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So,  in  this  lecture  we will  be discussing numerical  aspects  in  linear  systems.  In the

previous lecture I told you that in linear systems we encounter certain good situations for

which we should try to take advantage of it in terms of efficiency and sometimes we

encounter  bad  situations,  where  there  can  be  numerical  errors  and  overflows  and

underflows, in this case we need to know how we handle these special situations. So, in

this lecture we will be considering those measures which will help us in handling bad

systems. So, here first we will define a few terms like norms, condition numbers, ill

conditioning and sensitivity of matrices and then we will study rectangular systems and

then the most general solutions of linear systems through singularity over solutions and

finally, we will have a quick glimpse on iterative methods of solving linear systems.
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First the underlying definitions, norm means size, when you talk of norm of a vector we

basically talk of a measure of size of the vector and all  of you are familiar  with the

ordinary Euclidean norm or 2 norm that is represented like this or in general situation we

can represent it with a subscript 2. Which means 2 norm and that is simply the length of

the vector x in ordinary geometric sense and that is x 1 square plus x 2 square up to x n

square to the power half means square root. 

The way you take the distance from origin to xyz point as square root of x square plus

square plus z square,  in that same manner this  foundation works. This gives you the

ordinary Euclidean norm or 2 norm in the same sense you can define the general e norm

that is the sum of the p th powers of the absolute values of the coordinates x 1 to x n and

then that sum is taken through a power of one by p means p th root of that sum of the p

th powers of x one mod x 2 mod and so on. this is the general foundation in which

insertion of p equal to 2 will give you the ordinary Euclidean norm with which all of you

are familiar.

In that sense for other values of p you can define other norms, in particular you can

define one norm which is this the sum of the absolute values and you can also define the

infinity norm which is sometimes also called max norm. And that is defined in the limit

when p turns to infinity and that is defined in this manner and this is also called max

norm because finally, what you get out of this is the maximum value of the coordinate



from all the coordinates, because as you raise x 1 x, 2 etcetera through a large power then

the largest of these magnitudes dominates the sum. 

And then when you take the p th root then all others die in proportion and you recover

the p th root of the largest which is the largest coordinates and that is why it is also

represented in this manner and that is why infinity norm is also known as the max norm.

Even  in  this  ordinary  Euclidean  norm you  could  define  the  norm not  directly  as  x

transpose x under root, but through this relationship where you say that this is a norm

defined with respect to a weight matrix W and you can represent it in this manner. The

condition is that this weight matrix must be symmetric and positive definite otherwise

this function will fail to define a distance measure.

Now, with these kind of definitions of norm of a vector we can then proceed to define the

norm of a matrix unless otherwise stated in all our dealings we will be talking about the

Euclidean norm, but then in the same context other norms also can be used.

(Refer Slide Time: 05:02)

So, when you talk of norm of a matrix we ask what is the job of a matrix, in what sense

we can talk of the size of the matrix? The task of a matrix is to multiply a vector and give

another vector. 
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This  vector  has  a  size  and  this  vector  has  a  size,  matrix  a  will  possibly  produce  a

magnification  in  the  size.  So,  that  magnification  will  be  size  of  the  resulting  vector

divided by size of the original vector and that in a way could be considered in some

sense the size of a matrix, but then the problem starts when we find that on different

vectors this matrix, the same matrix will produce different magnifications and therefore,

to define the size of the matrix we say that we will take the size of a matrix or the norm

of matrix as the maximum magnification that it is capable of providing.

That means in this kind of a situation on all vectors x it will produce different kinds of

magnifications and the maximum of those magnifications we will take as the measure of

the magnification produced by the matrix a. That means, we will define the norm of the

matrix or size of the matrix as the maximum over all x of the magnifications size of x

(Refer Time: 06:44) x divided by size of x or if you wanted to take all xs which are of the

same size. 

