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Good morning,  in  the  previous  lecture,  we studied  1 of  the  4  methods  to  work out

suitable similarity transformations for solving the Eigenvalue problem that was through

plane rotations. Today in this lecture we consider the second method to work out suitable

similarity  transformation.  This is  also related to geometrical  ideas  and this  particular

method is based on reflection. So, today we will study householder transformation and

tridiagonal matrices.

(Refer Slide Time: 00:54)

First we consider the householder reflection transformation in a geometric sense, and

then  we  work  out  how to  find  the  householder  method  for  tridiagonalising  a  given

symmetric  matrix  and next  we see what  to  do with that  resulting  tridiagonal  matrix

symmetric tridiagonal matrix.



(Refer Slide Time: 01:21)

So, first consider this in a k dimensional space; consider 2 vectors u and v in this k

dimensional space. Both having the same magnitude if u and v have the same magnitude

like this then we proceed to find this particular vector w, which is the unit vector along

the direction of difference of u and v that u is this v is this this vector is a difference u

minus b and we divided it with its magnitude to find the unit vector w in this direction.

Now, this small vector w unit vector in this direction is perpendicular or a orthogonal to

this plane or hyper plane, that actually bisects the angle between these 2 rays showing

the 2 vectors. Now with this w in hand let us construct this matrix Hk which is a k by k

matrix formed by subtracting the matrix twice ww transpose from the identity matrix this

matrix is called the householder reflection matrix, this has a lot of interesting properties.

This is a matrix which is symmetric and orthogonal at the same time. Symmetry is easy

to see here because identity is anyway symmetric and ww transpose is symmetric. So,

this  defines  a  symmetric  to  check  for  orthogonality  we  can  find  out  whether  a  Hk

transpose Hk is identity. 



(Refer Slide Time: 03:17)

To see that is actually  quite simple Hk transpose Hk and symmetry we have already

confirmed we have already verified. So, in place of Hk transpose Hk we can simply write

Hk. So, Hk into Hk right identity minus twice w w transpose into the same thing. As we

open this product we get I into I that is identity minus I into twice ww transpose and

again twice ww transpose into identity.

So, total  4 ww transpose minus minus plus 2 into 2 4 and we get ww transpose ww

transpose since matrix multiplication is associative. So, whichever order you multiply

these 4 it does not matter. So, if you multiply in this first then you will  find that w

transpose w is unity because w is a unit vector then what remains 4 ww transpose which

is as same as this. So, that will mean that Hk transpose Hk is identity that establishes the

orthogonality of this householder reflection matrix. Now what does this symmetric and

orthogonal matrix do why it is called reflection matrix. To see that consider its action on

2 vectors; 1 around w and the other perpendicular to w or orthogonal to w. Orthogonal to

w will mean a vector in this plane which is shown here as plane of reflection.

So, take any vector x which is orthogonal to w; that means, which is in this plane. So,

when you apply it apply Hk on x, you find that Ik minus 1 twice ww transpose x what

you will get identity into x is x and this 1 as you open you will find first w transpose x

and from the very definition of x being orthogonal to w, w transpose x will be 0. So,



what will remain identity x into x which is x; that means, a vector orthogonal to w that is

in the plane of reflection gets mapped to the same vector itself there is no change.

On the other hand how does w itself get, gets mapped get mapped Hkw as you apply this

on w you find that identity into w will give u w, but this fellow will give you twice w, w

transpose w is 1. So, you will get w minus twice w that is minus w; that means, w itself

when operated upon by Hk gets mapped to its negative and the vector in the plane, plane

of reflection gets mapped to itself that is the way a reflection takes place. This plane of

reflection operates like a mirror right. So, if there is any other vector which has some

component on the plane and some component perpendicular to it, then we can consider it

like this applying Hk over y which has 2 components along w which is perpendicular to

the plane and perpendicular to w which is along the plane.  The component which is

along w gets mapped to its negatives and the particular 1 remains as it is right. So, this is

typically  the  action  of  a  mirror  reflections.  So,  this  is  why  this  matrix  is  called  a

householder reflection matrix. In particular it will map u to v and v to u because they are

mirror images of each other with this plane as the mirror or plane of reflection.

