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Good morning,  in the previous lecture,  we discussed the differential  calculus  part  of

complex analysis. 

(Refer Slide Time: 00:29)

Today in this lecture we go into the integral calculus part of it and we study integrals in

the complex plane. Our 2 main topics of discussion will be Cauchy’s integral theorem

and Cauchy’s integral formula before going into those 2 topics we spend a little time to

build the ground for it first we discuss the concept of line integral in the complex plane.
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Now if fz is a function of z that is w is equal to fx which is expressed in this manner u

and v are the real and imaginary components respectively, then we can define its line

integrals over a smooth curve C in this manner that is we consider fz as u plus iv and dz

is as usual dx plus idy and then the product of this, these 2 will give us the real part as

udx and minus vdy which is here and the imaginary part will be vdx plus udy which is

here now this real integral plus i into this real integral will give us the line integral of fz.

So, this will be a complex function; obviously, because this is the real part and this is the

imaginary part.

Now, this we have defined for the time being over a smooth curve C, now extension of

this same definition over piecewise smooth curve is obvious because if the smoothness is

interrupted  at  say a finite  number of points,  then considering those finite  number of

points as the endpoint of one segment of the curve at starting point of the next segment

of the curve,  we can build the same line integral  over several segments.  So, now, if

particularly if we have a parameterization of the curve z in the form of z of t with respect

to a real parameter t which varies from a to b that is as this parameter t varies from real

number a to real number b over a an ordinary interval, then if the corresponding z of t

traces  that  curve  with  this  derivative  never  vanishing,  then  this  line  integral  can  be

reduced to a simple definite integral because in that case we can put fz as F of z of t

which means this turns out to be in terms of t and then dz can be put in terms of z dot

into dt and in that case this entire thing F and z dot the product of F and z dot becomes



the integral and the integral is with respect to this real parameter t and then it is a definite

integral.

So, with the parameterization of the curve C available the line integral can be reduced to

a definite integral in real variable quite easily now if the closed curve if the simple if the

smooth curve C is taken as a closed curve simple closed curve without self intersections,

then you can talk of contour integrals which is integral over a closed curve and then the

symbol is  used like this,  let  us take an example which will  serve 2 purposes one to

demonstrate the evaluation of integrals using this kind of formulae and second to have a

little  result  in  hand which  we will  be  using  later  for  a  very  important  step  in  later

derivations, we try to find out this particular integral for integer n know that is z to the

power n simple function z to the power n we find try to find the integral of this around a

circle which is centred at 0 at origin and with radius rho, then here you see that the

variable theta is the parameter the it takes the place of t in this formulation in that case

this for evaluating this contour integral over the circular contour we consider z as this

and then this z will be i into this whole thing right because the derivative of this will be

rho into a to the power i theta into i.

So,  from this  step to  this  step n powers  of  rho come from this and the last  another

additional power comes from here from the dz. So, rho to the power n plus 1 and since

rho is constant it is a circular contour. So, that we can take outside the integral sign and

then similarly e to the power i theta n powers of that come from here and one power

comes from here. So, e to the power i theta also is raised to n plus 1 power and in the

derivative of this factor i comes which is here. So, this entire thing has been now reduced

to this and now since here the variable of integration is theta.

So, the integral is evaluated over theta with the limits 0 to 2 pi one circle will have 0 to 2

pi interval of the parameter angle theta now you see that the contour integral has been

reduced to a ordinary definite integral in this manner right now if we try to evaluate this

integral, we notice that if n is equal to minus 1, then this enter power vanishes and this

integral  integrant  becomes  one and in  that  case  it  is  a  simple  integral  of  a  constant

function one and that will give us 2 pi and therefore, for n is equal to minus 1 you get 2

pi from here and you get 2 pi i the as the integral.



On the other hand, if you have n as anything other than minus 1 say 0, 1, 2, 3 and so on,

then this turns out to be an integer which is going to give us give us e to the power i phi

where phi is n plus 1 theta. Now we know that e to the power i phi is cos phi plus i sin

phi and as we try to integrate that we will find that both cos phi and sin phi integrated

over 0 to 2 pi will produce 0. So, real part as well as the imaginary part will give us 0 and

therefore, for n not equal to minus 1, we get this integral as 0. So, this small result we

will keep in hand which will be useful later; now another small result which will be quite

useful in later discussion is conveniently named as the ml inequality. 

Now here what do we say is that if c is a curve of finite length l and fz is a function

which is bounded and the bound is m bounded means its absolute value is bounded. So,

now, here is the value of fz of absolute value of greater than m. So, if the value of fz its

absolute value is bounded by m over that curve, then we say that the actual value of this

integral will be always less than equal to what we would get if we replace this fz and dz

by their absolute values, right. So, then this is one less than equal to that is this is one

inequality and then rather than fz absolute value if we put its supremum m, then this side

will be further increased.

