phi subscript A and 

B vector is equal to B e to the power i phi subscript B, when you multiply these two 

vectors then what we get? We get a vector whose magnitude is the product of the two 

magnitudes and their phase is given by the sum. 

If you remember this, then let us see that what we have to find out. mbN, if you represent 

by a vector because it is a magnitude and it has an angular position that is direction, 

which is equal to alpha vector operated upon mtN vector, trial mass position is known. So 

if we know alpha then we multiply mtN by alpha to get mbN and we will get alpha mtN, 

magnitude will be the product and face-angular location will be shifted by e to the power 

of i phi subscript mtN plus phi subscript alpha. 

Similarly, the balancing mass at the far-end, vector mbF can be written as product of 

vector beta with mtF, that also can be represented by a complex quantity or a vector 

because that also as a magnitude and direction. This will be then beta mtF e to the power 

of i phi subscript mtF plus phi subscript beta. If you can find out alpha and beta, that 



means you find out the quantity alpha and phi alpha and quantity beta and phi beta, then 

we can find out the magnitude and position of the balancing masses. But, what is the 

condition? The condition is that, when this is placed simultaneously, total effect at the 

near-end should be minus N1 and total effect on the far-end should be minus F1. So let us 

see how we represent it mathematically. What is the effect of mtN at the near-end? This 

one. What will be the effect of alpha into mtN at the near-end? It will be alpha vector into 

N2 vector minus N1 vector. This is the effect of mtN at the near-end plus what will be the 

effect of mtF at the near-end? It will be beta vector into, what is the effect of far-end at the 

near-end? It is N3 vector minus N1 vector. 
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This will be effect of mbF at the near-end. This total should be minus N1 vector, which 

was originally present. When everything is together, it is 0. Similarly, what will be the 

effect of mtN at the far-end? It will be alpha vector into F2 vector minus F1 vector plus the 

effect of mtF at the far-end, that is beta vector into F3 vector minus F1 vector. This total 

should be minus F1 vector. 

We now get, N2 vector minus N1 vector, N3 vector minus N1 vector. All these can be 

graphically found out. Then we have to solve this simultaneous equation. What do you 

do? You multiply this by F3 vector F1 vector. We multiply the second equation by N3 



vector minus N1 vector. The standard thing is you subtract this or change the sign and add 

whatever you may say. What we get is alpha vector into N2 vector minus N1 vector into 

F3 vector minus F1 vector minus N3 vector minus N1 vector into F2 vector minus F1 

vector. This cancels, is equal to F1 vector into N3 vector minus N1 vector minus N1 vector 

into F3 vector minus F1 vector. 
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Finally, we get alpha vector. Similarly we will find out beta also which will be in this 

case of quotes you have to multiply this by N2 minus N1 and this by F2 minus F1 and then 

subtracting one from another we will get: (Refer Slide Time: 29:53). 
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This is just solving simultaneous equation. What will it give you by solving the quantities 

by graphical construction ultimately is alpha e to the power i phi subscript alpha, this will 

be beta e to the power phi subscript beta. At the near-end, this is the reference or datum. 

Our near-end trial mass was here at known angle. We have to change this product as mtN 

and you have to shift it by phi subscript alpha. This mtN magnitude is equal to nothing but 

alpha mtN, if you keep the radius same of course, because it is actually the product of 

eccentricity and the mass which is important but just to make the writing less complicated 

we are assuming that the placed at the same radial distance. So that is missing here, but 

otherwise you can all the time keep the product of the two as radial quantity. 

At the far-end, if this is the original trial mass you have kept, then we have to shift it to 

this position mtF, which will be same as beta into mtF. Its distance angular position will be 

phi subscript beta. Therefore, you can see that even a rotor if it is too big, then it is not 

necessary to bring it to a machine. It can be balanced in its own location. This particular 

method which we have shown, where we have used a sine-wave generator and vibration 

pickup and a double beam oscilloscope. As you have mentioned in the case of disc like 

objects, here also you can solve the problem of field balancing, using only a vibration 

meter which will give you the amplitude of vibration. In that case, we have again put 

each trial mass diametrically opposite position and also at right angles, as you have done 



in case of single plane balancing that is a disc balancing. Then we will have many more 

readings and the computation will be far more complicated, but you yourself can figure 

out the procedure how we can have or determine the position of the mbN and mbF for 

complete balancing using only a vibration meter. 

The other last thing which we would like to mention briefly is that, so far we have 

considered these balancing problems where all these objects or the bodies were perfectly 

rigid, but in actual practical situation it may happen that a rotor may not be perfectly rigid 

and it may have some significant amount of deflection or elastic deformation. In such 

cases this method will not work. For that, we have to follow a methodology, which you 

call as the noodle balancing. 

That method is more complicated, more involved and we will not discuss it here, but we 

just wanted to mention it, so that you are aware of the problem. The other kind of rotor-

balancing problem is, where the mass and geometry of the rotor or rotating object is not a 

very definite one, as you find in case of washing machines, where we put all the wet cloth 

whose geometry or shape or mass are all uncertain. In such cases, a suitable technique is 

used for self-balancing of the rotating objects. That is also another very interesting 

technique of balancing rotating objects. We will stop discussion on rotor balancing here 

and from the next lecture we will take up the problems of balancing machines where the 

systems involve reciprocating objects. 


