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Good morning, let us take this example, usually have this 3 by 3 matrix A for which we

want to find out the Eigenvalues and Eigenvectors. So, this is our problem. So, first what

we should do we should find out the matrix lambda I minus a and set that equal to 0 to

get the characteristic equation and you will find its solutions or you can say that we find

the characteristic polynomial and try to find its roots, right.

So, lambda I minus a that is matrix will be lambda minus 2 that is lambda plus 2, then

lambda minus 4, then lambda minus 4 and on the off diagonal element, there will be no

effect  of  this  these will  just  become negative  like this,  right.  Now the characteristic

polynomial is the determinant of this matrix, right. So, you will know the characteristics

polynomial will be the determinant of this matrix, right which you can expand from here;

that means, you will take lambda plus 2 into this-this minus this-this, right.
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Lambda plus 2 into from here, you will get lambda square minus 8 lambda plus 12, then

minus this minus 1 which will give you plus 1 into the determinant that you find from

these 4 elements, right that will give you 8 lambda minus 16 plus this minus 2 into the

determinant that you get out of these right so that you find as this as you simplify this

you will get this.

Now, this particular polynomial is very easy to factorize because you can see that it is

exact cube of lambda minus two. So, factorization in this case is actually very simple

which  will  not  be.  So,  in  the  case  of  a  general  polynomial  or  general  even  cubic

polynomial and this tells you what this tells that the characteristic polynomial p lambda

has 3 roots which it must have, but in this case all 3 roots are coincident that is there is a

single Eigenvalue and that Eigenvalue is 2; that means, a single Eigenvalue appearing

thrice. So, you have got lambda 1, lambda 2, lambda 3, all equal to 2; this is the very

special case.

Now, we say that for this Eigenvalue, then we would like to find out the Eigenvectors it

will be nice if you can find 3 linearly independent Eigenvectors, but it may be possible

that we find only 2 or we find only one. So, for doing that what we need to do we need to

write the full equation from here lambda I minus a into the vector v equal to 0. So, as we

do that for finding Eigenvectors we will take lambda I minus a into v equal to 0 or that

same lambda I minus a we can use by putting lambda equal to 2 here right.



so that will give us 4 8 4 minus 1 N 2 minus 4; that means, minus 2 minus 1 and finally,

in the third column minus 2 minus 4 and then 2 minus 4; that means, minus 2 into this

Eigenvector, see now how to solve this, you will say that will use the same old method,

we will apply elementary row transformations and in this case, it is very case because it

is found that the second row is exactly the same as the first row exactly the same as twice

the first row and the third row is same as the first row.

That means actually the second row and the third row 2 elementary row operation will

immediately go out and only the first  is  something which is  of use,  right.  So,  to  an

elementary row operation in the second and third rows we will get all 0s. So, they are

anyway useless it is only one equation which is of use. So, we take that equation and say;

if we represent v as this vector then that equation will mean 4 alpha minus beta minus 2

gamma equal to 0.

Now, what  alpha  beta  gamma  will  satisfy  these;  any  set  of  alpha  beta  gamma  that

satisfies this is an Eigenvector, now we will say that the scale has no importance of an

Eigenvector that is if you have decided alpha beta gamma as some values then making

them twice  or  thrice  or  halving  them will  have  no  difference  that  will  not  be  as  a

different Eigenvector. So, one of these 3; we can set.
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So, suppose, we will set gamma equal to one that will give us 4 alpha minus beta equal

to two; that means, that still we can choose alpha and then we will get beta right.



So, different choice of alpha we will give us different beta. So, for example, suppose we

choose alpha to be 0. So, then we get one Eigenvector in which alpha is 0 and beta will

then turn out to be minus 2 and gamma is anyway chosen as one in another; suppose, we

choose alpha to be 1. If you choose alpha to be one then we will get beta as 2 right then

we will have this satisfied. So, one 2 and gamma is already chosen as one.

So, these are the 2 linearly dependant Eigenvectors linearly independent Eigenvectors

you can see that there linearly independent. So, 2 linearly independent Eigenvectors we

have got and only 2, you will get because no other independent choice is possible any

third choice of alpha we will give you something which will be only linearly dependent

on these 2 that is it will be a linear combination of these two. So, in this case we have got

only 2 Eigenvectors  not  a  full  set  of 3 Eigenvectors;  that  means,  that  this  particular

matrix is not diagonalizable it is defective.

