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Good morning, as discussed in the previous lecture today in this lecture we will start

from this lesson which is the first of a few lessons on the module of algebraic Eigenvalue

problem. I will again remind you that in order to follow the lectures in this segment, it is

very important that the subject matter of this segment this module is thoroughly emerged

in your understanding and therefore, it is very important that at this stage you should

have completed most of the exercises of this segment, because some of the background

necessary for the following lectures is actually developed through the exercises in the

book in the text book that I have referred to you.



(Refer Slide Time: 01:12)

In this tutorial plan the problems of the book listed here you must have completed by

now and that will help you in following the lectures, in the coming module which is

chapters 8 to 14.

(Refer Slide Time: 01:32)

Now, in this lecture we will be studying Eigenvalues and Eigenvectors, in which we will

talk about the Eigenvalue problem as an introduction and then generalized Eigenvalue

problem which will also expose you to the to one of the practical problems from which

Eigenvalue problems emerged. Then we will discuss some basic theoretical results which



will be utilized later for sophisticated methods of solving the Eigenvalue problem and

then towards the end briefly; we will discuss a quick and easy method of solving the

problem which is power method.

(Refer Slide Time: 02:12)

To begin with I again draw your attention to the mapping a which is from R n to itself

that is from n dimensional space to itself; that means, it is a the corresponding matrix is n

by n;k it is a square matrix. Now when we multiply a vector to a matrix to a vector the

vector gets mapped to another vector in the same space in this case, but then in this

mapping there are 2 effects produced on the vector. One is a magnification which may be

less than 1 which means in that case the actual vector will get reduced in size the other

then magnification the effect is turning it rotation it.

Now, this is the general way in which effecter can get mapped through multiplication

with a matrix now some of the vectors for every matrix are special there special in the

sense  that  they  undergo  only  magnification  or  scaling  and  do  not  rotate  under

multiplication with a particular matrix. These vectors are in some sense the own vectors

of that matrix or some special vectors for that particular matrix and these vectors are

called Eigenvectors, the word Eigen in German means special or (Refer Time: 03:47).

So, as if these vectors belong to this particular matrix. So, if you multiply the vector a

matrix a to one such special vector its own vector then the result the mapping is nothing

other than a pure scaling. So, in that case we call this vector v as an Eigenvector and the



scale factor lambda is called the Eigenvalue or the characteristic value together lambda

and v Eigenvalue and Eigenvector are quite often refer to as the Eigenpair. They form a

pair now determination of all the lambdas and corresponding vs there is Eigenvalues and

Eigenvectors for a given matrix is called the algebraic Eigenvalue problem. Now how we

can find the values lambda and the corresponding vectors v from only this much the

process the underlying concept is actually very simple.

You can take this lambda v on this side, though you cannot write as a minus lambda into

v because a is a matrix and lambda is a scalar so, but what you can is that this v you can

write as identity into v and then take lambda I and a together in this manner take taking a

v on this side then you get lambda I v minus a v lambda is a matrix, and a is also a

matrix. Then you will have this system of linear equations now you will note that this

system of linear equations is n equations in this vector or n variables and these equations

are homogenous equations that is the right hand side is 0. Then you know that for a

homogenous system of equations for the existence of non-trivial or non-zero solution, the

coefficient matrix must be singular that is the coefficient matrix must have a null space

and we will be actually a member of the null space of this matrix lambda I minus a.

So, for singularity of this matrix you must set its determinant equal to 0. Now you find

that we have reached a stage where from a large number of unknowns we will certainly

reduced to 1 unknown. In this particular equation you had 1 scalar unknown lambda and

1 vector unknown v which was n plus 1 total number of unknowns. Now the condition

that the coefficient matrix is singular tells you that determinant of the coefficient matrix

is 0 now you have got a single question in a single unknown. In addition you know that

this side is a polynomial in the unknown lambda polynomial of degree n. So, then the

question boils down to finding the roots of that polynomial to begin with or to find the

solution of this polynomial equation.

And we know that it will have n roots including multiplicities right. So, the polynomial

on this  side is called the characteristic  polynomial  of the matrix a and therefore,  the

corresponding  equation  this  equation  is  called  the  characteristic  equation  and  its

solutions are the Eigenvalues. So, characteristic equation or characteristic polynomial we

will give you n roots of this n th degree polynomial these are the an Eigenvalues and for

each  of  them you will  try  to  find  the  corresponding Eigenvectors  that  (Refer  Time:

07:38) very difficult because as you insert those Eigenvalues 1 by 1 for every Eigenvalue



sitting here you will get a homogenous system of equations,  in which the coefficient

matrix is completely known all that you need to do is to find the null space of that known

matrix lambda I minus A which we have studied earlier.