Then you could also define it in this manner, there is all xs taken of size 1, in that case

this will reduce to the value 1 and then you define it in this manner, that is on a units

period you take all vectors and out of that the vector which is magnified to the largest

extent that would defined the norm of the matrix. As a direct consequence of this we will

find that the norm of A x will always be less than or equal to the product of norm of the

matrix defined like this and norm of the vector x because the largest possible of this has



been defined as the norm of the matrix. So, when the largest possible is sitting here on

the other side whatever you have that can be at most equal to this most of the time it will

be this, that is why as a direct consequence of this definition we have this inequality.

Another important term that we need to define is condition number, we already know

that when the columns of a square matrix are linearly dependent then we call that matrix

is singular, its determinant is 0 and inverse does not exist. Even when the matrix is not

exactly singular we can talk of its closeness to singularity, if the determinant is close to 0

then we say that the matrix is close to singularity and there is a measure of closeness to

singularity that is given by the condition numbering or rather it is a measure of being

away from singularity. That means, that if this condition number which is the product of

the norm of A as defined above and the norm of a inverse then this product is called the

condition number. If the condition number is 1; that means, the matrix scales all vectors

in equal proportions, in most of the cases that will not be the situation in which case the

matrix will scale some vectors less and some vectors more

In that case the condition number will be higher than 1, in the worst case where the

matrix  is  singular  some  of  the  matrices  will  be  mapped  to  0  in  which  case  the

magnification is almost like 0. But, on the other hand there will be some other vectors

which are magnified higher and in that case you will have a very desperate spectrum of

magnifications and the condition number the product of these two norms will tend to

infinity. 

For a singular matrix in the limit the kappa will tend towards infinity so; that means, that

higher  the  condition  number  close  is  the  matrix  to  singularity,  lower  the  condition

number  its  mapping  is  well  rounded.  Now, if  all  the  vectors  have  mapped  to  equal

magnification  then  we  call  such  matrices  isotropic,  iso  equal  tropic  direction  the

performance of that matrix  in all  directions  is similar;  in the other extreme we have

similar matrices that gives you the 2 limits of condition number one and infinity.

In between if we find very high condition number for example, 200, 400 something of

that sort then you call that matrix ill conditioned, its health is bad, it scales some of the

vectors to a very high magnification on the other hand some of the other factors are

scaled to very low magnification that is illness, that is ill condition ill conditioning of the

matrix. In between if you have small numbers as condition numbers 4, 5, 7 then you say



that this matrix is nice behaving well conditioned you can say. Now, why this situation of

large condition number is called ill conditioned, why it is ill in what sense? To see that

let us consider a small example here.

(Refer Slide Time: 11:08)

We have 2 equations 0.9999 x 1 minus 1.0001 x 2 equal to 1 and then x 1 minus x 2

equal to 1 plus epsilon, you can see that for epsilon is equal to 0 that solution will be half

minus half, because here you will have 1 and for x 1 equal to 0 half minus half will

satisfy half minus half will satisfy this equation exactly, in terms of epsilon you can say

that the solution is this.

Now, note that with epsilon equal to 0 you have the solution as x 1 equal to half x 2 equal

to minus half. Now we put a epsilon equal to something then you see what will happen,

as you put epsilon equal to some small value even a value of 0.0001 will change x 1 and

x 2 drastically, why? With a small value of epsilon which is 0.0001 this get magnified

here with 10001 and here with 9999 and; that means, there will be a significant change in

x 1 and x 2. That tells us that this solution, solution of this system is very sensitive to

small changes in the right hand side, with small changes epsilon there will be significant

changes in the solution x 1 and x 2. 

So, this sensitivity to small changes in the right hand side is the ill conditioning and if

you try to find out this matrix, this the condition number of this matrix you will find that

it is very large. You can see that because the first row is very close to 1 1 and the first



column  sorry,  the  first  column  is  very  close  to  1  1  and  the  second  column  of  the

coefficient matrix will be very close to minus 1, minus 1 and they are; obviously, close to

linear dependence and; that means, the matrix the coefficient matrix will be very close to

singularity.