And since it has got 2 linearly independent Eigenvectors; that means, that it will have 2

Jordon blocks in its Jordon canonical form one Jordon block will be a one by one Jordon

block which will have only 2 the Eigenvalue and the other Jordon block will be a 2 by 2

Jordon block of this kind. So, now, in order to get up to that Jordon block we will need to

find out a generalized Eigenvector apart from these 2 Eigenvectors, right. So, this is what

we expect to be the look of the Jordon blocks that we will get, right.

But we will actually find that after we get the complete basis that is other than the 2

Eigenvectors  after  we  find  out  the  generalized  Eigenvector  also.  So,  to  begin  with

suppose we want this fellow to admit a generalized Eigenvector and try to find put the

generalized  Eigenvector.  So,  the  generalized  Eigenvectors  w  will  satisfy  this  and  A

minus lambda I. So, whatever just now we wrote as lambda I minus A, this matrix is

actually its negative.  So, that negative matrix I am reproducing here this. So, we are

looking for the generalized Eigenvector corresponding to this Eigenvector v 1 right and

then what we can do again the same elementary operations we will mean that these 2

rows become completely 0.

Let us apply those 2 elementary operations R 2 minus twice R one to be put in R 2 and R

3 minus R 1 to be in R 3; that means, from the second row twice the first row first row

remains unchanged from the second row on this side also first row remains unchanged

from the second row twice the first row is subtracted 0 0 0 minus 2 from the third row



the second the first row is subtracted.  So, 0 0 0 one can you see that this system of

equations is actually in consistent because whatever is w the second and third row will

give you 0 on the left side, but non 0 numbers on the right side.

That means this system equations is actually inconsistent; that means, that v 1 does not

admit a generalized Eigenvector, right; that means, the generalized Eigenvector has to

come from some other Eigenvector.
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So, we try with v 2; v 2 1, 2, 1 like this and when you do that in these row operations as

we subtract twice the first row from the second row and the first row from the third row

here from the second row twice the first row is to be subtracted and here you get 0 and

then when you subtract the first row from the third row also here also you will get 1,

minus 1, 0; now this is consistent sorry the first row remains unchanged.

First row remains unchanged to get this. So, first row remains unchanged and the second

and third rows get 0 now this is consistent. So, as this is consistent now then you will

find that w can be determined minus 4 first element of w into plus 1 into second element

of w plus 2 into 13 element of w is 1. So, from there any w vector which satisfies that

equation is a variant generalized Eigenvector to be used with the second Eigenvector. So,

suppose we can take w to be 0 1 0.



So, you see 0 1 0 will give you 0 plus 1 plus 0 which is satisfied. So, in the 3 d plane 3 d

space this one single equation is actually acting like a plane. So, any vector which is

from the origin to this  plane defined by this  first row is actually  a valid generalized

Eigenvector  in  this  case  now  we  address  2  points;  one  is  that  the  similarity

transformation matrix S that we get out of this whole thing will then be.
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The first Eigenvector the second Eigenvector and this generalized Eigenvector which is

associated with the second Eigenvector  and that  is  why it  is  placed after  the second

Eigenvector.

We find out its inverse and then try to calculate this and I leave it for your verification to

find out that the resulting matrix turns out to be this which is the Jordon canonical form

in which there are 2 Jordan blocks one is this the other is this and in this particular case

both the Jordan blocks are corresponding to the same Eigen value which is repeated here

2. So, 2 has this Jordan block as well as this Jordon block that is more the Jordon block

are actually corresponding to the same Eigenvalue in this particular kind of situations the

problem is actually a little more tricky, then it seems till now in this case corresponding

to  this  Eigenvector  we  tried  for  a  generalized  Eigenvector  we  said  for  the  second

Eigenvector we tried and we succeeded in finding these are Eigenvector, but that was not

necessary we might not have succeeded.



For example when we choose when we chose alpha to be 0 and alpha to be 1, then we

got these 2 Eigenvectors in another situation we could have chosen a different value if

we had rather chosen v 1.