Now, we  have  been  just  talking  about  the  number  of  Eigenvalues  total  number  of

Eigenvalues from this with certainly be n, but that may be repeated for example, suppose

we have got a 3 by 3 matrix, for which the Eigenvalues may turn out to be 2 2 and 4 that

is possible.  So, here the Eigenvalue 2 is said to have and algebraic multiplicity  of 2

because it  is  operating twice in this  polynomial.  So,  this  polynomial  will  be lambda

minus 2 whole square to appearing twice into lambda minus 4, 4 appearing only once

now we also talk of geometric multiplicity that is when we take this Eigenvalue lambda

and try to insert it here and try to find v.

Now, in this  particular  example if the Eigenvalues are 2 2 and 4, then as you insert

lambda equal to 2 here and you try to find the corresponding Eigenvector v, you would

expect that there may be up to 2 such vectors;  one Eigenvector belonging to lambda

equal to 2 in the first instance and the second one belonging to lambda equal to 2 in the

second instance you may succeed in finding 2 such Eigenvectors or you may not that

depends upon the particular matrix a; that means, that if the algebraic multiplicity of a

particular  Eigenvalue  is  more  than  one,  then  that  may  give  you  one  Eigenvector

corresponding to it or 2 Eigenvectors or 3 Eigenvectors up to the number which is the

algebraic multiplicity.

That means in a larger matrix if suppose an Eigenvalue say this Eigenvalue lambda equal

to 2 in a 7 by 7 matrix appears 5 times. So, the Eigenvalues are 2 2 2 2 2 something else

and something further one this structure. In that case corresponding to 2 Eigenvalue 2

when you try to find out the Eigenvector, you may find you only one Eigenvector you

might find 2 or 3 or up to 5 more than 5 you cannot get that number corresponding to

that particular Eigenvalue how many Eigenvectors you could find out that number is

called the geometric multiplicity now note this one is algebraic this one is geometric.

Algebraic  multiplicity  is  appearing  from this  polynomial,  how many  factors  lambda

minus  a  particular  lambda  is  appearing  in  this  polynomial  how  many  times  that  is

appearing that is coming from an algebraic source and that is why it is called algebraic

multiplicity. On the other hand the number of corresponding Eigenvectors will span a



sub space in the space R n of the dimension, which is equal to the number of linearly

independent Eigenvectors that you can find corresponding to that Eigenvalue and this

description of this subspace that you are talking about that is a geometric entity that is

why that number is called the geometric multiplicity of that Eigenvalue.

Now, note that when you are talking about finding Eigenvectors different Eigenvectors

then in that context linearly dependent Eigenvectors are not considered different; that

means, if you find one vector as an Eigenvector then it is obvious, the twice of that will

be  certainly  an  Eigenvector.  So,  that  is  not  counted  as  different  from the  first  now

similarly  if  you  have  already  found  2  Eigenvectors  corresponding  to  a  particular

Eigenvalue, then a linear combination of these 2 will certainly b an Eigenvector with

respect  to all  corresponding to  that  same Eigenvalue  that  is  not  considered anything

different.

So;  that  means,  when  we hunt  for  Eigenvectors  we  look  for  a  linearly  independent

Eigenvectors.  Now  when  it  happens  that  for  a  particular  Eigenvalue,  the  algebraic

multiplicity  and  geometric  multiplicity  have  a  mismatch  between  them  there  is  a

algebraic multiplicity is higher geometric multiplicity is lower, in that case we call that

matrix as defective. In what sense it is defective, what is the defect and what to do in

such a situation that will discuss in detail  in the coming lectures when it is.  So, that

algebraic multiplicity and geometric multiplicities for every Eigenvalue is same in that

case we can do certain interesting things very easily.

We can diagonalize the matrix; that means, we can change the basis for representation of

this mapping in such a way that the resulting matrix representation for the same mapping

the same linear  transformation transfer to be diagonal;  that means,  the directions  get

completely  decoupled.  So,  such  matrices  are  called  diagonalizable;  to  recognize  a

diagonalizable  matrix  the  direct  straight  forward  thing  is  to  check the  algebraic  and

geometric multiplicity (Refer Time: 13:27) Eigenvalue. If they match all of them then

that matrix is diagonalizable if a single Eigenvalue has a multiplicity mismatch between

algebraic multiplicity and geometric multiplicity then that is not diagonalizable.

In that  case the Eigenvectors  cannot be decoupled the space cannot  be decoupled in

terms of individual Eigenvalues in the same way as diagonalizable matrices. So, actually

the  diagonalizability  is  that  way not  a  property of  a  matrix  as  such it  certainly  is  a



property of a matrix, but it is actually the property of a much more fundamental thing

underlying the matrix there is the linear transformation. So, diagonalizability is actually

the property of the linear transformation for which the matrix is just one representation.