That means ill condition according to our definition and that ill conditioning manifest

itself  in  this  high  sensitivity  to  small  changes  in  the  right  hand  side,  why  this  is

dangerous?  Because  all  numbers  that  we  get  in  practical  situations  are  results  of

measurements  or  other  calculations.  Now,  any  measured  data  or  any  result  of

calculations will be susceptible to some small errors now that will mean that with small

errors in the data the final solution will  suffer badly and this  is the result  of that ill

conditioning. In this sense it is ill, if there is a person who is not well who is suffering

from bad health  then  small  exposures  to  heat  cold  or  fatigue  will  put  him to  other

illnesses and in that sense this coefficient matrix will be ill. 

Apart from being sensitive to small thing changes in the right hand side there will be

another bad result of ill conditioning of this matrix and that is in terms of validation of a

guess. Suppose somebody makes a guess of this solution, this solution of this system

then with a wide range of guesses the equations will verification through that equation

will tell us that it is almost right; that means, small mistakes in the guess of the solution

will not be identified, will not be captured in this kind of a system in order to see let us in

order to see how it works.
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Let us see the illustration, here the two lines the two equations those two equations in

terms of lines in the x 1, x 2 planes are plotted here as 1 and 2.

Their point of intersection is here that is half minus 1 half as I told you that is the correct

solution this is the reference system that is the correct solution. Now, with a small change

in epsilon the second equation changes; that means, the second line shifts parallel  to

itself,  in this case the line demarcated as 2 b is the shifted position and this 2 is the

original dashed line 2 is the original position of that second line. 

Now, see where the point of intersection is, point of intersection is here because of a very

small  angle  between  the  2  lines  to  a  small  parallel  ship  of  the  line  2  the  point  of

intersection suddenly jumps from this point to this point and this is the result of small

change in epsilon, large change in x 1 and x 2. That solutions shift by a huge distance,

this is one difficulty through a parallel shift the point of intersection changes suddenly, if

we had tried to validate a guess which is not right half minus half is the correct solution

for  epsilon  equal  to  0,  but  then  if  we had decided  that  we will  try  a  0.10 which  is

somewhere here even that 0.10 is extremely close to both the lines and here if you try to

put 1 0 as solution in the equations you see what do you what do you get one into this

number minus 0.

So, this is 0.9999 almost close to 1 then 1 0, 1 minus 0 is 1 exactly right; that means, if

you had tried to use point 1 0 as the possible solution as a guess these equations will tell



you that your guess is almost right, but from the figure you know that half minus have is

here, that is a correct solution and 1 0 is here. Not only 1 0 any point in this narrow zone

guessed and verified will tell us that it is almost the right answer, though it is far away

from the right answer. That is what you show see here in this shaded portion any point in

that  shaded  portion  will  impersonate  as  almost  right  answer,  there  is  the  another

interesting feature here, rather than shifting the line to a little through epsilon if you had

rotated line 2 then that would mean that making changes here and here. Making this

0.9999 other than 1 and making this 1.0001 rather than 1 will mean slight change, slight

rotation of the line and if you anchor that line while rotating about this point then you

will  get  the two lines  coincident  in  that  case there will  be infinite  solutions  exactly

singularity.

On the other hand if you anchored at any other point say at 1 0 while rotating the line

then you will get a line which is parallel and in that case you will find that there will be

no solution, another manifestation of singularity of the coefficient matrix. So, all these

different  qualitatively  and  quantitatively  different  scenarios  can  arise  through  small

changes in the right hand side or in the coefficient matrix in case of an ill conditioned

system which will not be so if the condition number of the coefficient matrix is small that

is if the matrix is nice and healthy. To analogically see these things let us consider this

system A x equal to b for which the solution is A inverse b and let us analyse the first

variations for this A x equal to b. 
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If we consider first variations then we say first variation of A into x plus A into first

variation of x is equal to first variation of b right. So, this is what you get as the first

variation of the equation a x equal to b, from here we will try to find out an expression

for delta x and for that we take this first on the other side and then pre multiply over all

with a inverse.