(Refer Slide Time: 18:00)

As 1 0 2 and v 2 as this we could have chosen that we can verify 2 things one is that

these 2 are also bonafide the Eigenvectors for this matrix and second is that if you take

this and try to find w you will fail if you take this and find try to find w we have already

fail that we have seen then why do you get that generalized Eigenvector w for that you

can  argue  that  these  2  Eigenvectors  belong  to  the  Eigenspace  of  Eigenvalue  2;  that

means, their Eigenvectors corresponding to the same Eigenvvalue; that means, in that

Eigenspace any linear combination of these 2 is also an Eigenvector and that Eigenvector

if you take in terms of a v 1 plus a v 2, then you can find out that for which value of a

and b we get an Eigenvector which admits an Eigen generalized Eigenvector.

I  read  this  for  you as  an exercise  in  which  you can say that  you want  to  solve  the

generalized Eigenvector from this; this is basically a v 1 plus b v 2 a linear combination

of these 2 Eigenvectors and if you try to do that then you will find that only for a specific

combination of values of a and b you will find that a generalized Eigenvector is admitted

and that turns out to give you this Eigenvector; that means, in the Jordan canonical form

in the basis matrix this vector this Eigenvector must come that this much I leave you



leave for you as an exercise and right now we proceed with the next lesson in our study

which is the lesson based on plane notations.
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As I told you in the previous lecture that in the next 4 lessons, we will be studying 4

methods for finding suitable similarly transformation to bring about diagonalization of a

A matrix.
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And these are the different ways by which we workout suitable similarity transformation.

So,  the  first  way  first  method  to  find  suitable  similarity  transformation  is  based  on

rotations 10 rotations and make note that.
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Now, onwards most of our discussion will be focused on symmetric matrices which have

a lot of interesting properties which we have seen in the previous lecture. So, in this topic

we will first try to see the geometric implication of plane rotations and how they give us

suitable basis change and suitable similarity transformation matrices and then based on

plane rotations we concentrate on 2 methods Jacobi rotation method and givens rotation

method.
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First we study the plane rotation in a simple 2 d plane x y plane suppose we have got a

point P with coordinates x y and we want to make a basis change that is we want to

change the frames of reference through a pure rotation such that the x and y axis undergo

a rotation of i. So, the new x axis is along x prime and the new y axis is along y prime

through  a  rotation  of  angle  phi.  Now  in  the  new  x  prime,  y  prime  axis,  the  new

coordinators are x prime and y prime that is OK and PK. Now if you want to express the

old coordinates x and y in terms of these new coordinates x prime and y prime, then this

x OM is a sum of OL plus LM, right. So, x is OL plus LM and OL from this triangle OK

L you find that OL is x prime into cos phi O L is x prime into cos phi.

And this lm is same as the parallel k M which from this large triangle P and K; define

that kN is the same as y prime into sin phi. So, you get this similarly when you try to find

out y you find that y can be conveniently written as a difference of PN and MN. So, PN

minus MN. So, PN is y prime cos phi and MN is the same MN is the same as LK which

from this small triangle is given as x prime sin phi. So, you have got this now this shows

that the old coordinates can be easily expressed in terms of the linear combinations of the

new coordinates and the coefficients are cos phi sin phi minus sin phi cos phi coefficients

of x prime and y prime in x and y.



When we write this in terms of a matrix that a product in which the matrix houses, these

coefficients and the vector houses x prime and y prime then we find x y vector as a

matrix into the vector x prime y prime the coefficients are put in the matrix.
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So, that matrix is this; this matrix will be represented as the rotation matrix and with this

big r. So, the old coordinates R old position vector R is found as this rotation matrix

regard into the new position vector R prime, right.

Now, when we want to find out the new position vector in terms of the old position

vector then what we need to do where to find out R prime is equal to R inverse into R

that is capital big R inverse into small r and R inverse is same as R transpose. So, this

matrix finally, gives us the mapping from the old coordinates to the new coordinates in 3

dimensional  space  this  particular  matrix  will  be augmented  with a  0  0 1 row in the

bottom and 0 0 1 column in the right side, right.

So, corresponding to this; this matrix in the x y plane, we will have this matrix in which

the third column and the third row is the same as identity which basically means that in

this rotation in the x y plane, the z coordinate does not change and the z coordinate does

not affect the x and y coordinates at all. So, that fact is obtained through this column this

row and this column similarly a rotation in the x z plane, we will get represented like this

in which y axis the second axis will have a similar situation. So, far we are talking about

ordinary physical space.
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Now, when we go to the algebraic conception of space in which the dimension could be

much  larger  than  the  corresponding  N  dimensional  analogue  of  this  kind  of  plane

rotation matrices will have this kind of a structure.