Now considering these things apart does this outline try tend to suggest that Eigenvalue

problem solution method is complete.

It  may  look  so,  because  finding  the  determinant  of  a  matrix  in  terms  of  lambda  is

something  which  we  can  think  of  there  is  setting  there  equal  to  0  and  getting  a

polynomial equation is something which is which does not somewhere it dangerous, and

then solving a polynomial equation also is something with which we are acquainted after

finding the lambda putting that here and for every lambda finding the corresponding

Eigenvectors that also as a part problem is not very difficult problem. But does it mean

that  all  the  discussion  in  Eigenvalue  problem gets  completed  here  answer  is  no  the

reason is that when the degree of the polynomial equation goes very high in that situation

solving this polynomial equation is actually not very easy.

In fact, for solving a polynomial equation one of the very popular one of the very used

methods  says  that  try  to  solve  the  polynomial  equation  through  the  methods  of

Eigenvalue problem. So, therefore, for solving an Eigenvalue problem the polynomial

equation solving as a sub problem is not a very attractive for position, because as the

degree of this polynomial goes high it will be very difficult to computationally solves

this problem therefore, people look for other ways of packing this Eigenvalue problem

directly without first making a recourse to this polynomial equation solving problems

and in that attempt mathematician have developed a method of interesting tools to handle

matrices and express them in canonical formations and take a lot of advantage from these

theoretical developments into several fields of applied mathematics, and these interesting

developments will be studying in the coming lectures including this one.

So, in order to make the ground for that, I will need to develop some basic theoretical

results first. Even before that it will be a good idea to see a practical problem from which

Eigenvalue problem appears.



(Refer Slide Time: 16:56)

There  are  many  such  practical  problems  in  almost  all  branches  of  science  and

engineering,  where  Eigenvalue  problems  certainly  turn  up  one  such  problem  is  the

system of mechanical system with free vibration. For example, if you considered the 1

degree of freedom mass spring system for which the dynamic equation is just this where

m is the mass and k is the stiffness of the spring, and then you try to write the assumed

solution of this equation in the form.

(Refer Slide Time: 17:35)



Because you know what kind of a solution this will have? This will have a sinusoidal

solution and. So, you try to write it like this and then you differentiate it twice and insert

in this right.

So, you know that twice differentiation of this we will produce minus omega square sign

is a constant and from that very easily you work out the natural frequency of vibration, in

which this mass spring system we will undergo natural vibration. Now when you try to

formulate and solve the same problem for a multi degree of freedom system we do not

get  such a  nice  simple  scalar  equation,  but  we get  a  matrix  vector  equation  in  this

manner. So, free vibration of an n degree of freedom system will be governed by this

equation  where  m  is  the  inertia  matrix,  k  is  the  stiffness  matrix,  x  is  the  vector

representing the coordinates of the system and its double dot is certainly the acceleration

corresponding to that.

Now, in this problem when you ask this question what are the natural frequencies in

which  this  particular  mechanical  system  can  execute  natural  vibration  and

correspondingly what are the vectors x along which those vibrations will take place for

example, in a 3 degree of freedom system it might happen that x 1 x 2 x 3 give you a

particular  direction  a  particular  vector  along  which  the  vibration  takes  place  in  one

frequency. There is another second direction in which the system may vibrate in a second

frequency similarly a third direction with the third frequency.

So,  what  are  these vibration  modes and what  are  the corresponding frequencies  that

becomes the problem for a solution in the in this free vibration problem. Now again in

analogy with this  equation we now try to assume something vector  x is  equal  to an

amplitude vector into a term like this. So, there we assume a vibration mode first in this

manner the vibration mode x is a constant vector phi into sin omega t plus alpha again

we differentiate it twice with respect to time and insert that x double dot here and that

will tell us that this whole thing is equal to 0, because sin omega t plus alpha after twice

differentiation we will produce a factor of minus omega square.

So,  that  minus  omega  square  gets  multiplied  here  we  have  got  this,  then  the  same

argument we use what we produce in this case that is for this to be equal to 0 for all time

this part has to be 0 because this one will not be 0 always. So, this has to be 0 when we



do that then we get the corresponding equation k phi equal to omega square m phi. Now

this resembles the Eigenvalue problem that we discussed just.

(Refer Slide Time: 20:49)

Now, in the earlier case we got a problem of this manner K phi equal to lambda phi, a x

equal to lambda a sorry a v equal to lambda v these are kind of problem that we have

been discussing just now.

Now, here it is this problem is not exactly the same as this problem, because in this

location there is a matrix sitting. Omega square you can identify with this lambda, but

here  there  is  a  matrix  sitting  that  is  why this  problem is  not  called  just  Eigenvalue

problem,  but  it  is  called  the  generalized  Eigenvalue  problem.  As  is  in  the  original

Eigenvalue  problem  there  was  a  matrix  here  which  was  identity  which  indeed  we

inserted when taking it on the other side, right.

