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Welcome in this lecture, we will study Diagonalization and Similarity Transformation.

First,  we will  discuss the issue of Diagonalizability  which I initialed in the previous

lecture and then we will go through two very important topics in the algebraic Eigen

value problem; one is the canonical forms and the other is; the special advantages that we

can take of; the symmetry of a matrix, first diagonalizability.
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Consider an n by n matrix; which has n linearly independent; Eigen vectors; v 1 to v n,

with corresponding Eigen values; lambda 1 to lambda n. Some of these may be repeated

for that matter; that is lambda 2 and lambda 3 can be equal; need not be all different.

These are all linearly independent, then only we will talk about n different Eigen vectors.

If we have the matrix, which has n linearly independent Eigen vectors; then consider

this.

If we pack; all these n Eigen vectors into 1 n by n matrix; with these vectors as columns

then we have this n by n matrix here which we are denoting by S. And then we examine

the product;  A S, now what will be the first column of this product? A into the first

column of this matrix S; that is A v 1, since v 1 is an Eigen vector with Eigen value

lambda 1; so, A v 1 is; lambda 1; v 1. Similarly, the second column of the product will be

A v 2; which is lambda 2; v 2 and so on; till this.

Now, we came that the same product we would get; if we multiple the matrix S from the

right side; with a matrix, with a diagonal matrix having the Eigen values as the diagonal

entries. Let us verify this a little carefully; what will be the first column of this product?

It will be this matrix multiplied by the first column of this; that will be v 1 into lambda 1,

which is this, plus v 2 into 0 plus v 3 into 0 and so, on. That is we find; that the first

column of this product is also lambda 1; v 1.



Similarly, the second column of this product will be v 1 into 0; thus v 2 into lambda 2,

which is this, plus v 3 into 0 and so on. That means, this second column is also same;

similarly we will find that all the columns, till the nth column; will be found identical to

this. And this diagonal matrix with the Eigen values of A; sitting in the diagonal position

we will call as lambda and then this gives us S into lambda; that means, we have got A S;

equal to S lambda.

Now, if we post multiply this equality with S inverse; then from this side, S get canceled

here we get S lambda; S inverse that is this; that means, that A can be expressed as S

lambda, S inverse per lambda is the diagonal matrix with Eigen values sitting at  the

diagonal locations. Similarly, if we pre multiply both sides of this relationship with S

inverse, then we get S inverse A S is equal to lambda; that means, that the matrix A; in

the new basis S, gets diagonalized. And this process of changing the basis of a linear

transformation;  so,  that  its  new  matrix  representation  is  diagonal;  is  called

diagonalization.

In this process, the transformation; the mapping gets decoupled among its coordinates.

What was the necessary condition for this to happen? The necessary condition was just

this; that is the matrix has n linearly independent Eigen vectors or we can say the matrix

processors  a  full  set  of  n  linearly  independent  Eigen  vectors.  So,  this  was  the  only

requirement for this diagonalization to be possible.
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So, we can say this about diagonalizability of a matrix; a matrix having a complete set of

n linearly independent Eigen vectors is diagonalizable, that is the n by n matrix can be

diagonalized, if it has a full set of n linearly independent Eigen vectors.

The converse is also true that is; a diagonalizable matrix processes a complete set of n

linearly independent Eigen vectors. If you want to prove this, then you will say that we

already know that  there  exists  a  basis  S;  in  which the matrix  representation  will  be

diagonal. And in that case what you do? If we multiple with S and then you say that we

already have this relationship; A S is equal to S lambda; that means, this and this will

turn out to be equal and from that you can figure out that A v 1 is lambda 1; v 1, A v 2 is

equal to lambda 2 v 2. So, which will mean that all these linearly independent vectors v

1, v 2, v 3, v 4 etcetera are indeed; Eigen vectors, that will inform convince you about

the existence of n linearly independent Eigen vectors.

So, this statement and its converse both are true that is; if a matrix possess a full set of n

linearly independent Eigenvectors, then it is diagonalizable with that same Eigenvector

sitting as the columns of the similarity transformation matrix, giving the new basis. On

the other side, if the matrix is diagonalizable; then you can claim that it does have n

linearly independent  Eigenvectors,  a full  set.  Now, a few important  reminders,  a few

important points which are actually quite simple, but they are sometimes confused. So,

note these small simple statements and do not get confused.