In which the p q plane rotation will be represented like this with this large matrix in

which all the entries are the same as an identity matrix except for the p p, q q, p q and q p

elements. So, this is the rotation matrix cos phi 7 phi minus sin phi cos phi the same 4

elements  which were appearing  here the same elements  are  appearing again,  here in

those corner locations those 4 corners are the points are the locations where there is any

entry other than what is found in the identity matrix all other entries with ones and 0s are

equivalent to the identity matrix. Now this matrix P pq is the plane rotation matrix in an

N dimensional space representing a rotation in the plane of p th and q th axis.

Now, when we apply this rotation on vectors we get relationships like this that is new

coordinates to old coordinates by this transformation R equal to big R; R prime and the

opposite that is R equal R prime equal to R transpose small r. So, when we apply this

message change on a matrix on a linear transformation then that will operate like this that

is the new representation of the same linear transformation it is representation of a in the

new basis will be a prime which will be this basis matrix inverse a into this basis matrix

as we have been seeing all the time and now since this matrix is orthogonal a fact which

you can establish very easily. So, you can replace this inverse with transpose, right.
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Now, consider this matrix A which is symmetric out of symmetric we are representing

this as a p 1 same as this otherwise actually it is a 1 p, but because a symmetry within

represent it as a p 1 itself . So, now, onwards will be discussing most the symmetric

matrices now when a matrix of this kind is multiplied on the right side of a then that a p

the product will not change any element in this huge matrix A except for entries in the p

th column and q th column because only the p th column and q th column of this matrix

has anything other than what is found in the identity matrix of this size similarly when

this matrix transpose is multiplied on the left side of a then no element of a, we will

change except for elements in the p th row and the q th row; that means, through this

entire transformation only those elements only those members entries of a get changed

which fall either on the p th and q th row or the p th and q th columns.

So, these are the entries these are the elements of a which are going to change through

this  entire  transformation,  right;  now how they are  changed this  is  a  matter  of  pure

algebraic calculations.
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And if you conduct those small calculations, then you will find that the new elements of

the matrix after transformation that is elements of a prime will have these expressions in

terms of the old coordinates old members that is a r p, a r q are the r p and r q elements of

the old matrix A and corresponding a p r prime is the a p r element in the new p r element

in the new matrix A prime.

So, these are the changes in the p th row and column except the corner points similarly

the elements in the qr row or column same because it is symmetric the transformation is

symmetric the original matrix A is symmetric and you are multiplying p on the right side

and p transpose on the left, right. So, the resulting matrix is also symmetric. Now the

corner points change in a quadratic manner not in the linear manner why because they

get changed once as part of these 2 columns and then once again as part of these 2 rows.

So, this cos phi sin phi elements enter into the mapping twice among these 4 corner

entries and these quadratic expressions in sin and cos turn out to be like this now we say

that if this is the transformation, then what gives us a method to find a suitable; similarity

transformation in order to reduce the off diagonal elements and at their cost consolidate

the diagonal elements that is what we want to do when we want to diagonalize the matrix

right. So, there are various choices here one choice is very straight forward that is try to

make these 2 corner elements 0 and in that whatever is the consideration of these corner

elements is fine is welcome. So, when you ask for this p q term of the transformed matrix



to be 0, then you are actually trying to apply what is known as Jacobi rotation and here

you can see that the p q element of the new transfer matrix is given by this.

If you want this to be 0 then you can transpose this on the other side of the equality and

then you can divide by twice sin cos c here represents cos phi S represents sin phi then if

you divide both sides by twice S c, then you get this equal to this fellow taken on the

other side divided by a p q twice a p q because of this 2 and now note what is this this is

cos square phi minus sin square phi which is cos twice phi and this is twice sin phi cos

phi which is sin 2 phi. So, this is cos 2 phi by sin 2 phi that is cot 2 phi. So, cot 2 phi is

equal to an expression of the old elements of a which is known so; that means, we can

solves for phi once phi is solved we have got cos phi sin phi and. So, we have got the

complete rotation matrix in hand and using that cos phi and sin phi here we find out all

the changes in the p th row p th column q th row and q th column.