Now,  this  concept  and  this  particular  matrix,  how  do  you  utilise  in  reducing  the

symmetric matrix to a form more suitable for solution of the Eigenvalue problem, in this

case we will try to make it tridiagonal how do you use that. 

(Refer Slide Time: 07:57)



So, that brings us to the point of householder method. Consider an n by n symmetric

matrix.

(Refer Slide Time: 08:03)

And so on right symmetry is shown here a to 1 a to 1 and so on. Now take u in that

context in the reflection context take this u to be the vector a to 1 to an 1 this transpose

makes this row vector a column vector through transposition.

Now, if the matrix is m by n, then this vector u is an n minus 1 dimensional vector

because that top entry a 11 we have left out and that vector u starts from a to 1; that

means, this vector this much is taken as u and then v is taken to be a vector of the same

dimension, but it is having a first entry which is the same as norm of u. So, whatever is

the norm of this that turns out to be the first entry of v all other entries of v are 0; that

means, the top entry of v will be the norm of this vector from a 21 to a n 1 and all the

other n minus 2 entries of v will be 0.

So, like that construct the vector v with this u and v we work out w u minus v divided by

its magnitude and then we work out the householder matrix. That householder matrix Hk

in this case k is n minus 1. So, it will be an n minus 1 by n minus 1 matrix hn minus 1,

we call it right, then out of that H n minus which is an n minus 1 by n minus 1 matrix, we

develop this larger matrix by inserting a 1 here a 0 row above and 0 column on the left of

this H. So, this is P 1 now P 1 is its own transpose because it is symmetric and it is

orthogonal  also.  So,  then  what  we  do  is  that  we  apply  this  orthogonal  similarity



transformation P 1 transpose A P 1 since P 1 transpose is same as P 1. So, we have just

written P 1.

Now, what we have here is a 11 sitting here u is this this whole thing is u transpose and

this much the trailing n by n minus 1 by n minus 1 matrix, for that we given name call it

a 1 whatever it is then as we apply this P 1 a P 1 through the multiplications you will find

that this u has become in place of u have got v now and in place of u transpose you have

got v transpose, this multiplication you can see immediately we have got P 1 0 right.

(Refer Slide Time: 11:33)

So, 0 row 0 column and H n plus 1 n minus 1 here then a which has a 11, u on this side u

transpose on this side and a 1 here, here and again the same thing.

Now, as you conduct the block operations in Eigenvalue problem solution methodologies

you will come often across these block operations. So, first keep this as it is and we

multiply these 2; a 1 1 scalar into 1 plus u transpose row vector into 0 column vector that

is 0. So, you get a 1 1, next a 1 1 into 0 row you get a 0 row plus u transpose into this

what is u transpose into this that will be the transpose of this right.

So, u transpose into this will be the transpose of this right and what is this? This matrix is

its  own transpose.  So,  this  is  simply Hn minus 1 u and through the property of the

householder  reflection  matrix  that  we have seen just  now this  is  nothing,  but  v. So,

therefore,  u transpose this will be v transpose. So, you get v transpose here next the



lower row block u column vector into 1 that gives you u only, plus a 1 into 0 that is u you

get u finally, this big block this is a scalar this is a row vector this is a column vector now

we have got the trailing n minus 1 by n minus 1 matrix here.

Column vector u into row vector 0 that is a 0 matrix plus A 1 into H we write it finally,

this multiplication 1 into a 1 scalar a 1 plus plus 0 row into u column that is 0. So, you

get a 1 1 a 1 next 1 into v transpose row vector v transpose plus 0 into whatever. So, you

get v transpose here, here 0 into a 1 1 that is 0 that is a column vector plus Hn minus 1 u

that is v we will get v here and here you will get 0 into v transpose that is 0 plus h into a

1 into H right. So, what you have got? You have got in the first column you have got a 1

1 and then the vector V similarly in the first row you have got a 1 1 and then v transpose

and what is the structure of v that we started with first entry of v is full size of u and all

the other entries of V are 0; that means, below the second entry from the top everything

else will be 0. So, that is what you get here right. 