One is all distinct Eigen values will directly imply diagonalizability; because if all Eigen

value  are  distinct  then for  every  Eigen value,  there  must  be an Eigen vector  that  is

necessary for the definition of Eigen value itself. That means, an Eigen value must have

one Eigen vector associated with it, if not more. So, if all Eigen values are distinct; that

means, n distinct Eigen value are there and each Eigen value will have associated with

itself one Eigen vector. So that means, n Eigen vectors are guaranteed and that implies

diagonalizability.

But on the other side, diagonalizability does not imply distinct Eigen value because it is

possible that the matrix is diagonalizable even with repeated Eigen values. In that case, a

repeated Eigen value will have that many Eigenvectors associated with it as its algebraic

multiplicity. So, from diagonalizability; we cannot conclude distinct Eigen values, but

from distinct Eigen values, diagonalizability can be directly concluded.



However, if the matrix is not diagonalizable then from the first statement itself, we will

know that there is certainly some multiplicity mismatch. And for the multiplicity; to have

mismatch, the algebraic multiplicity must be greater than 1. So, these points we need to

remember;  when  we  deal  with  matrices.  Now, we  note  that  diagonalizability  is  not

possible for all matrices; and that gives raise to two questions.

What  simplified  representation  is  possible  for  all  matrices?  And  for  what  kind  of

matrices, diagonalizability is guaranteed to be possible? The first is the issue of canonical

forms and the second is the questions of symmetric matrices; these are the two important

topics that we study in this lesson.

(Refer Slide Time: 09:33)

First canonical forms; there are three forms to which a matrix can be reduced or linear

transformation  can  be  expressed  through  change  of  basis.  They  are  known  as  the

canonical  forms;  Jordan  canonical  form,  Diagonal  canonical  form  and  Triangular

canonical form; first the Jordan canonical form, which is always possible.
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A  Jordan  canonical  form  is  the  simplest  possible  form,  simplest  possible  matrix

representation of a linear transformation; which is possible for all transformations, all

matrices.  And the form is like this; which is composed of diagonal blocks, these are

blocks  having  small  square  matrices.  About  these  diagonal  blocks  and  below  these

diagonal blocks; all the other entries of the matrix are 0.

And these diagonal blocks are also specified in their shape, along that diagonal in such a

block say the r S block; J r we have the Eigen values; same Eigen value that is one

Jordan block is associated with a single Eigen value, though for a particular Eigen value

more such blocks are possible.  Now, one such Jordan block looks like this in which

along the diagonal entries, the corresponding Eigen value will be there. And just on the

super diagonal there will be ones; everything above the super diagonal and everything

below the diagonal will be 0.

So, this is the typical shape of a Jordan block; such blocks sitting as diagonal blocks in

this block diagonal matrix, will make this Jordan canonical form.
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Now unlike the previous case for diagonalization, which we were studying earlier; where

we looked for a suitable matrix S such that, we could say this in which this lambda is

diagonal. Here, we will look for this J sitting in place of this lambda. So, the reduction

will not be always possible to this diagonal form, but it will be possible always to this

Jordan canonical form. 

So, the associated similar transformation S, will have bunches of its columns; if J 1 is 3

by 3; then the first bunch of 3 columns in the matrix S will be called S 1; which will have

three columns. Similarly, if J 2 is 5 by 5, then corresponding bunch of vectors here will

be denoted as S 2; which will have 5 columns and so on. So, that way if there are A

Jordan blocks here, then there will be A such bunches with appropriate vectors clubbed

together.

And then we will have A into this entire matrix S is equal to the same matrix S multiplied

with this Jordan canonical form of the matrix A; like this. Now here if we try to see what

is there in this bunch of vectors S r; then we will have a form like this, in which the

number of column vectors in S r will be the same as the number of columns or rows in

this square block J r.

First  of  these  entries;  first  of  these  columns  will  be  an  Eigen  vector  of  the  matrix

corresponding to Eigen value lambda. And next, we will have other vector w 2, w 3, w 4

etcetera;  the  requisite  number  to  fill  up  the  number  of  columns  which  are  called



generalized  Eigen  vectors.  They  are  not  Eigen  vectors,  but  they  are  in  some  sense

resembling to the Eigen vectors and they are called generalized Eigen vectors.  Now,

what are those vectors? We will find out; for that what we do is that; we consider the

product A; S r, that will be a bunch of columns taken from the correct location, from this

product.

The same will be on this side S r into J r; why? Because on this side, we will try to look

for  the  rth  block  of  columns;  then  we  will  have  S  1  multiplied  0  block;  plus  S  2

multiplied with another 0 block and so on, till we reach here; when we get S r multiplied

with this non zero J r block; plus again S r plus 1 into 0 block and so on. So, the non zero

component of this will be only S r; J r; so A; S r will be S r, J r.