This will certainly turn out to be 0 because that is the condition which we have used in

order to find out the angle phi through that you would have set these 2 values as 0 and

other  values  in  the  2  rows  and 2  columns  would  have  appropriately  and constantly

changed; now what do we next. So, we choose p q 1 by 1 in order to annihilate the

entries which we want to be reduced to 0 annihilate means kill to reduce to 0. So, for that

we take p q first as 1 2 that will mean that we will be working with this corner and that

will mean that these 2 will turn out to be 0 through the process of p 1 2.

Next we will apply P 1 3 in order to make the 3 1 and 1 3 element 0 and so on. So, like

that as we go on applying the rotations P 1 2, P 1 3, P 1 4, P 1 5, up to P 1 n; that means,

one by one we will be trying to set this as 0 then this as 0 then this as 0 up to this which

due to symmetry at a same time we will set these as 0 next we move to the second

column and second row and below a 2 2 below the diagonal entry we would try to make

these as 0 0 0 0 0 0 at the same time these also will become 0 intern so; that means, that

if we continue like this then we will have a complete sequence of operations P 1 2 to P 1

N, then P 2 3 2 to P 2 [noise], then P 3 4 2, P 3 N and so on.

Finally PN minus 1 N when we will be operating at this corner we will make this as 0

and that  will  mean that  we have  undergone the  full  sweep the  matrix  as  undergone

through the full sweep of such Jacobi rotations, but then what does it mean at the end of

it shall we get the matrix as diagonal because we set these as 0s one by one then these as



0s one by one and so on and according you have found the rotation matrices and applied

those rotations.  So,  as a result  shall  we get  a complete  diagonal  matrix  with all  sub

diagonal entries and all super diagonal entries 0 that is not right that will not happen the

resulting matrix in general is far from being diagonal the reason is that after we have set

this as 0 by applying P 1 2 operating on this 4 has the corner points.

After this has become 0 next when we apply P 1 3; 1 3 like this applying using this as

corner points, then that transformation we will change these 2 columns which will mean

that it has the potential of changing these entries also and in general it will change that

will mean that as we apply P 1 3, P 1 4, P 1 5 the old ones old 0s that is in a 2 1, a 3 1

locations, they might get changed and stayed no longer to be 0 then the question arises

that what was then the necessity of applying Jacobi rotations in a full sweep or rather

what is the advantage of doing it if older 0s are spoiled in later operations, then what was

the great advantage of setting the 0s in the first place.
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In order to notice that we need to make a little calculations and there we define this sum

of the squares of all the off diagonal elements off diagonal that is why r is not equal to S

right. So, sum of all these when you try to find out then that will mean that we take a r p

square that is r not equal to p and then a r q square in which r is not equal to p in neither

equal to q because the r equal to q term has been already taken here. So, what you are



doing is it take this a r p square. So, there you will get squares of these except for this

corner point take this and similarly take this and this.

Now, but then when you take this the same will be this because of symmetry; that means,

this has been covered actually. So, when you considered the rows when you considered

the columns the twice of that we will give you the some that of the columns as well as

rows. So, 40 you have taken this and make you to make it twice. So, you get this also;

that means, this has been actually covered similarly when you then considered q then you

need to emit these emission is represented here.

Now, what this means this means that sum up all those entries from here to here and

below and here to  here and below except  these 2 corner  points  and these  identified

separately.  So,  this  is  the  complete  sum  of  the  off  diagonal  terms  before  the

transformation and after the transformation we have kept only the p th and q th term

entries here because others anyway do not undergo any change. Now when you try to

calculate  the same sum for the matrix  A prime, then you get this  and now note that

through this Jacobi rotation ppq you have actually set this as 0. So, you can write simply

this right this has been thrown up because this has been set 0 by this particular rotation.

Now, you compare these 2 and find out delta S, if you do that then you will notice that

this sum and this sum is actually same this sum and this sum is actually same that is very

easy to notice because it is this square plus this square and these 2 actually do not change

because as you square these 2 term and add, then you will find that with c square you

will find a r p square plus a r q square with S square also you will find a r p square plus a

r q square and c square plus S square is 1.