So, now, we rename, see in their whole process a 1 1 has remained unchanged a 1 1 has

not been operated upon by anything because the first column and first row of P 1 is same

as identity. So, a 1 1 has less has been left unchanged now we rename a 1 1 as d 1 and

whatever is the first entry of v we name it as a 2 below which everything else is 0 and

out of symmetry that same e 2 will be sitting here on the right of which there will be all

zeros and this 2 2 diagonal entry we now call d 2. In the next step this block will remain

unchanged though in the first step this remained unchained a 1 1 in the second step this

much will remain unchanged. What we do in the second step? iIn the first column below

the top 2 entries everything else has be become 0, next round in the second column

below the top 3 entries we were went to make everything 0 this is the process to make it

tridiagonal.

So, what we consider is that below the 2 top entries whatever is the vector sitting we call

that u 2 and then construct a similar v 2 which has the same magnitude as u 2 and all, but

the first entry all, but the first all the other entries are 0 right and that size of the matrix in

a vector u 2 and v 2 is n minus 2 then we construct the next householder.
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Transformation matrix of size n minus 2 by n minus 2 and enhance it within identity

matrix of size 2 by 2 here, equivalent number of zeros here and here to complete the size.

Then apply that on the previous result this and this will keep unchanged the leading to by

2 block of a 1 and you will get the next step which will have this much d 1, d 2, d 3, e 2,

e 3 in the place correct places and the first 2 columns and the first 2 rows have been

made  processed  up  to  the  extent  that  below  the  sub  diagonal  and  above  the  super

diagonal and we have got zeros in those first 2 columns and rows.

Like that we keep on conducting steps with smaller and smaller householder matrices in

the trailing part  and the leading part  we will  have the identity  matrices  of gradually

increasing size. After j th such steps till this point it has been converted to tridiagonal and

remaining fellows are full and as we go on conducting this kind of steps at the end of n

minus 2 steps, we will have this complete transformation.
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We want to P 1 to P n minus 2 which will result in a completely symmetric tridiagonal

matrix right which will look like this.

(Refer Slide Time: 18:44)

Let us see a quick example this is a 5 by 5 matrix, now this part is what we called a 1

there. Now in order to reduce it to a symmetric tridiagonal form, we would like to have

first 3 zeros in these locations right. So, we take u as these vectors 4 1 2 1 and we want v

in which the last 3 entries are 0 and what is the first entry? First entry is the size of this

magnitude this vector u. So, what is that size?



This square plus this square plus this square plus this square; so, we will have 16, 17, 18

and 4 22. So, root 22. So, this will become our v and with this u and this v it is easy to

find out w the difference of u and v and divide it by whatever is its magnitude right.

(Refer Slide Time: 20:07)

So, with that we find w and then we work out twice w w transpose, subtract it from

identity and that matrix is our 4 by 4 householder transformation matrix, that 4 by 4

matrix will be sitting here.

Let us call it H 4 zeroes here zeroes here, when this matrix is multiplied on this side and

this side to this matrix, then the transformation that will take place will make these root

22 0 0 0 similarly here, root 22 0 0 0 right then we will find at this much is secured and

whatever is here this 3 dimensional vector will be then taken as the next u and then the

next v will be taken as something 0 0 that something will be the size of this and then

through the similar process in which the householder transformation matrix in this case

will be I 2 H 3 0 0 this 0 matrix is of size 3 by 2 this is of size 2 by 3 and so on.