(Refer Slide Time: 14:33)

So, block by block; if we equate like this, then we find A S r equal to S r; J r. Then using

the expression for S r from here with columns v; w 2, w 3 etcetera, we can write like this

A v, A W 2, A W 3 etcetera in the product for A S r. On this side, S r is this and J r shape

is this;  that will  give us v multiplied with lambda as the first column. In the second

column, there will be two terms; v multiplied with 1 and w 2 multiplied lambda. 

So, that way if we equate column by column and the first column equality will give us A

v equal to lambda v. Second column equality will give us A w 2 is equal to 1 into v; plus

lambda into w 2; that is this. Third column will give us A w 3 equal to 0 into v; 1 into w



2 and lambda into w 3; that is this and so on. So, from here the first one is already

familiar to us; this is somewhere we determine the Eigen values.

Then once the Eigen vector; so Eigen vector we determine from this equation. Once the

Eigen vector v is determined; the next generalized Eigen vector that is a first generalized

Eigen vector is immediately after the Eigen vector; that will be found as a minus lambda

I into w 2 equal to v. 

Once w 2 is found, we can find out w 3 like this; from this relationship and so, on as

there are number of columns in S r. So, compared to that number; one less generalized

Eigen vectors will be found because the first slot is taken by the Eigen vector itself. After

that; if we try to find one extra generalized Eigen vector, we will find that the system of

equations that come out; will be in consistent. So, that exactly that many generalized

Eigen vector, we will find as many are really required to fill the block.

Now, with these Eigen vector and generalized Eigen vector sitting in columns; we will

have the full matrix S, which in this kind of S transformation; this is change will not

transform A to diagonal form in general,  but it will reduce it to the Jordon canonical

form. And this canonical form is always possible for all matrices; all square matrices.

The second canonical form is the diagonal canonical form which we have already seen,

but now we will have another quick look at it; to see, what is its relation to the Jordon

canonical form?

In the Jordon canonical form; which is like this if all Jordon blocks are of 1 by 1 size;

then what happens? If this is not such a big matrix, but if it is a 1 by 1 matrix; that

means, it will be just a lambda and there will be no place for that super diagonal 1 and

that is the case of diagonal canonical form; it is a associated points.
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We can quickly note; first is that the diagonal form is a special case of the Jordon form,

with each Jordon block of 1 by 1 size. This will immediately mean that with the absence

of those super diagonal ones, you have only diagonal entries in that canonical form and;

that  means,  that the matrix  is diagonalizable.  And that will  also mean;  that each S r

bunch will have a single vector, the Eigen vector itself sitting there.

So, that will mean that the similarity transformation matrix S is composed of all Eigen

vectors; that is n linearly independent Eigen vectors as columns; that means, all linearly

independent Eigen vectors exist in this case and the Jordon block size of 1 by 1 size or

the matrix is diagnosable. And in that case, if you try to find generalized Eigen vector

corresponding to an Eigen vector;  already found, then you will  find that none of the

Eigen vectors will admit any generalized Eigen vector; the correspond equation will turn

out to be inconsistent.

This will also mean that for every Eigen value, the geometric and algebraic multiplicities

are  same.  There  is  a  third  canonical  form;  which  is  of  a  very  important  practical

significance  and  that  is  triangular  canonical  form.  We  have  already  come  across

triangular matrices in our study of systems of linear equations. Now, here when we say

triangular canonical form of a matrix,  then we are actually referring to the triangular

form of the linear transformation.  That means that we are talking about converting a

given matrix to the triangular form through similarity transformations.
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Now, special significance of triangular form arises from the triangularization which is

always possible. What is triangularization? Triangularization of a matrix or of a linear

transformation;  is  basically  the  change of  basis  of  a  linear  transformation  in  such a

manner; that its matrix is in the triangular form.

(Refer Slide Time: 20:29)

That is apply some suitable similarity transformation on the matrix such that the form of

the resulting matrix in the new basis turns out to be like this; with all 0’s here, non zero



entries only on the diagonal and above; below that everything else is here this is the

triangular form.

Now, the practical significance of it is that this is; always possible and this is possible

always  through  orthogonal  similarity  transformation.  The  Jordon  canonical  form  is

always possible, but for Jordon canonical form; the S that you need is not necessarily

orthogonal. Triangularization, you can always conduct with orthogonal S and change of

basis to orthogonal transformations has a lot of practical advantage, the advantage is both

analytical as well as computational. 