Now, in this case in this particular case, it is generalized in the sense that in place of

identity  matrix  now there is  a non trivial  matrix  sitting there now how to solve this

problem? Because if you take it on the other side then I mean in place of I if we have m

sitting here then as we take it on the other side we will get k minus omega square m that

will be the matrix not the straight forward a minus lambda I as we would get in the

ordinary Eigenvalue problem. Now how to handle this? One might suggest that if we pre

multiply  both  sides  of  this  equation  with  M inverse,  then  immediately  we  get  this

problem M inverse a phi equal to omega square phi.



Why not solve this problem because M inverse K we can take as a we know M we know

K we can evaluate M inverse k and then it becomes an ordinary Eigenvalue problem

indeed it is possible to do that, but then it is not a good idea why doing this is not a good

idea? The reason follows from the nature of these matrices that appear in these locations

this is not just sum matrix and this is also not just sum matrix, this is an inertia matrix

and this is a stiffness matrix such matrices when appearing in practical problem have

certain structure.

A stiffness  matrix  is  always  symmetric  and  inertia  matrix  is  always  symmetric  and

positive definite. Now if we evaluate this M inverse K that may lose the symmetry that

was originally they are in the original problem. Now it is not a good idea to take a step in

the solution of a problem which actually makes the original problem difficult. Later we

will study in detail how solution of a symmetric matrix Eigenvalue problem is actually

much simpler  and much more straightforward  compared to  a  general  non symmetric

matrix therefore; it would be a bad idea to take a step which will spoil the symmetry of

the problem as originally given.

Rather we should try to take a measure which will utilize this particular structure. So,

what we do is that we take this symmetric positive definite matrix m and recall that for a

symmetric positive definite matrix there exists a (Refer Time: 24:15) composition L L

transpose. So, if we conduct the (Refer Time: 24:19) composition of this matrix m in this

form L L transpose and then conduct a coordinate transformation the original coordinates

phi and now transform to this phi tilde through this L transpose new basis.



(Refer Slide Time: 24:43)

In that case when we insert this here then see how this will look like we have K phi equal

to omega square mM phi; first of all in place of this M we will write L L transpose.

The moment we do that we get this L transpose phi which we are going to define as phi

tilde right. So, L transpose phi we are defining as phi tilde. Now on this side also we

would like to have phi tilde right because we are applying that coordinate transformation.

So, if phi tilde is L transpose phi then what is phi in trans of phi tilde that will be found

through the pre multiplication of L transpose inverse. Now when we do that we get L

transpose  inverse  phi  tilde  right.  Now we say  that  we can  get  rid  of  this  L by pre

multiplying both sides with L inverse, as we do that from here L inverse L gives us gives

us identity and we have this.

Now,  notice  that  the  original  generalized  Eigenvalue  problem  like  this  has  been

transformed to this problem K tilde call this whole thing as K tilde. Then we have got the

new problem as K tilde phi tilde is equal to omega square phi tilde.  So,  in the new

coordinate system in which phi tilde is the vector we have got an ordinary Eigenvalue

problem in which this  matrix  L tilde is  actually  symmetry  because K was originally

symmetric  on this side we have multiplied it  with L inverse along this side we have

multiplied it with the transpose of L inverse that will preserve the symmetry.

You can just check that its transpose is itself L inverse k L inverse transpose as you take

the transpose of  this  whole thing you get  the same thing back.  So, the symmetry  is



resolved, now note here then when we wrote L inverse transpose or L transpose inverse

for this it is not clear whether we have talking about this or we have talking about this

whether we have talking about the transpose of L inverse or whether we have talking

about the inverse of L transpose there is not clear in this notation. Till this notation is

varied because in these 2 cases the result will be same and therefore, this L with minus T

here actually means any of the 2 because these 2 are always going to be same.

Now, this is one practical problem from which you get an Eigenvalue problem, there are

many other situations in all of science and engineering from which Eigenvalue problems

suddenly appear. Now we will  start  with some of the basic  theoretical  results  of the

Eigenvalue problem over which we will build up later methods by which to solve the

problem. Apart from that as a byproduct of this process the theoretical results will also

providers which tools to handle matrices in nice elegant and canonical ways, which is

useful in many areas of a (Refer Time: 28:18) mathematics wherever matrices appear.

(Refer Slide Time: 28:26)

Now, first  is  the  first  important  result  that  we  should  always  keep  in  mind  is  that

Eigenvalues of the transpose of a matrix are the same as though those of the original

matrix. This is very easy because we know that determinant of a transpose is a same as

the determinant of an original matrix and the characteristic polynomial is found just by

the expansion of a determinant. So, these are obviously, the same of course, Eigenvectors



need not be same in general  they are different.  Next  important  point  that  we should

remember is the situation for a diagonal matrix and a block diagonal matrix.