As we do that we get A inverse delta b minus A inverse delta A x that is here a inverse

delta b minus A inverse delta A x. Now, this we use as our important relationship which

tells us how delta x changes with small errors in right hand side and small errors in the

coefficient matrix. We consider the 2 issues separately, first suppose the matrix is exactly

known, in that case delta a will be 0 and we have to consider the effect of delta b. Now,

when we try to consider the effect of delta b only then delta x norm we take the size, we

take the size. 

So, in the first case we are considering that the matrix is exactly known; that means,

delta A is 0, delta b is something and we are interested in seeing its effect right. So, delta

x norm, now we know that norm of this will be less than equal to norm of this into norm

of this right. So, this will be less than equal to the product of the norms right, now both

sides we can divide by this now what we do we consider the division and multiplication

by mod of delta b, norm of delta b sorry norm of b like this right.

Our intention is to compare the fractional change fractional error in x to the fractional

error in the data that is b. So, we will compare mod of delta x by mod of x with mod of

delta b by mod of d this is our intention right. Now, this we can write as these two have

been taken care of, this we put here this has been taken care of these two remain right,

what we do is that we multiply with this and we also divide by that, this multiplication

division has taken care of each other and the rest of the 2 terms which apply back this b

norm here and this x norm here. 

Now, again remember that compared to norm of A into norm of x norm of b will be less

that is because of that same old relationship that is norm of x is less than equal to norm

of A in the norm of of x. That is why this will be less than equal to this so; that means,

that that is this whole fraction is less than equal to 1 so; that means, that this side is less

than equal to this which is equal to this, which is further less than equal to this into this

and that is shown here that is this fraction is less than equal to this.



What  is  this  stuff  here  defined  as  condition  number  of  a;  that  means,  we have  this

relationship; that means, that the fractional error in the result x is limited, is less than

equal to kappa times the fractional error in the right hand side. Now, if kappa is large if

condition is large condition number is large; that means, if the matrix is ill conditioned

suppose the matrix is 1000 that will mean that by a small change in b, small error in b the

result can be erroneous by 1000 times that small error. 

If there is a 1 percent error in b in response to that as a result of that as a consequence of

that the error in x can be 1000 percent this is a result of ill conditioning what we saw in

the illustration. In the second situation if right hand side b is known exactly and delta b is

0 and delta is something, then when we try to do a parallel operation then see we reach

the same conclusion in this case we are taking delta b as 0 right hand is exactly known

this may be something.

So, the norm of delta x will be less than equal to norm of this into norm this vector right,

again the norm of this vector will be less than equal to norm of this matrix into norm of

this vector; that means, the twice less than equal to further less than equal to, those twice

less than equal to things we get here also right.

(Refer Slide Time: 25:38)

So, then again we find that delta x norm will be less than equal to norm of this into norm

of this into norm of this and this norm of x we have already divided here. So, that will

mean that we will get here right and as we multiply and divide again with norm of A then



you see again, what we have got here is this. This is kappa of a condition number and

this  is  fractional  change  in  the  size  of  A,  norm of  A again  here  the  fraction  is  the

fractional change in size of x; that means, again if condition number is something like

1000 that will  mean that a one percent error in the matrix coefficients matrix values

matrix entries or matrix norm rather will allow a 1000 percent error in the result in x and

this is again the result  of insensitivity;  that means,  there is a sensitivity  to the small

changes in the matrix.

That means if the matrix is ill conditioned, if this kappa is large that will mean that with

small changes with small errors in the right hand side or in the coefficient matrix you can

expect large change or large error in the result. So, the solution that you will be finding

numerically will not be quiet reliable, now we need to handle such situations and we

know that  when very large numbers  and very small  numbers  turned up in  the same

computation together then the numerical errors grow faster and the resulting solution

may not be very reliable, how do we handle such situations and try to find out solutions

which are skill robust. This is 1 issue that we handle in subsequent discussion; another

way other than ill conditioning another way in which a system of linear equation could

be bad is by the matrix shape. 