So, we find that the triangular form is always possible; in particular if the Eigen values

are all real, then it is always though orthogonal similar transformation. Even if Eigen

values are not real, even if you have complex Eigen values for the real matrix; even then

you can take recourse to complex arithmetic in your calculations. And you will be always

able to triangularize the matrix with unitary similarity transformation. Whatever holds

for  orthogonal  similarity  transformation  in  the  case  of  real  Eigen  values,  in  case  of

complex Eigen values; the same will be through with unitary similarity transformation

that is S in that case it will not be necessarily orthogonal, but it will be unitary; which is

a complex analogue of orthogonal matrices.

Now,  if  you  insist  on  working  with  real  arithmetic  only  and  orthogonal  similarity

transformations only; even through there are complex Eigen values, then you can almost

do the triangularization. Except that for a pair of complex Eigen values, you may be left

with real diagonal blocks of 2 by 2 size like this. Because this is actually equivalent to

the triangularized version; which is this and you will never be able to reduce this matrix

till this point, unless you allow complex arithmetic in your calculations.

But then with this kind of diagonal block sitting, you will be able to recognize that you

have a pair of complex Eigen values there. Other than that the rest of it, you can do even

if  there are complex Eigen values.  Now, if  you can reduce; so, orthogonal similarity

transformation a matrix to this shape; you have not completely solved the Eigen value

problem;  in  the  sense  that  you  have  not  been  able  to  determine  the  Eigen  vectors

completely, but Eigen values are all there along the diagonal.

So, that way if you are first interested particularly in the determination of Eigen values;

then with much less amount of computation, you can reduce it to triangular form and get



the Eigen values. And once Eigen values are determined, there are some methods which

help  you  in  finding  the  Eigen  vectors  with  less  cost.  Now  other  than  these  three

canonical forms, there are two other forms which are actually not canonical forms, but

which have some important advantages, when we talk about computational methods, for

solving  the  Eigen  value  problem.  One  is  the  Tridiagonal  form and  the  other  is  the

Hessenberg form.
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These  forms  are  advantages  in  the  sense  that;  that  can  be  obtained  through  a  pre

determined number of arithmetic operations. That is reduction to these two forms is not

iterative, they can be done with a constant number of calculations. The reduction to other

forms; that is Jordon canonical form or diagonal form or triangular form; they might

need iterations and there is a question of convergence. 

But these two forms; though not canonical forms, but they are useful important forms of

matrices to which we will try to reduce the matrix, to similarity transformations. And

these  two  forms  are  of  advantage  because  the  reduction  to  a  tridiagonal  form  or

hessenberg  form can  be  accomplished  with  a  free  determined  number  of  arithmetic

operations; a straight forward operation applied only once; not iterative.

So, tridiagonal form as the name suggests has non zero entries; only around 3 diagonals.

The main diagonal, the super diagonal and the sub diagonal and everything else is 0. So,

this is the tridiagonal form; the reduction to this form for any matrix is; that is for those



matrices which we apply this; is a matter of fix number of calculation, depends only on

the  size  of  the  matrix  and  there  is  no  iteration  involved,  there  is  no  question  of

convergence.

Similar situation is there with Hessenberg form; in which other than the upper triangular

matrix, one sub diagonal is extra. To this stage, reduction can be done in a fix number of

arithmetic  operations  and after  that  to  apply  further  similar  transformations  so  as  to

reduce these entries to 0; that may take a lot of iterations. So, Hessenberg form is used

typically for handling non symmetric matrices; on the other hand for symmetric matrices,

we will typically try to handle it through tridiagonal forms.
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Next we come to the most important topic of this lesson and that is the topic of Eigen

value problems of symmetric matrices. Central to this issue; is this very important result

and that is; a real symmetric matrix has all real Eigen values and it is diagonalizable

through an orthogonal similarity transformation.  A similar result is there for complex

permission matrices, for which this is actually a special case.

Since in our course; we will be mostly concerned with real matrices; that is why in all the

discussions, I am trying to concentrate on the real versions of the theorems rather than

going into the complex version. But the complex permission matrices version is also

very  similar  that  would  read  as  a  Hermitian  matrix  as  all  real  Eigen  values  and  is

diagonalizable  through a unitary similarity  transformations  and no other change.  The



steps through which you establish that result, is also similar to the one that we are going

to go through right now.