(Refer Slide Time: 29:15)

You know what is a diagonal matrix. So, suppose we have got a 3 by 3 matrix in this

manner. These are all 0 these area all 0 and this is a diagonal matrix and it is very clear

that  these  diagonal  entries  are  actually  the  Eigenvalues  of  this  matrix  and  a

corresponding Eigenvectors are the natural basis members for example, if you multiply 1

0 0 with this and; obviously, you will get a 1 0 0 which can be utilized these. So, that

shows that  you have a v equal  to  lambda v right  v  is  1  0 0;  that  means,  a 1  is  an

Eigenvalue and this vector e 1 the first base natural basis member is the corresponding

Eigenvector.

Similarly, a 2 and a 3 will be the other Eigenvalues with corresponding basis members

corresponding Eigenvectors  as  e  2  and e  3  and natural  basis  members.  Now this  is

obvious; now if you say that this is actually a much larger matrix this log this a 1 is

replaced with a matrix a square matrix, this a 2 scalar is replaced with a square matrix

and similarly this a 3 then what you get is not a diagonal matrix because this square

matrix may have off diagonal entries, there will not be a diagonal matrix, but what you

call it is block diagonal matrix which will look like this.

In which this matrix a 1 is filled up quite a bit. Now when you talk of Eigenvalues of a

block diagonal  matrix  then there is  a very interesting  situation that  the match  at  the



Eigenvalues of this large matrix is the Eigenvalues of a 1 and the Eigenvalues of a 2 and

the Eigenvalues of a 3. So, if this is r by r this is s by s this is t by t and everything else

outside  this  blocks  is  0  then  the  r  Eigenvalues  of  this  s  Eigenvalues  of  this  and  p

Eigenvalues of this separately obtained, can be all put in a list and this r plus s plus t

numbers will be the Eigenvalues of this large matrix, and the corresponding Eigenvectors

they  are  also  very  easy  to  find  they  are  just  coordinate  extensions.  For  example,  if

suppose  this  small  matrix  a  2  has  an  Eigenvalue  lambda  2  with  the  corresponding

Eigenvector as v 2 then just above v 2 you put as many zeros has required to fit the size

of this matrix and below that you put as many zeros as required, to fit the size of this

matrix and then as you multiply this you find that this gives you lambda 2 into that same

old vector.

That  means  that  the  an  Eigenvalue  of  A 2  is  the  Eigenvalue  of  A also  and  the

corresponding Eigenvector of A can be found through a coordinate extension over v 2 is

as many extra zeros are equal above and below you can put that and then you get the big

vector which is an Eigenvector of this matrix, large matrix corresponding to that same

Eigenvalue. For diagonal and block diagonal matrices the situation is very simple the

matter gets are little complicated when you talk of triangular matrices.

(Refer Slide Time: 32:47)

 

A triangular matrices a triangular matrix will have known 0 entries here, but still  the

diagonal entries are the Eigenvalues because below that everything as is 0.
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So, when you try to write the characteristic polynomial, you write lambda I minus this.

So, you will get lambda minus a 1, lambda minus a 2, lambda minus a 3 something,

something, something here, but below you have got everything 0. So, when you try to

expand this fellows determinant you get you expand from the first column, then you get

lambda minus a 1 into something plus all  zeros then that something again gives you

lambda minus a 2 into something plus all zeros and so on.

So, for a triangular matrix you will find that; obviously, the characteristic polynomial we

will emerge as a product of these factors; that means, that you have got the characteristic

polynomial already in factorized form that immediately gives you a 1, a 2, a 3, etcetera,

the diagonal members of the original matrix as the Eigenvalues, but Eigenvectors is a

different question for that you have to do a lot of calculations to find the Eigenvectors

Eigenvectors are not so; obviously, visible here. So, when you handle triangular matrices

we talk directly in terms of the Eigenvalues only, not Eigenvectors Eigenvectors can be

found with some further processing they are not so obviously, visible.

Now, when you take a block triangular matrix, that is if these scalars are replaced with

matrices and there are big blocks of 0 zeros sitting below that, and big blocks of other

entries perhaps non-zero any of them will be non-zero answering here then we have a

block triangular matrix which is look like this. These a block triangular matrix with 4

blocks  block  A square,  block  B  not  necessarily  square,  block  0  which  is  also  not



necessarily square it will be just size of the transpose of B and then block C which has to

be square.