If the question matrix is rectangular that is if the number of equations is larger than the

number  of  unknowns  or  vice  or  versa  then  the  standard  gauss  elimination  type  of

processes  will  not  apply  directly. We know we can analyse  the  situation  completely

through the method which we discussed earlier regarding whether solutions exist, how

many solutions are there and whether they are infinity and so on and try to describe

them. But quite often you will find situations where irrespective of whether there are

infinite solutions or whether there are no solutions you are required computationally to

find one solution which is a good solution, which is a representative solution and which

is a useful working solution.
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How to find that? So, first we consider 2 cases of rectangular systems one in which the

number of equations is largest and the other in which case the number of unknowns is

larger, in both cases first we consider the situation where the coefficient matrix is at least

full  rank.  Which  is  relatively  easier  and  afterwards  we  try  to  combine  all  sorts  of

difficulties together that is the equation system may be rectangular at the same time there

may be ill conditioning and we try to see how we work out a solution still in the phase of

all these difficulties. First consider the system A x equal to b in which a is a matrix of

size m by n m is larger; that means, more number of equations; that means, the matrix is

actually a tall matrix thin and tall matrix (Refer Time: 29:44) number of rows.
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Than columns, the matrix shape will be something like this number of unknown be less

and number of equations will be more, this is the kind of system we are talking about;

that means, less number of columns, more number of rows rectangular with this kind of

shape this is the first guess that we take up, in which n is less than m.

But then fortunately the rank of A of the matrix a is n; that means, all these n columns are

linearly  independent;  that  means,  its  rank is  n  it  is  a  full  rank matrix,  later  we will

remove  this  special  situation  also  and  try  to  handle  even  worst  case.  Now, in  this

situation before applying all these methods we try to see that in only n unknowns there

are so many m equations we do not expect them to be consistent we expect conflict as we

expect conflict. 

That  means,  that  mathematically  solution does not exist,  but still  there are situations

where we have to say that whatever little discrepancy, whatever little conflict is there

among the  equations  that  is  due to  experimental  errors  we do want  a  representative

solution, this kind of situations quite often arise in problems where we need to find the

least square error, we need to find a solution parameter set with our moral is right, but

the data is erroneous because of experimental measurements. So, in that case one quick

remedy we can suggest and that is multiply both sides with a transpose, if we multiply

both sides with a transpose then this transpose will be of this kind of a shape, on this side



also we will multiply with a transpose and in that case you will find that the matrix that

comes a transpose A will be a square matrix n by n size.

And the product here A transpose b will again be a small vector of size n small size. So,

that is what we get here through pre multiplication with a transpose on both sides we will

get this system which is a small m by n size and because of the full rank nature of the

matrix this matrix coefficient matrix now a transpose a will be a non singular invertible

matrix, square matrix, non singular matrix. 

So, now, we can apply our cholesky decomposition kind of methods which we studied in

the previous lecture and immediately get the solution and that solution is this. Now, this

multiplication  pre  multiplication  with  a  transpose  is  not  something  add  how,  not

something arbitrary that we did just in order to solve the system it has a much deeper

meaning and in order to discover that meaning let us consider the question completely

separately, completely independently. 

The question of minimizing the error norm, we say that we want to find out that x which

minimizes  the  square  of  the  error  A x  equal  to  b  was  the  system of  equations,  we

expected conflict most probably there will be conflicts. So, the error will be A x minus b

now we say we want to find out that x with which this error is minimum or the square of

that error is minimum as you open this square of norm we find it is A x minus b transport

A x minus b which gives rise to this expressions.

Then you say that for this function to be minimum this errors square to be minimum its

first derivatives with respect to x that is its gradient with respect to x must be 0 and when

we find the gradient we find it is this and this equal to 0 is nothing, but the equation

system which we actually solve. A transpose A x is equal to a transpose b; that means,

through this small trick of pre multiplying the equation system with a transpose on both

sides, what we have done is that we have filtered out a solution which minimises the

error square. 