Now, this one sentence; actually has got built into it is several smaller statements. First is

a real symmetric matrix has all real Eigen values; that is first issue is that Eigen values

must be all real; how do we convince ourself of that truth of this statement?

(Refer Slide Time: 28:13)

So, let us consider this; pixels as the independent propositions, that is Eigen values of a

real symmetric matrix must be real.

For this what we do? We assume that there is a matrix A; n by n matrix A, which is

symmetric; that is for which A is equal to A transpose and its Eigen value is; one of its

Eigen values is lambda which is h plus i k. Now, what we need to prove? We need to

prove that  the  Eigen value  must  be real;  that  means,  this  lambda must  be real;  that

means, its imaginary part A should be 0; that means, this is the hypothesis and this is;

what we want to establish, what we want to show. 

So, what you do? You say that since A has an Eigen value, which is lambda that will

immediately mean that lambda I minus A is singular; lambda I minus A into v equal to 0;

that means, it has null space in which there is vector v and so on. So, lambda I minus A is

singular; if lambda I minus A is singular, in this matrix is singular; then any other matrix

multiplied to it, the product will also be singular.



So, this product is also singular that is B is singular. Now, note what we have put here to

multiply with lambda I minus A? Lambda bar I minus A, because we want to establish

something in terms of real quantities, we want to kill whatever complex imaginary stuff

is here and therefore, we bring in the complex conjugate.

Now, use lambda is equal to h plus i k. So, if we insert lambda equal to h plus i k here

and expand this, so lambda is h plus i k, lambda bar will be h minus i k. So, this gives us

h I plus i k identity; minus A and here we will have lambda bar i; that means, h I minus i

k I; minus A.

Now, you note this h I minus A into h I minus A; that is h I minus A whole square; i k

identity and minus i k identity, that will give you minus i square; small i square, k square

identity; i square, small i square is minus 1. So, that minus i square is 1; so, you get only

this. Now, you found that since A has an Eigen value lambda; so, lambda A I minus A is

singular and therefore, B is also singular; which is product of this with something else,

this also singular.

If B is singular; then it has a null space, which has at least one vector in it; that is if B is

singular,  then  there  must  be  a  vector  to  which  B multiplies  and gives  0.  So,  let  us

consider that vector as x; some non zero vector x will be there, to which B will multiply

and give us 0. And then, if we pre-multiply both side with x transpose; that also will be

0; that will be a scalar 0. So, you get x transpose; B x equal to 0, in this relationship; in

place of B; co insert this.

And here; at this insertion point, we have used just symmetry of A; x transpose, this

whole thing into x. So, the second part is very easy here; A square is scalar and rest is x

transpose identity into x that is this. The first one is; x transpose h I minus A into h I

minus A x. The second h I minus A; we have left as it is, the first h I minus A; we have

replaced with its transpose.

This is valid because A is symmetric because identity is anyway symmetric, if A is also

symmetric then h I minus A and its transpose is same. Now, note from here to here; we

have h I minus A, multiplied with x and from here to here, we have exactly h transpose.

That means, we have got this fellows transpose multiplied with this fellow; that means,

the non square; that is this part is non square of h I minus A, and this part is non square

of k; so, we have got this equal to 0.



Now, you see norm is a positive quantity, norm square is certainly a positive quantity.

Now, you have got  the summation  of  two positive  quantities  or  rather  non negative

quantities; two non negative quantities is equal to 0. Then since neither of them is going

to be negative; so, for the sum to be 0; each of them must be individually 0. And that

means, x is a non 0 vector; so k must be 0 and we come to the conclusion of our proof; k

is 0, which will mean that lambda is h.

So, what does that show? That shows that only due to the symmetry of the matrix, which

has been used at this step; we come to the conclusion that k must be 0; that means,

lambda is (Refer Time: 33:44).
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Now, the first point of the proof is established; other than this real Eigen value issue,

what else is there in this statement? This statement it is the matrix is diagonalizable; that

means, it has a full set of n Eigen vectors; a complete set of Eigen vectors exists for a

symmetric matrix, we consider this statement separately. 
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A symmetric matrix possess a complete set of Eigen vectors; for that what we do; is that

we consider a repeated real Eigen value lambda of A. Because, if all Eigen values are

distinct then we already know that each distinct Eigen value will be associated with one

Eigen vector, which will  immediately tell  us that n Eigen values will give; n distinct

Eigen vectors.