Then you say that the Eigenvalues of this is the same as the Eigenvalues of A and the

Eigenvalues of C. Now for this matrix the statement that Eigenvalues of this large matrix

is the collection of Eigenvalues the matrix A and the Eigenvalues of the matrix C can be

easily seen in a similar way in which you saw just now the result related to the diagonal

matrix; however, here the statement is made only for the Eigenvalues and not about the

Eigenvectors. So, if the matrix A has an Eigenvalue lambda with an Eigenvector v that is

this, then we can apply the complete matrix hover a coordinate extension of v 0 and then

we defined that the product gives us this; that means, v 0 the coordinate extension of v

turns  out  to  be  an  Eigenvector  of  the  complete  matrix  H  with  the  corresponding

Eigenvalue lambda.

Whatever  when you try to ascertain verify that the same wholes for c also,  then we

cannot  immediately  apply  it  on  a  coordinate  extension  because  that  will  create  the

punctuation with this B, because in the product the way this 0 at a help in this case it will

not help in the other case. When this particular situation what we do is that we take mu

as an Eigenvalue of C and then argue then it is also an Eigenvalue of C transpose and

then C transpose w turns out to be mu w for that mu for sum vector w and then we apply

not H, but H transpose on the appropriate coordinate extension of w in this manner and

then we find at the end that we get mu into this vector 0 w; that means, mu turns out to

an Eigenvalue of H transpose, then that will mean that mu is an Eigenvalue of H as well.
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Now, apart from these results there are a few points which we need to keep in mind

which will be very useful in many of the methods, one is that if we add a scalar times

identity to a matrix then all the Eigenvalues get shifted by that scalar value and this is

called the shift theorem. This is very easy to verify and so, I am not going into that I am

leaving it for you than the other important we show that we must keep in mind it actually

applicable only for a symmetric matrix that is for a symmetric matrix A which mutually

orthogonal  Eigenvectors  a  fact  that  we  will  verifying  the  next  lecture,  for  a  an

Eigenvalue lambda j with corresponding Eigenvectors as v j, we find that if construct

another matrix B from in which forma we have subtracted this part then this resulting

matrix  B  has  exactly  the  same  Eigenstructure  as  A,  Eigenstructure  means  same

Eigenvalues  with  the  corresponding  same  Eigenvectors  except  that  the  Eigenvalue

corresponding to that particular Eigenvector v j is now more lambda j but it is reduced to

0. 

That means, the information worth of that Eigenvalue only has been removed from A,

the all the rest of the information of the Eigenvector remains as it is. Now this is an

important issue to which we will come back after studying the symmetric matrices in

detail in the next lecture before that I will try to explosive right now to an important.
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Quick  and  easy  method  for  solving  the  Eigenvalue  problem  and  that  is  for  power

method.  This  helps  you in  finding  the  Eigenvalues  of  the  matrix  when you are  not

interested in finding all Eigenvalues of a large matrix.

But you are interested in finding only a few largest magnitude Eigenvalues or perhaps

the largest magnitude and the lowest magnitude Eigenvalue; Eigenvalues. Now this is

very quick and easy method easy to understand is to implement, but note that it will work

only  for  those  matrices  which  have  a  full  set  of  n  Eigenvectors  that  is  which  are

diagonalizable  and  for  which  there  is  a  single  Eigenvalue  which  has  the  largest

magnitude; that means, that the largest magnitude Eigenvalue has a magnitude which is

larger than all the rest that is not too are at the top only one Eigenvalue is at the top.

In that case power method gives you the largest magnitude Eigenvalue very easily what

we do for that is, first to understand the way it operates you consider that if the matrix a

processes a full set of n Eigenvectors then these Eigenvectors will span the entire space

are in and; that means, any other vector x that you can think of, can be expressed as a

linear combination of these vectors in this manner. Now it is a different matter that given

a  vector  x  we  can  choose  any  vector  x  that  will  have  a  representation  as  a  linear

combination  of  the  Eigenvectors  with  alpha  1  alpha  2  (Refer  Time:  40:44)  etcetera

representing the corresponding coefficients. Now even though we do not yet know those

Eigenvectors and the corresponding coefficients what we know this much that any vector



x that we can think of that we can have picked up we will have some representation like

this with alpha 1, alpha 2, etcetera and v 1, v 2, etcetera currently unknown to us.

Now, if on both sides we multiply with a the matrix then what happens? On this side x is

a non vector with we have picked up. So, we multiply a x we can work out the result on

this side we do not known what is happening exactly the numbers we do not know in

detail, but we know this much that a v 1 with the lambda 1 v 1, a v 2, v v lambda to v 2

and so on; that means, through a multiplication of a whatever was the representation here

now in the coefficients we will get any other additional factor of lambda 1 lambda 2

lambda 3 etcetera. If we go on multiplying the vector the resulting vector with a once

more once more once more in after p such multiplications on this side we will have A 2

the power p x which is known which is the result of multiplying a p times over x.