This is why the resulting solution x is called the least square solution and the matrix here

from here to here before b is known as the pseudo inverse or Moore Penrose inverse

because in a way that is acting like an inverse. Because it is giving you something like a

solution of A x is equal to be to the multiplication pre multiplication of b something into

b is the solution of A x is equal to b; that means, that something is in a way acting like



the inverse of A that is why it is called pseudo inverse it is not rightly inverse, but it is

some sort of an inverse it is called pseudo inverse or Moore Penrose inverse in this case

it is also called the left inverse because multiplication of this on the left side of a will

give you identity.

Now, this is one case in which the shape of the matrix is like this, now you consider the

other case in which the shape of the matrix will be fat short, that is a case where we will

have m less than n; that means, you have got a like this.

(Refer Slide Time: 36:04)

So, again here in A x is equal to b this will mean that you have got less number of

equations in larger number of unknowns; that means, too many unknowns to determine

this problem is typically indeterminate that is infinite of solutions you will expect if the

rank is full as is shown in this particular case. The rank is full m; that means, m only

rows are there with too many columns n columns, but those m rows which are there they

are  linearly  independent,  with  that  situation  you  will  have  infinite  solutions  for  the

system  of  equations,  but  then  there  may  be  many  situations  in  which  you  are  not

interested in those infinite solution you want to find only one situation with in a way will

be a very nice good useful solution. For that how to find out one solution you want a

square matrix, but then like last time you cannot multiply with A inverse on the left side,

A transpose with the left side on the left side. 
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Because here matrix a is of this shape, x is large if you multiply with a transpose then

you will be essentially multiplying with a matrix like this and as a result you will get a

matrix which will be of this size, huge matrix you will get.

So, this matrix was m by n with m less n larger this is m by n and the resulting matrix a

transpose A that you will get will be n by n which is large and this matrix is sure to be

singular because this matrix of rank m and this matrix of rank m in product will never

give you a matrix which is of rank higher than m. So, at most it can have rank m and

which is less than n; that means, this matrix will be certainly singular and your methods

like gauss elimination or lu decomposition will certainly fail. So, this is not the way in

which you should go in this kind of a situation. 

So, what to do? You apply a different trick in this case, what you must do here is not to

pre multiply with a transpose, but you look for a vector lambda m dimensional vector

lambda that satisfies a transpose lambda and as you do that then a transpose lambda

equal to x; that means, you look for an m dimensional vector lambda which will satisfy a

transpose lambda equal to x and then in place of x you try to insert this a transpose

lambda. That means, that here in place of x you try to insert a transpose lambda and what

is this a transpose a transpose is the transpose of this matrix.
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That means transpose of this short fat matrix will be a long, tall thin matrix and the

product of AA transpose will be again short of this size square size small matrix which is

m by n.

So, then we have this system AA transpose lambda equal to b and rank of a is m that will

mean that this matrix AA transpose is symmetric and non singular that is positive definite

and then you can solve this and get lambda that will be AA transpose b that is from here

to here will be the solution and that lambda when multiplied with a transport will give

you x. So, you get this solution which is somewhat different from the earlier solution in

which  you got  a  transpose  A inverse  post  multiplied  with  a  transpose  here  that  s  b

multiplied with a transpose, earlier it was a transpose a inverse post multiplied now it is

AA transpose inverse pre multiplied with A transpose. 

So,  this  is  the  solution  now again  last  time  we  found that  the  particular  trick  with

multiplication with A transpose had a meaning in terms of minimization of error, what is

the meaning here? To discover that meaning again you consider this small optimisation

problem, this is a constrained optimisation problem you try to minimise this size of the

solution  itself  x  mod  square  half  of  that  subject  to  these  constraints  these  equality

constraints which is actually the system of equations that you wanted to solve. So, here

because  of  infinite  solutions  of  this  system you  are  asking  for  that  vector  x  which



satisfies this equations as a required condition and among all the infinite solutions it tries

to find you the smallest size solutions.