When this is multiplied on this side as well as on this side, you will get something here

zeroes here the third step here will make this as 0 and whatever happens on this side will

happen on this side also. So, you get a symmetric tridiagonal matrix like this, now the

question is that after we have reduced the matrix.
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To this symmetric tridiagonal form what do we do with it that is, is the solution of the

Eigenvalue problem of a symmetric tridiagonal matrix anyway simpler compared to the

original symmetric matrix the answer is yes. There are several ways 1 can handle this

kind of symmetric tridiagonal matrices one way we consider now and the other way we

will consider in the next lecture. There is a very interesting piece of theory which tells

you how to work out the characteristic polynomials of sub matrices of this that is leading

1 by 1 sub matrix  leading 2 by 2 sub matrix  leading 3 by 3 sub matrix  and form a

sequence out of these characteristic polynomials and then try to solve the Eigenvalue

problem based on those interesting properties.

So, what will be the characteristic polynomial of this? So, for that we have to find out the

determinant  of  lambda  I  minus P. So,  this  is  this  the characteristic  polynomial  right

lambda minus d 1, lambda minus d 2 etcetera sitting in the diagonal places and minus e 2

minus e 3 etcetera sitting in the off diagonal (Refer Time: 23:45) places note that d is

indexed from 1 to n and e the sub diagonal super diagonal entries which is 1 less in

number, they are indexed starting from 2. It could have been indexed as e 1 to en minus 1

that would be equivalent to this, but in this analysis we have indexed from e 2 to en. So,

there is nothing called e 1 in this analysis fine. So, with this characteristic polynomial

you find that the characteristic polynomial of leading 1 by 1 part is simply lambda minus

d 1 right.
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So, we call it P 1, P 1 of lambda that is the characteristic polynomial of the leading 1 by 1

sub matrix from t. So, you call it P 1 that is simply lambda minus d 1, right.

Then for the leading 2 by 2 sub matrix we have got the characteristic polynomial from

here lambda minus d 2 into lambda minus d 1 minus e 2 square. In this place lambda

minus d 1 can you simply put P 1 my P 1 of lambda you can. So, we write this similarly

we can work out P 3 P 4 etcetera, but let us go 1 large step and try to determine P k plus 1

lambda  in  terms  of  P k  lambda  and  P k  minus  1  lambda.  So,  that  will  establish  a

recursion among all these characteristic polynomials of the leading sub matrices.
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So, as we try to do that let us write down here, we are going to write down here the same

matrix appearing there, but not up to all the way to lambda minus d n, but up to lambda

minus d k plus 1. When you try to expand this determinant from this column, what do we

find? We find it is lambda minus d k plus 1 into this determinant minus this thing into the

determinant that we will find by crossing out this row and this column. So, let us do that

and all other entries are zeroes right.

So,  we  get  lambda  minus  dk  plus  1  into  this  determinant  which  is  same  as  the

characteristic polynomial of the sub matrix 1 order less that is lambda minus dk plus 1

into pk lambda minus dk plus 1 into pk. Then plus this thing which is minus ek plus 1

minus ek plus 1 into something we try to find out that something what is that something?

That something will be the determinant found by removing this row and this column. So,

let us do that remaining thing will no longer be this. So, we will be removing this column

and this  row, this  determinant  should be sitting here and see its  diagonal  entries  are

lambda minus d 1 lambda minus d 2 lambda minus d 3 etcetera up to lambda minus dk

minus 1 and then next because this guy has taken this place actually after removal of this

row and in this row other than this entry everything else is 0.

So; that means, the determinant that we are asking for is this into this determinant right

and this is minus ek plus 1 which earlier that minus sign that plus we have not made it

plus. So, that minus will actually now help and because this minus this is remains minus



finally, and ek plus 1 comes once more sorry it is square now and what else is here that is

pk minus 1 that is the characteristic polynomial of the matrix of 1 further order less and

now what we do for the other than this now this relationship this recursive relationship

will define up to P n in terms of the older ones. So, P 3 will get defined in terms of these

2, P 4 will get defined in terms of P 2 and P 3 and so on through this relationship.

At the top we also put  a dummy element  in  this  sequence  in  order to  complete  the

sequence and that is one. So, then we will say this we will have 0 roots no roots this will

have 1 root which is d 1 this will have 2 roots which is we can find out what are those 2

roots and so on. So, finally, P n will have n roots, as we construct this sequence then this

sequence has some interesting properties these expressions or rather this expression this

recursive expression which is here helps us in evaluating these polynomials extremely

fast.