So, there is nothing to examine there; so, what we do is that; we consider a repeated

Eigen value, which might be at some problem. So, we consider repeated real Eigen value

of the matrix and examine its Jordon blocks; what we want to establish? We want to

establish that all Jordon blocks will be of 1 by 1 size. There will be no place to write that

super diagonal one; so, if all Jordon blocks are of 1 by 1 size, then that will be a diagonal

matrix; so, this is what we want to establish.

So, what we do is that corresponding to that Eigen value lambda, suppose Eigen vector is

v; then we will have A v equal to lambda v. And we try to find out; we try to determine

the first generalized Eigen vector w; which must satisfy this relationship. Now, if it has

to satisfy this relationship; then by pre multiplying both sides of this relationship with v

transpose; that is by taking dot product or inner product of this with v, we will get v

transpose, this whole thing is equal to v transpose v. Now, we open this; v transpose A w;

here in place of A; let us write A transpose; that is valid because A symmetric, this is the

place where we are utilizing the symmetry of the matrix.



V transpose A w; as written as v transpose; A transpose w; minus lambda v transpose

identity w; lambda v transpose w, that is equal to this. Now, the right side v transpose v is

norm v square; that is obvious. Here v transpose, A transpose is the transpose of A v; we

have got A v transpose w, and here it is written as it is, but then since v is Eigen vector

corresponding to lambda Eigen value; that will mean that A v is the same as lambda v;

and what is this? 

This is lambda v transpose w minus lambda v transpose w; which is 0 and; that means, v

norm square is 0; what does that mean? That means, v is a 0 vector, but that cannot be

the case because v is the Eigen vector for which linear independence is a must to qualify

as Eigen vector. So, in which the direction is the only information.

So, you cannot have an Eigen vector which is 0; so, this is absurd. That means, it is not

only absurd; it basically means that this gives rights to an inconsistency; that means,

there will be no w, no generalized Eigen vector which will satisfy this; that means, that

the Eigen vector will not admit any generalized Eigen vector, that will  mean that all

Jordon blocks are of 1 by 1 size; which means that it  is diagonalizable. So, we have

established two points from that statement; as a real symmetric matrix has all real Eigen

values and it is diagonalizable.

But till now the matrix S related to the diagonalization, the similar transfer matrix and be

anything.  The  further  statement  says  that  it  is  diagonalizable  through  an  orthogonal

similarity transformation; that it in the diagonalization possess, we can use a matrix S

which is orthogonal. That means, the matrix S which houses the Eigen vectors should

have all mutually orthogonal columns, do Eigen vectors have to be mutually orthogonal?

We say that in two parts; first we say that Eigen vectors corresponding to distinct Eigen

values; are necessarily orthogonal.
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So, here the proposition is that Eigen vectors of a symmetric matrix, corresponding to

distinct  Eigen  values,  unequal  Eigen  values  are  always  orthogonal.  They  must  be

orthogonal; to show this, we take two Eigen pairs; two Eigen values; lambda 1, lambda 2

and their corresponding Eigen vectors v 1 and v 2; with the statement that lambda 1 and

lambda 2 are not equal. And we want to show that v 1 and v 2 are orthogonal; they must

be orthogonal.

So, for that we take a very simple means to establish this; we ejaculate v 1 transpose A v

2 in two different ways. In the first case, we simple take A v 2 as lambda 2; v 2 because

lambda 2 and v 2 are the Eigen value; Eigen vector pair. So, in place of A v 2; we write

lambda 2 v 2; lambda 2 being a scalar comes out and we get lambda 2 into v 1 transpose

v 2.

In the second case, in place of A; we use A transpose; that is the place where we use

symmetry. And in that case v 1 transpose; A transpose is the transpose of A v 1, but A v 1

from here is lambda 1 into v 1. And that will tell us that this turns out to be lambda 1 into

v 1 transpose v. Now note; that the same expression evaluated in two different ways

without utilizing symmetry and utilizing symmetry gives us two different expression, so

we subtract.

On this side, subtraction will give us 0; on this side what it will give it will give? Lambda

1 minus lambda 2; v 1 transpose, v 2; that is 0; we have already taken the assumption



that lambda 1 and lambda 2 are not equal; that means this factor cannot be 0. So, only

way this can happen is at this factor must be 0; that means, v 1 and v 2 are necessary the

orthogonal. 

So, this is the case for distinct Eigen values; what will be the situation for equal Eigen

values? That is an Eigen value appearing twice, giving us two Eigen vectors; do they also

have to be necessarily orthogonal? Not necessary, but then see this. What we want to see

here? We want to establish; that corresponding to a repeated Eigen value of a symmetric

matrix and appropriate number of orthogonal Eigen vectors can be selected; what is idea

behind it? 