If you try to formulate this constrained optimisation problem one possible formulation is

TWO find the extremum of the Lagrangian that is lagrangian is this objective function

minus lambda transpose A x minus b and the extremum of this lagrangian is found at that

point x and lambda where the derivative of this with respect to x and the derivative of

this with respect to lambda the corresponding gradients are both 0. When you apply that

condition through differentiation of these and those gradients you find then the gradient

with respect to x gives you x minus A transpose lambda equal to 0; that means, this

which is what we assumed here and the gradient with respect to lambda equal to 0 tells

you A x minus b equal to 0 which is the original system of equations and these are the 2

systems of equations their solution of which has been found here in this manner right.

That means, through this small trick you find that x which is the minimum sized x that

satisfies these system this systems of equations, apart from many others which you are

not bothered with.

Now, this  particular  solution gives you the foot  of the perpendicular  on the solution

plane; that means,  a lot  of solutions are possible for this system because this system

actually defines a plane like entity in the space of x and out of all the points that you can

take on that plane like entity the one which is closest to the origin, the size of which is

the least that is actually the one which will minimise this subject to this constraints. The

constraints come in the equation of the plane and this minimization actually gives you

the foot of the perpendicular to that plane right and this matrix A transpose AA transpose

inverse which is the entire thing working like some sort of an inverse that is the pseudo

inverse in this case or the Moore Penrose inverse or in this case it is called the right

inverse because from the right side if you multiply with this matrix to a then the result is

identity. Now, we found 2 situations in of rectangular systems, rectangular systems of

equations in one case number of equations is more in other case number of unknowns is

more.

Now, in the most general situation where it could be either way or that way compounded

with the additional problem of ill conditioning that is rank of a is not even m is less in the

other  case rank of A is  not even n even less.  That will  mean that  you have got  the

problem of the system being rectangular combined with the additional problem of rank



deficiency or singularity  of AA transpose in this  case and a transpose A in that case

compounded with that could be the ill conditioning issue; that means, the most general

situation.
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This is the situation quite often encountered in ill posed problem, in which the statement

of the problem is not enough not completely clear and in that sense, in that situation we

still can find out a solution which is a very good working solution and which is quite

robust not so sensitive and that is called the singularity robust solutions. The method to

do that is called tikhonov regularization and this particular technique gives you a recipe

for  any linear  system, m greater  than n or m equal  to n or m less  than n with any

condition. It could be well conditioned, in it could be ill conditioned or it could be even

singular in all cases one recipe can be useful with a little additional computational cost

which will and with a little extra error, but how much is error that is in your hand, but s

singular recipe will be able to solve all cases of sizes and shapes and with any condition.

The way to handle that is you first make the observation that the system of equations A x

is equal to b may have conflict. So, in order to handle that conflict you pre multiply with

a  transpose  and  get  this  so  called  normal  system  of  equations  which  is  certainly

consistent. Now, then you say that still  the coefficient matrix that we have in hand a

transpose a that maybe singular or that may be ill conditioned then what you can do is

that in order to handle this equation, this matrix which may be ill conditioned you rig the



system of equations. Add a little new square in the diagonal entries that is equivalent to

adding mu square identity to this matrix, add you as you add this you enrich the diagonal

entries  by  a  little  amount.  Now, you  see  that  a  transpose  a  even  in  the  case  of  ill

conditioned or singularity would be at least positive semi definite; that means, its value

for any x with x transpose this matrix x would never be less than 0 in the worst case it

could be equal to 0.

Now, with this addition it will not even be 0. So, now, this matrix this coefficient matrix

is symmetric and positive definite you can prove that, you can prove this that this matrix

is symmetric and positive (Refer Time: 47:44) in the book some of the, one of one or 2 of

the exercises  advise you to prove this  particular  statement  that  this  matrix  is  always

symmetric and positive definite. Symmetric is of course visible, positive definiteness you

can prove, now if it symmetric and positive definite then ordinary methods (Refer Time:

48:02) or any other method will (Refer Time: 48:04) to give you a solution of this system

and; that means, a value of the vector x. 