(Refer Slide Time: 31:47)

Other  than  that  this  sequence  of  these  polynomials  of  increasing  degree,  has  further

properties they in particular they have the property called a sturmian sequence property,

that property they have if all the e js all the sub diagonal and super diagonal entries are

non-zero. In that case this sequence P 0 P 1 P 2 all these polynomials the sequence of all

these polynomials has an interesting property.

Now, our rest of the process will directly depend on that property, but before that we

need to ascertain what we should do if there is some ej which is 0, then that is actually



for some j j say ej is 0 some of the sub diagonal and super diagonal entries turns up to be

0 that is actually a good news because in that we can skip the matrix. 

(Refer Slide Time: 32:56)

 We have d 1 d 2 etcetera up to dn, we have e 2 e 3 etcetera up to en. Now if there is a

other things are already zeroes if there is some e which is 0 here as well as here, then this

is actually going to obstruct us from using this succeeding formulation for the complete

matrix, but these 2 zeroes will actually help in treating the matrix into 2 part because

then we will have the complete matrix in the form of a block diagram matrix with these 2

0 sitting here. Earlier if we had these as non-zero, then it was such a huge long matrix

large matrix n by n.

Now, these 2 zeroes here will decouple the 2 subspaces completely and we will actually

have this as a block diagram matrix this is one block and this is another matrix.  So,

whenever we have ej  equal to 0 at  that  location we can always split  the matrix into

smaller block such that we can consider each block separately. So, having some ej as 0

helps us in splitting the matrix into small matrices, until each such as block has non zero

ejs all through right. So, we can consider only those cases, which have non 0 entries here

for which the rest of the theory holds.

Now, what is that particular property?
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The Sturmian sequence property says that roots of pk plus 1 interlace roots of pk what is

that? That means, if you have roots of pk sitting at locations 1 5 7 9, P k plus 1 7 5 7, 9 if

these are the roots of pk then the next 1 pk plus 1 which has 1 more root 5 root say P 4

has these as root P 5 which has 5 roots will certainly have 1 root below 1, another root

between these 2 another root between these 2 another root between these 2 and the fifth

root above 9; that means, the roots of pk plus 1 will interlace the roots of pk which in

turn will  interlace  roots  of  pk 3 a  P 3 epk minus 1 and so on right.  So,  this  is  the

interlacing property which is shown mathematically like this and this property leads to a

convenient procedure for finding the Eigenvalues.

Now I will skip the proof of this particular property, but I will just give you the line of

proof and strongly advise you that  in the textbook,  you go through the proof in this

textbook or in these slides which are available in the internet you should go though the

proof quite carefully because the proof has a as a has an inherent beauty in it. So, the line

of the proof is as follows first we considered the case of k equal to 1 that is if this

statement true for a equal to 1 and that is trivially true because there is only 1 root and

nothing is there to interlace in the case of 2 then you verify this. So, the statement is true

for k in the sense that roots of P 2 interlace the roots of P 1. So, the first entry d 1 is

interlaced by the Eigenvalues of the leading 2 by 2 matrix d 1 e 2 e 2 d 2 this you verify

that shows that the statement is true for k equal to 1, next you assume that the statement

is true for k equal to i.
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Then you denote the roots of pi as alphas roots of pi plus 1 as betas and roots of pi plus 2

as gammas.

As you assume the statement to be true for k equal to i you assume this. That is the betas

interlace the alphas that is the i plus 1 betas will interlace the i alphas and in the number

line you can show the alphas which crosses and beta as bars and the picture looks like

this. Then you need to show that in turn gammas will then interlace the betas i plus 2

gammas will interlace i  plus betas and that you establish based on this (Refer Time:

38:12) consideration and changes of signs in the roots of the succeeding polynomials. So,

rest of the proof I will omit here in the class, but I strongly suggest that you go through

the proof a little carefully we will go rather to the procedure. 
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We examine this sequence p 0, p 1, p 2, pn 3 up to pn for different values of w. For a

particular value of w if we know that the pk and pk plus 1 and pk minus 1 will have their

locations of roots in this manner see one question we are never rising that whether the

roots are real or not because that question we are never rising because the matrix is

system matrix. So, all the roots are real that is anyway known all the Eigenvalues are real

that is anyway known.