So, square of this plus square of this plus square of this plus square of this is the same as

a r p square plus a r q square and the 2 a beta in the square here and 2 a b in the square

here with cancel each other so; that means, a r p prime square plus a r q prime square

will turn out to be the same as a r p square plus a r q square. So, that tells you that this

sum and this sum remains same for every r and this earlier was something which has

been now set to be 0 and this much has been reduced so; that means, that even if old 0s

are over written in the new Jacobi rotation transformations yet at every Jacobi rotation

transformation; there is a net decrease in the sum of squares of off diagonal terms; that



means, over every Jacobi rotation the off diagonal terms go on becoming poorer and

poorer in their magnitudes.

And finally, after a large number of such rotations take place this sum will converge to 0,

but that may not happen in one sweep. So, therefore, the there are several strategies to

use  Jacobi  rotation  method  to  diagonalize  a  symmetric  matrix  one  is  that  after  one

complete sweep you start all over again from this and complete another sweep and then

another sweep and then other sweep one strategy is to go on applying these sweep in

iteration, you see it is not a fixed operations process it is an iterative process.

So, sweep after sweep you will be reducing the off diagonal entry magnitudes overall;

this is one strategy in another strategy what people do is that after if you initial speech

then later at the time of writing the new entries you can keep track of what is the largest

magnitude entry off diagonal entry in the matrix and then if it turns out that the 4 7 entry

turns out to be the largest magnitude at a after the completion of a sweep then after that

you can say that now onwards we will now we will try to make this 0 and you apply P 4

7 selectively.

Next if P 5 9 turns out to be the largest magnitude entry then you say we will apply P 5 9

and so on. So, after a few initial sweeps after reducing the off diagonal entries to some

extent then you can check for the largest entry largest magnitude entry and that way you

try to annihilate the largest positive entry first and that way you can expedite the process

expedite the iterations and make the process faster this is one way, I am applying plane

rotations to diagonalize a matrix there could be another choice that is rather than asking

for the corner values to become 0 through the transformation you could have chosen any

other value that is not necessarily this you could have chosen some other entry to become

0s.
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For example while applying the rotation P p q rather than asking for a p q prime to be 0

you could have chosen a r q prime to be equal to 0 that is rather than this you could have

chosen this, this, this, this; whichever accordingly it would mean one of these. So, you

have put have chosen that and that if you say a r q prime equal to 0 for any r you can

chose in principle yes. So, a r q, a r q or A; a q r is the same thing. So, one of these you

want to be set equal to 0 that will mean that you want sin by cos is minus a r q, a r p

minus a r q by a r p that is tan phi. So, that will give you another value of phi which we

will set given chosen element in this row and in this column to become 0 through the

transformation.

A particular choice gives you givens rotation method in which r is taken as p minus one;

that means, you do not try to make this corner element 0, but you just want to make this

element 0 just left of the this corner and just above this corner. So, this choice of element

for the annihilation process gives you the method known as the givens rotation method

which  means  that  AP minus  1  q  is  annihilated  and  the  advantage  of  this  particular

annihilation is that in the subsequent rotation transformations this is never updated again

because if you then apply start the sweep then you will not be starting the sweep from

here.

But you will be starting the sweep from here. So, you will apply the transformations in

this order first we have apply a P 2 3; that means, you have be first operating on this



corner 4 corner blocks and then you will not be trying to make this 0, but you will be

trying to make this 0 this and this. So, after they at least accomplished, then you will ask

for P 2 4; that means, with these 4 as the corner points in order to make this 0 and in that

you will find that if you are applying P 2 4, then only the second row and the fourth row

will be updated third row will not be updated and the 0 that we have said we have said in

the previous case is sitting actually in the third row.

That  way the  successive  givens  rotation  transformations  will  not  at  all  update  those

locations  which  we are said to  be 0 in  the  previous  givens  rotation  and this  has  an

advantage. So, with these givens rotations P 2 3, P 2 4, etcetera, we would have made all

these 0s which will never be updated again as you then go to the next givens rotation

which is P 3 4 to P 3 N then you completely move from here and operator here. So, in

that in P 3 4 2 P 3 N you will be setting these as 0 and so on and the symmetric nature

will ensure that above the super diagonal similar 0s are getting established.