So, the idea of this method of techno tikhonov regularization is that expecting or being

concerned of some level of ill conditioning in the system you first immunize the system

with this little dose of errors, that is the little price which will result in slight amount of

error, how large you will allow that will depend upon this magnitude of mu. You can

choose mu to be as small as you like, you can choose it to be 10 to the power minus 3,10

to the power minus 6 that is based on your understanding of up to how much level your

computation is going to proceed without any trouble. Based on that your error value will

be large or small now with a little immunizing error here you make the system solution

process safe, there will be no further difficulties.

So, the issues at the choice of mu which is in your hand and another small issue is that if

m is smaller than n that is the number of equation is less then rather than handling an n

by n matrix here you could get computational advantage by considering an equivalent

system. Rather than solving this you could rather solve this rather than n by n system

here  you  will  be  then  solving  an  m by  m system get  lambda  and  then  evaluate  x

separately. So, if m is significantly smaller than n then this alternative way will give you

an advantage  computationally, less  number of  computational  operations  and you can

show that this calculation will result in the same final result as this calculation, there is a

small exercise which I leave for you. Apart from these methods which are non iterative



methods in which you do not need any initial guess there are a few methods which are by

useful in many application problems they are iterative in nature, 2 iterative methods for

solving linear systems are quiet  well  known one is Jacobi’s iteration method and the

other is Gauss Seidel method.

(Refer Slide Time: 50:39)

Now, in both of these methods you start with a guess and through iterations you would

try to improve, at every equation you change one of the unknowns and through iterations

after iterations you try to improve the estimates of the unknowns. Now the iterations will

result in improvement only when we organised the equations in a particular manner and

that  particular  manner  is  related  to  the  concept  of  diagonal  dominance,  when  the

diagonal entries of the coefficient matrix are significantly larger than the off diagonal

entries then you call that kind of a matrix as a diagonally dominant matrix. 

And in that case these kinds of depths will actually lead to improvements in the values of

xs,  these  methods  work  very  well  in  the  case  of  the  availability  of  good  initial

approximations. A situation which quite often happen in solutions involving the linear

equations that arise from differential  equations and therefore,  these Gauss Seidel and

Jacobi’s methods are quite often used in the methods for solution of differential equation

and these methods in general are called relaxation based methods.
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So, in this chapter, in this lesson we have considered these important points that is we

have noticed, we have noted that the solutions are unreliable when the coefficient matrix

is ill  conditioned and we have found that finding pseudo inverse and finding a quick

solution for full rank position matrix. Even rectangular ones is easy and when that is not

the situation then we have found tikhonov regularization method to find singularity over

solutions and finally, we have seen the iterative methods which may have an edge in

certain situations where good approximations are available.

Now, I will take you briefly to the original contents of this course in these lectures that

we  have  covered  till  now;  we  have  covered  these  chapters,  these  lessons  which

completes one module of our course that is the module of systems of linear equations.
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Next  we will  be taking up, in  the next  lecture  we will  be taking up the problem of

algebraic Eigenvalue problem that will go through 1, 2, 3, 4, 5, 6. So, these 6 lessons we

will cover the algebraic eigenvalue problem and here you will note that we have covered

quite a few topics in the system of linear equations and if you have covered these lesson

extremely fast  then I  will  remind you that  without  going through the,  without  going

through the exercises will sometimes make you lose contact with the subject matter that

we are discussing.
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And I will draw your attention back to this tutorial plan; that means, in the chapter 2, 3,

4, 5, 6, 7 in the book that we have covered till now in these few lectures these are some

of the problems in the exercises which you must attempt in order to keep the pace of

understanding  at  a  good  position  and  these  are  the  problems  which  are  particularly

important which are plugged here as possible tutorials problems.

So try to cover as many problems in the exercises in the book as possible and certainly

including  these  with  special  attention  to  these  problems  which  are  backed  here  as

problems in the next lecture we will make an introduction to the eigenvalue problem and

continue forward.

Thank you.