So, if pk has this kind of relationship with pk minus 1 and pk minus pk plus 1 their roots

then one thing is very clear. If pk w and pk plus 1 w have opposite signs then the number

of their roots above w can differ by just 1 why? Because if this sign that is in this (Refer

Time: 39:45) suppose w falls here and pk w has a certain sign and the at the same w pk

plus 1 has a sign difference from that. That will mean that above that value above that w

whatever is the number of roots of this and the number of roots of this can differ at most

by 1 because at  infinity all  the pks will  have plus infinity  value,  infinity  minus into

infinity minus something into infinity minus something and so on. So, at infinity that

polynomial all of these polynomials will evaluate to plus infinity. So, all of them are

positive. So, the moment 1 root is encountered the sign changes for each of them.

So, it is impossible that one of them encounters too many roots and the other the next

1one has not encountered any roots because of this interlacing property. So, pk and pk

plus 1 2 succeeding 1 2 continuous ones in this sequence having opposite signs will

means that the higher 1 has the one root more than the lower one above w. Now we will

find that number of roots of pn above w will be number of sign changes in the sequence

from this end to that end because as many sign changed if compared to pn pn minus 1

does not change sign; that means, pnn pn minus 1 will have the same number of roots

above w and then from pn minus 1 to pn minus 2 if there is a sign change then we will

know that for (Refer Time: 41:29) pn minus 2 1 root less and so on. So, in this entire

sequence the number of sign changes at w will tell us the number of roots of pn above w.

So, P 0 has no root. So, number of changes will tell you at the end how many roots this

guy has above w.

Now, if you if we do this operation at w equal to a and then w equal to b then above a

how many roots pn has and above b how many roots pn has. The difference of the 2

numbers will tell us how many roots pn has in this interval ab. If at a particular value in

this entire examination in this entire investigation the pn turns out to be 0 we know that

that value is the root is a root. So,  after closing like this that how many roots in the

interval ab, we can consider a plus b by 2 and then see out of those roots in the interval

ab how many are in the lower half a to a plus b by 2 and how many are in the upper half

a plus by 2 to b and so on. So, like this we can repeatedly used bisection to squeeze each

of these roots separately and then further we can use bisection itself to go on squeezing

the interval till we find the root to our required accuracy or rather than bisection we can



find some other equation solving process after locating the roots and separating all the

roots ok.

So, with what interval we start do we start from minus infinity to infinity, then it will be

very difficult to process the whole thing because bisection will work independently, there

is a little trick in starting the process if you want to solve for all the Eigenvalues and that

tells you this all the lambda their magnitudes are bounded by this quantity, which is the

maximum over all rows of the entries of the rows ej plus dj plus ej plus 1 take all their

magnitudes and whatever is the maximum of the sum over all the rows no lambda no

Eigenvalue of the matrix can have a magnitude which is larger than that.

So, if you take the initial interval from minus lambda b and d to lambda b and d then all

the identities are bound to follow in that and then you can go on applying bisection in

order to separate the roots and separate Eigenvalues and once you have separated them

then  solving  for  them,  you  can  apply  either  bisection  itself  or  some  other  equation

solving process or root finding process so that gives you this algorithm.
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First identify the interval ab of interest now interval ab of interest can be either the entire

interval minus lambda b and d to lambda b and d if you are interested in finding all the

roots  all  the  Eigenvalues  or  sometimes  the  your  problem may  suggest  that  you  are

interested in an Eigenvalue in a given domain only in a given interval only you are not

bothered with rest of the Eigenvalues which may fall outside this interval. In that case



you take that interval at a b otherwise you take the larger interval in which you are sure

that all Eigenvalue will lie. Now for a degenerate case in which some sub diagonal or