So, at the end of a givens rotation sweep which is P 2 3 2, P 2 N, P 3 4 to P 3 N and

finally, PN minus 1 N adjacent you will get all these 0s because the old 0s will not be

updated in the new givens rotations and the result of this whole thing is a symmetric

tridiagonal matrix and this we this givens rotations sweep has to be applied only ones

and after transforming the matrix into this form no further givens rotation will contribute

anything that is why the givens rotation sweep is applied only once not in iterations now

in this whole process whether you apply Jacobi rotation or given rotation givens rotation

how do the Eigenvectors transform as you know that in the new final matrix you have

got all the transformations P 1, P 2, P 3, etcetera all those rotation transformations those

matrices similar transformation matrices sitting like this.

Here the corresponding transposes which are same as inverses. So, then in the entire

product if you consider P 1 to PN all of them together as a big matrix P then you will say

that that matrix P gives you the basis through which the transformation has finally, taken

place here the transpose of that entire thing is actually sitting right now computationally

when you want to apply these transformations and you want to at find out at the end of

the  process  not  only  the  Eigenvalues,  but  Eigenvectors  also  in  those  situations  it  is

important to keep track of this.



You do not want to save all this matrices. So, what you do in the beginning you say that

before we have applied any transformation.
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We have considered P S identity and as a transformation has been applied, we will keep

on multiplying the new transformation on this side that will mean that in place of P, we

will stored the product whatever transformation has been taken place whatever rotation

has  been  applied  that  rotation  matrix  will  be  multiplied  to  this.  So,  first  time  this

initialization  with  identity  is  actually  dummy,  but  next  the  moment  P  1  has  been

multiplied on this side to it in this we have P 1.

Next when P 2 is multiplied like this we will have P 1, P 2 the product next P 3, then we

will have P 1, P 2, P 3 and so on. So, the iteration we will actually go like this so; that

means, for K equal to 1, 2, 3, 4 as many rotation transformations are applied all of those

get  multiplied  from  the  right  side  and  finally,  you  will  have  the  P  storing  all  the

Eigenvectors  by  the  time  the  matrix  has  been  diagonalized  if  the  matrix  has  been

processed only up to symmetric tridiagonal form in the givens rotation method, then that

P matrix resulting P matrix will relate the Eigenvectors of the original matrix and the

matrix A prime which we have in our hand now which can be processed further through

some other method.

Now, if your questions arise because on based plane rotations, we have considered 2

methods one is givens rotation method and the other is Jacobi rotations method.
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These are the points of contrast which it would be interesting to summarize ones first

question is  what happens to  intermediate  0s in the case of Jacobi  rotations,  they get

spoiled in the case of givens rotation, they are preserved second question is what do we

get after a complete sweep in the case of Jacobi rotation we get another matrix which is

also perhaps full  matrix,  but with the off diagonal  terms a  bit  reduced in magnitude

compared to the old matrix.

In the case of givens rotation, after a complete sweep, we get a completely symmetric tri

diagonal matrix as long as the original matrix is symmetric third question is how may

sweeps are we suppose to apply in the case of Jacobi rotations, we have to apply sweeps

through iterations several sweeps till the off diagonal, it turns get reduced to sufficiently

small magnitude, in the case of givens rotation method, we have to apply only one sweep

resulting  in  one  symmetric  tri  diagonal  form  after  which  there  will  be  no  further

advantage what is the intended final form of the matrix in the case of Jacobi rotation

after  a  sweeps;  after  the  necessary  number  of  sweeps  whatever  is  required  for

convergence  the  intended  final  form is  actually  diagonal  how many  sweeps  will  be

required for that we do not know.

In the case of givens rotation method, actually half way processing is intended only half

way processing is intended further than that givens rotation method does not require to

go at all final question which is of practical relevance is how is the size of the matrix



relevant in the choice of the method typically for small matrices say 5 to 7 a Jacobi

rotation method is good enough, but for much larger matrices 9 by 9 or 12 by 12 Jacobi

rotation method may be computationally very expensive.

So, there the strategy should be to apply givens rotation method and then reprocess the

tri  diagonal  matrix  through  some other  method  you will  later  find  that  householder

method which will  consider in the next lecture also accomplishes tridiagonalization a

little more efficiently  than givens rotation method; however, for a off process matrix

sometimes givens rotation method turns out to be more efficient we will come across one

or 2 such situations in the exercises.