If lambda 1 and lambda 2 are same; unlike this case then the entire sub space v 1 and v 2

is an Eigen space. So, if there are two vectors; which are Eigen vectors corresponding to

the same Eigen value, then it is not necessary that they are orthogonal, but the entire

plane found by them is an Eigen space. That means, any vector in that plane is an Eigen

vector;  so,  if  in  a plane;  we have infinite  possible Eigen vectors  available,  then two

mutually orthogonal Eigen vectors, we can always pick up.

So; that means, we can select any two mutually orthogonal Eigen vectors called using in

the  basis;  that  is  for  filling  up  the  appropriate  columns  of  this  matrix  S;  that  is

corresponding to  repeated  Eigen  values,  orthogonal  Eigen vectors  are  available.  The

Eigen vectors that we pick up, do not have to be orthogonal, but if we want we can

always get orthogonal Eigen vectors.

So, that is why; it says is diagonalizable through an orthogonal similarity transformation

that is; it  is possible to work out an orthogonal similarity transformation matrix with

which we can diagonalize the symmetric matrix. Further, what we get? So, you see that

in all cases of a symmetric matrix, we can form an orthogonal matrix v; such that in

place of v inverse, in this case we were writing S inverse.

Now, since we are talking about orthogonal matrix; v in place of S; so, for orthogonal

matrix v inverse is same as v transpose; which is lot easier, v transpose A v is lambda;

which is a real diagonal matrix.

Further try to pre multiply this equation with v and post multiply with v transpose. Then

you get this, the matrix A can be represented in this manner; v lambda v transpose, where



v is an orthogonal matrix and lambda is the diagonal form of A; that diagonal form is

always  possible  and  that  is  always  possible  through  an  orthogonal  similarity

transformation v.
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This gives us a lot of facilities and this is greatly helpful because symmetric matrices

appear in many many locations, in the analysis, in Applied Science and Engineering and

it  helps  that;  so,  nice  properties.  So,  interesting  and  useful  properties  of  symmetric

matrices are there and symmetric matrices appear in most of the application again and

again.

So, most of our problems are comparatively easy and the enormous amount of facilities

that this representation gives us is here. First of all this expression A equal to V lambda,

V transpose can be written in expanded form like this. If you try to multiply, this three

matrices and open it in the form of an expression; you will find that you get lambda 1; v

1, v 1 transpose. 

Because you see, if you first multiply these two; then you will get what? You get lambda

1 into v 1 transpose plus 0 into this, plus 0 into that and so, on. So, here in those you will

find lambda 1 v 1 transpose, lambda 2 v transpose, lambda 3; v 3 transpose and so on.

With which when you multiply this; then we will get v 1 into lambda 1; v 1 transpose

plus v 2 into lambda 2; v 2 transpose and so, on.



So, finally, you will get this summation; lambda 1; v 1 transpose, v 1; v 1 transpose plus

lambda 2 v 2; v 2 transpose and so, on; you can express it like this. This give raise to a

further lot of possibilities; one is that if a particular matrix; huge matrix 4000 by 4000

matrix has Eigen values, which are organized in descending values, descending absolute

values; the first 10 are large and compared to them, the next ones are extremely small.

Then what you can do? For the storage of that 4000 by 4000 matrix, you can simply

store the first 10 Eigen values; lambda 1 to lambda 10 and throw away lambda 11 to

lambda 4000 and the corresponding first 10 Eigen vectors, you store other Eigen vectors

also you can throw away.

Later  when  you  need  to  reconstruct  the  matrix;  these  10  Eigen  vectors  with  their

corresponding  Eigen  values,  will  be  able  to  reconstruct  the  matrix  completely  by  a

summation of not 4000 items like this, but just 10. Because the contribution of rest of

them will be extremely small, this is one advantage. Efficient storage with only large

Eigen values and corresponding Eigen vectors; rest of the things, you do not have to

store.

In deflation technique, we have already seen the application of this expression that is;

and this works only for symmetric matrix. If the matrix is symmetric, then there is a

representation like this and after we have determined v 1; then from A, if we subtract

this; then what remains has the same Eigen structure as A; except that, its Eigen value

corresponding to Eigen vector v 1 transfer to be 0; rather than lambda 1.

The rest  of  the  Eigen values  and Eigen  vectors  are  unchanged;  that  is  the  deflation

technique which helps us in finding if you top Eigen values and corresponding Eigen

vectors. Apart from that, the orthogonal diagonalizability of the matrix in the case of

symmetric matrices; helps us in working out practical algorithms, which are stable in

which the numerical errors do not grow very fast; as iteration proceed.