super diagonal entry of the symmetric tridiagonal matrix is 0 you split the given matrix

and  operate  separately  with  the  different  blocks.  For  each  of  the  remaining  non

degenerate blogs or matrices you just do 2 things by repeated use of bisection and study

of the sequence P lambda you bracket or separate individual Eigenvalues within small

subintervals and then in these bracketed subintervals by further use of bisection itself or

some substitute some other root finding method within each subinterval determine the

individual Eigenvalues and when the interval becomes extremely small say the interval

size becomes equal to point 0 0 0 0 1 then; that means, you actually found the (Refer

Time: 46:02) Eigenvalue. So, there is no further need to go into that.

(Refer Slide Time: 46:07)

So, in this lesson what are the important points that we should keep focus on first point is

that  the  householder  matrix  is  symmetric  and  orthogonal  and  it  effects  a  reflection

transformation. Second is a sequence householder transformations can be used to convert

a given symmetric matrix into symmetric tridiagonal form, and then the Eigenvalues of

the leading squares matrices form a sturmian sequence, which has interlacing structure in

its in their roots and this property can be used to separate and bracket Eigenvalues and

further solve in a systematic manner. So, we have a little time in hand.



So, let us consider a quick example at least half way after which you can proceed on that

example. 
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Suppose you have got this matrix 2 3 2 5 4 3 5 7 by 7 matrix; these are the diagonal

entries and the off diagonal entries are 1 0 1 2 2 1 right sub diagonal entries are also

same and all other entries are 0. 

So, this is a symmetric tri diagonal matrix possibly obtained after a series of householder

transformations. So, this is the matrix which we are going to solve for Eigenvalues. Now

these 2 zeros will  allow us to split  the matrix  in this  manner. So,  there is  a 2 by 2

component and there is a 5 by 5 component, this is actually nothing this you can solve

from the diagonals of this you can solve from the (Refer Time: 48:20) definition itself

because that will involve only the solution of a quadratic. This otherwise would involve

the solution of a quintic  equation which is  more difficult.  So,  for this  we apply this

methodology based on the Sturmian sequence property. So, for that we construct these

polynomials first one is trivial second will be lambda minus d 1 that is P 1.

Next P 2 will be lambda minus d 2 that is lambda minus 5 into P 1 minus e 1 square that

is 1. Next we will have P 3 which will be lambda minus d 3, 3 into P 2 into P 2 minus e 3

square and what is e 3 here is e 3 here is 2.
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So, e 3 square into P 1 right then P 4 will be lambda minus b 4 into P 3 minus e 4 square

e 4 is 2 into P 2 finally, P 5 will be lambda minus d 5 into P 4 minus e 5 square which is

1 into P 3. These things we will now try to evaluate for different lambdas to locate the

roots of this polynomials. So, for now consider the interval which you need to consider

you would have noticed the intervals as one the rows that is 1 5 2 2 4 2 these are the

biggest rows. So, sum of that turns out to be 8 that means, no Eigenvalue of this matrix

can have magnitude higher than 8. So, you consider the interval minus 8 to plus 8

So, at lambda equal to minus 8 you try to evaluate d this is one for all of them. This is

minus ten this is minus 8 into minus 5 that is minus 13 into this that is minus 10 already

in hand. So, what do you get you get minus 13 sorry minus 5 into minus 10, minus 5 into

minus 10 that is plus 50 minus 1 we will get 49. Then you come here minus 8 minus 4

that is minus 12 right minus 12 into P 2 what you have already got minus 4 into this. 

So, you will find that this turns out to be positive then this turns out to be negative this

turns out to be positive and then you will find that 1 2 3 4 5 sign changes are there that

will show this I suggest that you would verify and check that these turn out to be positive

negative positive and so on and then we will find that there are 5 sign changes from top

to bottom; that means, above minus 8 P 5 will have 5 roots; that means, all the 5 roots are

above minus 8. Then you consider the case of lambda equal to 8 this is 1 and as you put

8 here you will get 8 minus 2 that is 6 positive ok.