On this side we will have alpha 1 onto lambda 1 to the power p p 1 plus alpha 2 into

lambda 1 lambda 2 to the power p b 2 and so on. If we take that lambda 1 to the power p

outside then this will remaining side right. Now under the assumption that the lambda 1

Eigenvalue is the largest magnitude Eigenvalue and the next one is a little below that

what will happen is that as p goes too high many many many times it has been multiplied

then that will mean that in that case lambda 2 by lambda 1; lambda 3 by lambda 1 all

being of magnitude less and one after raise to large power all of them will tend towards 0

when p is sufficiently large.

That will mean that after many such multiplications we will have a vector sitting inside

this which is in the same direction as v 1 and then after that process has stabilized after

that direction has been stabilized one more application of that same multiplication with a

will mean at on this side and Eigenvector is being multiplied with a and that will give

you lambda 1 into that vector. And that gives you the vector in the direction and the

lambda 1 as the scale between 2 successive values. So, as p tends to infinity this fellow

tends to this lambda 1 to the power p alpha 1 v 1 then you find that after the process has

converged then you will find that the result A p X compare to the result in the previous

iteration previous step are 2 vectors which are in the same direction; that means, the ratio

between the first components in the ratio between the second components in the ration

between the third components will all this m and that ratio is lambda 1 that convergence

all n ratios will be same. In fact, that is a test that convergence has taken place.



So, this way you quickly get the largest Eigenvalue largest magnitude Eigenvalue note

that it may be negative for that matter it does not matter it. So, you will get the largest

magnitude Eigenvalue and the corresponding vector will be the Eigenvector. Now we

will make 2 points here, one is that other than the largest if you need the least magnitude

Eigenvalue also then how to do that? For this purpose we can use the shift theorem. So,

how to find the least magnitude Eigenvalue; what we can do is that after finding this

largest magnitude Eigenvalue we see its sign this is a ratio which may have sign.

So, whether it is positive or negative that he has been found here. So, if for example,

suppose that lambda 1 transfer to be positive, say the largest magnitude Eigenvalue is 23

then what we can do is from the original matrix we subtract 23 from all the diagonal

entries, that is application of the shift theorem that is we subtract 23 I from the original

matrix that will mean that all the Eigenvalues have got shifted left word by 23, that is

whatever was 23 earlier that become 0 now, whatever was 21 earlier that becomes 19 and

so on in that case the smallest magnitude smallest algebraically, that turns out now as the

largest  magnitude  Eigenvalue  largest  magnitude,  then  we can  apply  the  same power

method once more and then we will find that which is the largest magnitude Eigenvalue

and  then  as  we  shift  the  think  back  23  steps  on  the  right  side,  then  will  get  the

appropriate correct Eigenvalue for matrix a with the corresponding Eigenvector, right.

So, this is one way to find the largest and least magnitude Eigenvalues which has a lot of

practical significance. Now one more possibility of a important of an important question

maybe that for example, if you are not interested in finding all Eigenvalues, what we are

interested in finding a top few, the largest magnitude once lambda 1 lambda 2 lambda 3

lambda 4 etcetera some say 6 of them, 6 top Eigenvalues, we want to find out and the

corresponding Eigenvectors there also for example, the matrix suppose is 100 by 100 we

are interested in all the 100 Eigenvalues and there Eigenvectors, but only top 6 or if you

top once with some conditional requirements.

Then what we can do after the finding the largest one we can use equation this will work

in the case of symmetric matrix, which is quite often encountered in practical situations.

By deflation what we can do is that we can subtract the part which is contributed by this

particular Eigenvalue lambda 1 and the corresponding Eigenvector, then the resulting

matrix will have the largest magnitude Eigenvalue as lambda 2 which can be found to

power method and so on. Now this is a very state forward method which can be applied



if you are sure that the matrix does satisfy this requirements otherwise the process may

not operate  as expected or as desired rapper from these things there are 2 important

concepts which will go long way in our discussion in the coming lectures on it is the

Eigenspace.

 (Refer Slide Time: 47:46)

This is a done to in use for representing a subspace of R n which is composed by the

Eigenvect Eigenvectors of a matrix corresponding to the same Eigenvalue lambda for

example,  suppose  a  has  an  Eigenvalue  lambda  corresponding  to  which  there  are  k

Eigenvectors v 1, v 2, v 3 up to v k, then that will mean that any linear combination of

these Eigenvectors is also going to be an Eigenvector becomes verify that very easily

suppose corresponding to Eigenvalue lambda there are 2 Eigenvectors v 1 and v 2.