Therefore,  whenever  there  is  a  choice  between  applying  a  general  similarity

transformation and applying an orthogonal similarity transformation, computationally we

always  preferred  to  apply  orthogonal  similarity  transformation.  And  in  the  case  of

symmetry  matrices,  orthogonal  similarity  transformation  alone  suffice  to  reduce  the

matrix completely to diagonal form.



In  the  case  of  non  symmetric  matrices  first  of  all  diagonalizability  is  not  always

guaranteed; even when the matrix is diagonalizable; reduction to diagonal form is not

always  possible  through  orthogonal  similarity  transformations.  In  fact,  that  is  not

possible;  so  you  have  to  take  the  help  of  similarity  transformations,  which  are  not

orthogonal in the case of non symmetric matrices. In the case of symmetric matrices, you

can conduct the entire operation with only orthogonal similarity transformation.

This  is  why  solution  of  symmetric  matrices;  Eigen  value  problem  is  a  lot  easier

compared to general non symmetric ones. Now, the complete picture of different forms;

some the raw form and some the final desired form that we have.
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We can see here and any block here in this symmetric diagram, which is on the right or

which is below is typically easier to handle for the Eigen value problem, compared to

corresponding other blocks which are on the left or above. So, in that understanding; we

find that compared to a general matrix, all other matrices; general means which may be

non symmetric; all other forms are easier to handle. 

And the diagonal matrix is the one in which the Eigen value problem is actually; already

solved. So; that means, if we have a matrix in one of these forms on this side; then any

algorithm, any part algorithm which helps us to move from this end to the right side or

below south east side, then that is one contribution to the solution of the algebraic Eigen

value problem.



That is from the general matrix, we might try to reduce it to either the Hessenberg form

or the symmetric  form. If  we have a  symmetric  matrix,  then  we try to  reduce  it  to

Symmetric Tridiogonal form, if we have it already in Hessenberg form, then we try to

reduce it to tridiagonal form, which is comparatively easier. Or we will try to reduce it to

triangular  form, which is  more often  the case.  From the triangular, or  tridiagonal  or

symmetry tridiagonal;  another round of reduction, will  take us to diagonal form; if a

diagonal form exists for that matrix. In this case, it will certainly exist and any moment

along the arrows, will mean that we have accomplished one more stage in the solution

process of this Eigen value problem.

And  all  these  steps,  all  these  reductions  must  be  carried  through  similarity

transformations only; that is we must multiply the matrix A on the right side with one

matrix. And with the left side with its inverse, then only it is a similarity transformation

and that will mean that it is basically the expression of the same linear transformation; in

new basis; the basis S.

So, through similarity transformation only; we must do all these transformations; straight

forward deduction like (Refer Time: 51:52) only; from one side will damage the Eigen

structure. So, the similarity transformations should be applied like this and through this

any step is preferable, if it helps in the direction like this; like this or like this or any way

like this. So, the question arises how to find suitable similarity transformations which

help us in moving from this direction to this direction in general? That is reduction of the

problem; how to find suitable similarity transformations?

There are four standard ways of working out suitable similarity transformations, they are

based  on  rotation,  reflection,  matrix  decomposition  or  factorization  and  elementary

transformation; these four methods of finding suitable similarity transformation, we will

study in the coming lectures or coming lessons.
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For  the  time  being,  to  summarize  the  important  issues  that  we  have  seen  in  this

discussion is that; generally possible reduction which is possible for all matrices is up to

Jordon canonical form. Condition of diagonalizability and the diagonal form, we have

studied and we have studied the form; which is triangular form, which is possible with

orthogonal similarity transformation. 

Note here, that in the previous chapter in the book; there is an exercise which gives you

the steps necessary to show this important result, to establish this important result; that

any super matrix can be reduced to a triangular form with only orthogonal similarity

transformations. This is an important result and I will strongly advice that this particular

exercise,  which  gives  you  the  steps  to  establish  this  important  result,  you  must  go

through.

The other useful non canonical forms are tridiagonal and Hessenberg forms; that we have

come across briefly. And the most important  lesson of this  particular  chapter, of this

particular lecture is that orthogonal diagonalizational of symmetric matrices is always

possible.  And all  these  reductions  must  be carried  through similarity  transformations

only. So, I would also advice you to go through some of the exercise of this chapter

before proceeding further to the next lecture.

Thank you.