Then you put 8 here 3 into P 1 that is P into 6 18 minus 1. So, you get 17, then you come

here 8 minus 4 that is 4 4 P 2 4 into 17, 68 minus 4 into 68 minus 24, you will get 44 still

positive like this you will find then in this case all of them turn put to be positive that

will mean what is the number of roots of P 5 above 8 above the value 8, number of roots

is the same as number of sign changes here no sign change here. So, no root above 8 up

to this we have verified that all the roots are actually above minus 8, 5 root is above

minus 8 and no root above plus 8. So, we have verified that bound that is all the roots

actually lie within minus 8 and 8 right. Now applying bisection you try to find out the

number of roots above 0 above 0 how many. So, this is 1 as you put 0 here you get minus

2, as you get put 0 here you get minus 5 into this that is plus ten minus 1 that is plus 9.

Then you come here and you find minus 4 into 9 that is minus 36 minus 4 into minus 2

that is minus 36 plus 8. So, minus 28; like this as you continued you will find that this

turns out to be positive and this tunes out to be negative that will show the number of

sign changes at lambda equal to 0 for this polynomials this sequence of polynomials is 1

2 3 4 5. So, all 5 roots above all 0. So, all positive roots. So, this gives you a little further

information that all the roots are within the interval 0 to 8 in particular this is a positive

definite  matrix,  because  all  the Eigenvalues  are  positive.  Now what  you will  do for

bisection you will evaluate the polynomials the sequence of polynomials at lambda equal

to 4. So, as you will evaluate at lambda equal to 4 you will find that you get 1 2 and then

here minus 2 minus 1 that is minus 3, and then at lambda equal to 4 this is 0 minus 4 into

P 1 that is minus 8. 

Then here 1 into minus 8 that is minus 8 minus minus plus 12; that means 4 finally, here

minus 4 minus minus plus 8 is minus 4 plus 8 that is plus 4. So, how many sign changes

here 1 sign change here 2 sign changes here. So, above 4 you will have 2 Eigenvalues

and below 4 you will have 3. So, you have started bracketing 3 in this interval and 1 in

this interval that is 3 in this interval and 2 in this interval right. So, 2 sign changes here at

lambda equal to four; that means, above 4, P 5 will have 2 roots 2 sign changes right. So,

in this there will be 2 roots in this there will be 3 roots next you will go on splitting this

next you will evaluate for finding Eigenvalues in this time interval, you will evaluate at 2

and then possibly at 1 or 3 and so on similarly here like this you go on subdividing the

interval till you have separated each of the intervals containing exactly 1 root of P 5 and

further continuation in the same process we will squeeze the root for you.



So,  I  suggest  that  you  continue  this  process  till  you  find  the  Eigenvalue  is  with  a

accuracy of point 1, that will give you enough practice us and you will find that the

method for quite  comfortably there was a small  error in the calculation in the board

work.
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So, please note this correction. Here what you saw in the board was this;

(Refer Slide Time: 58:01)

We were analysing the Eigenvalue problem of this problem and this this is what appeared

on the board and in this and there is a correction this 49 for P 2 at lambda equal to minus



8 was not right, the correct calculation shows that it should be 129, the result of which

was that the next 3 signs were also mistaken and the next 3 signs will be this way minus

plus and minus and with this as we will notice that for lambda equal to minus 8 there are

5 sign changes and; that means, that all 5 roots are above minus 8 and then for lambda

equal to 8 there is no sign change and that shows that no root is above 8 and in between

through bisection then you will evaluate at lambda equal to 0 in which case you will find

that all 5 roots are above 0. 

So, the first 2 columns in this data for lambda equal to minus 8 and lambda equal to 8,

you basically get the verification of the bounds of minus 8 and 8 for all the Eigenvalues

and  the  third  column  lambda  equal  to  for  lambda  equal  to  0,  shows  that  all  the  5

Eigenvalues  are  positive  which  means  the  matrix  is  positive  definite  other  than  this

everything else is all right in board work.

Thank you.