(Refer Slide Time: 48:31)

That will mean that A 1 A v 1 is lambda v 1 and A v 2 is lambda v 2, then if we apply a

on a linear combination of these 2 Eigenvectors then we will find that this will turn out to

be a 1 is scalar. So, we can take it out and then we will have a 1 into A v 1 which is

lambda 1 lambda v 1 plus a 2 into A v 2 which is lambda v 2 from here and taking

lambda scalar outside this common we find that we have got this.

That means the matrix a multiplied over this vector gives us lambda into this vector; that

means, if v 1 and v 2 are 2 Eigenvectors corresponding to the same Eigenvalue lambda

not that it is applicable for same Eigenvalue, then any linear combination of them is;

obviously, going to be an Eigenvector with respect to further particular matrix a. Now

this  is  not  an  a  linear  linearly  independent  Eigenvector,  but  this  is  certainly  an

Eigenvector it does not come in the counting of Eigenvectors, but whenever required this

vector does operate like an Eigenvector and that is means that if these a Eigenvectors are

corresponding to the same Eigenvalue  lambda,  then the complete  subspace spend by

these vectors gives you a subspace in which every vector every vector is an Eigenvector

and therefore, this particular subspace is also called the Eigenspace of A corresponding

to that Eigenvalue.

There  is  important  theoretical  point  that  will  be  quite  in  our  discussion  in  coming

lectures,  that  is  similarity  transformation.  This  is  something  which  we  have  already

earlier seen once and here we look at some important properties of it. If we decide to



represent the vectors of a space R n in a different new basis s and therefore, the matrix

representation of a linear transformation changes from A it becomes B, for B is S inverse

AS this we have seen earlier. Now note that determinant of lambda I minus A which is

the characteristic polynomial of the matrix A.

Now, we already know that determinant of a matrix and the determinant of its inverse are

reciprocals of each other; that means, that if we multiply this with determinant of S and

also with determinant of S inverse we are actually making no change because this will be

reciprocal of this. We also know that determinant of the product of 3 matrices of the

same size is same as determinant of P into determinant of Q into determinant of R. Now

what we have got here is determinant of P into determinant of Q into determinant of R

that means, this is same as determinant of PQR that means, a single determinant with s

inverse inserted from this side and s inserted with in this side will be the same as this.

Now, when s inverse and s are inserted on from the 2 sides on this, they cancel each

other because identities remain inside that is why this is lambda I, on this it will have the

effect which is different that is S inverse a S which is B; that means, we have got this

whole  thing  same  as  determinant  of  lambda  I  minus  B  what  is  that?  That  is  the

characteristic  polynomial  of  the  matrix  B now that  shows us  that.  So,  the  similarity

transformation  the  matrix  might  has  been  changed,  but  its  characteristic  polynomial

remains  same  as  earlier  the  characteristic  polynomial  of  A  and  the  characteristic

polynomial of B turn out to be the same is the entire polynomial is same for A and B then

all  the roots will be same; that means, that Eigenvalues remain unchanged through a

similarity transformation because similarity transformation comes out only as a result of

a change of basis.

No  geometrical  entities  being  changed  only  its  representation  is  being  changes  and

Eigenvalues are the property of the underlined linear transformation not of the basis and

therefore, Eigenvalues remain constant through all this similarity transformations. How

do Eigenvectors change? Geometrically even Eigenvectors do not change, but then their

representation in the new basis will change as the vectors as any other vector would

change its representation in the new basis through the multiplication of S inverse which

we have already studied in the same manner and Eigenvector of A will transform to s

inverse v in the new basis which is given by S.  So, if  v is  an Eigenvector  of A the



corresponding Eigenvector of B will be s inverse v because there the new basis S has

appeared.

So, the basis change of vectors takes place through this relationship and the same will

apply to Eigenvectors as well. Now let us quickly summarize what are the points that we

have discussed in this particular lecture.
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First important point is that meaning and context of the algebraic Eigenvalue problem

that we have discussed. Second is that we have studied the fundamental relationships

deductions which are vital for the solution of the algebraic Eigenvalue problem and third

we have a been exposed to a quick and easy method for power method as an inexpensive

procedure to determine the extremal magnitude Eigenvalues, only the largest or largest

and lowest or the largest few in all these situations we can use the power method with a

little  bit  of  help  from  the  shift  theorem  or  the  deflation  technique.  But  then  while

applying power method you must be careful that the power method does not apply to

arbitrary  matrices,  but  on  13  matrices  having particular  kinds  of  Eigenstructure  if  a

matrix false in that category then power method will be very handy for you in many

situations, but otherwise it may not operate as desired.

So, in the next lecture we will build up on what we have develop till now and see the

detailed discussion on the theoretical developments on Eigenvalue problem, which will



be  then  use  in  different  categories  of  methods  for  solving  the  algebraic  Eigenvalue

problem.

Thank you.