So,  therefore,  this  will  be less than equal  to  actually  less then because of  this  strict

inequality this thing will be less than the integral that we would get if in place of this

absolute value of fz if we put the supremum value m and that value being constant can be

taken out of the integral and then the absolute value of dz integrated over c actually gives

us the length of the curve and that is ml. So, what we get as a result the result is that if

the value of the function absolute value of the function is bounded by this m and the

curve of finite length l, then this absolute value of the line integral is bounded by the

product of ml and l. So, this is a convenient result which will be of use later also.
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Now, we come to one of the important topics of our discussion and that is Cauchy’s

integral theorem that C is a simple closed curve closed curve and non intersecting in a

simple  connected  domain  D,  we have  already discussed  what  is  a  simple  connected

domain in the context of vector calculus  here in the complex plane,  it  is the similar

domain in which there is no interior boundaries no interiors whole a single boundary

which is also non self intersecting that is simply closed curve simple closed curve, then if

we take this function which we consider as analytic in this domain now what do we have

we have a simply connected domain D in that we have an analytic function which is

every analytical everywhere in this domain and we have a simple closed curve C in that

domain and then we want to evaluate what is the contour integral of that function over

that particular closed curve.

So, if the derivative now one point is already clear that since the function is analytic. So,

it will possess derivatives. So, if that derivative is continuous then we can apply greens

theorem to develop this integral this is the integral, right. So, here we talk of this integral

and we remember; what is greens theorem in the plane.
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And that is the line integral of a function with components F 1 F 2 which is given like

this F 1 dx plus F 2 dy over a simple closed curve C is given by the double integral over

the region enclosed by c of del x 2 by del x minus del x 1 by del y right simply stated

line integral of function F over the closed curve C turns out to be equal to the surface

integral of its curve over the surface bounded by c now that is the Stokes’s theorem and

the special case is greens theorem in the plane. Now in this particular case with this stuff

udx minus vdy and vdx plus udy when we try to apply this greens theorem in the plane

on this say on this we try to apply first udx minus vdy. So, for that u takes the place of

this F 1 and minus v takes the place of this F 2, right.

So, F 1 is u and F 2 is minus v right for this line integral right; so, then if we insert that.

So, here we will get udx minus vdy the real part and then here we will have the right side

we will have as del F 2. So, minus del v by del x right minus del F 1 by del y del F 1. So,

F 1 is u. So, we will have minus del u by del y this will be the first term and then the

second term the imaginary term for that v will take the place of F 1; F 1 and u will take

the place of F 2. So, we will have here v is taking the place of a F 1 right. So, and v is

and u is taking the place of F 2. So, u here del u by del x minus del v by del y this will be

the imaginary part right and then you will find that since the function F is analytics; that

means,  u and v its  real  and imaginary  components  will  satisfy the Cauchy Riemann

conditions which means del u by del x is equal to del v by del y and del u by del y will be



equal  to minus del  v  by del  x;  that  means,  both of these integrants  will  vanish and

therefore, the entire integral will vanish

So,  by  applying  greens  theorem  in  the  plane  in  this  case  we  get  this  as  we  have

developed  here  and  then  Cauchy  Riemann  conditions  will  imply  that  both  of  these

integrants will vanish and will get the integral as 0. Now one important premise that we

have used is that the derivative is continues now this makes the proof simple; however,

there is a more rigorous proof by goursat which does not use the hypothesis of continuity

of F from z that gives a little formal advantage to the proof by goursat in the sense that in

that case if the continuity of the derivative is not used even without using it if it is proved

then the continuity of F prime appears as a consequence.

So,  therefore,  many  authors  many  authors  consider  name  this  Cauchy’s  theorem  as

Cauchy’s Goursat theorem and what it means it means that if fz is analytic in a simply

connected domain D then a contour integral over a simple closed curve is 0 for every

simple closed curve in C in D; that means, that if in the domain the function is analytic

everywhere then whatever the closed curve simply closed simply a simple closed curve

we can frame in that. So, around every contour that analytic that integral contour integral

will vanish; that means, there is no information content of the function in a domain in

which it is analytic everywhere this integral will always vanish over every contour.
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Now, as you continue in that path. So, we find that on a simple closed curve we if we

take 2 points say this is simple closed curve. So, we take this as one point and this as

another point now around this contour if the contour integral turns out to be 0. So, then

this is one line integral from z 1 to z 2 through this path and z 1 to 2 3 though this part is

another contour integral.  So, if we take a contour another line integral.  So, now, this

contour integral from z 1 to z 2 and back to z 1 is actually the sum of 2 line integrals z 1

to z  2 along this  curve and z  2 to  z  1 along this  curve which is  the second one is

equivalent to the negative of the line integral from z 1 to z 2 along this curve. So, this

minus this; this line integral minus this line integral will mean this line integral plus this

line integral which is a contour integral which should vanish which is 0.

So; that means, if you take 2 points z 1 and z 2 on the closed curve C then these 2 points

will open the contour open the closed curve into 2 open curves open paths C 1 and C 2;

C 1 as this and C 2 as this both from z 1 to z 2 and then as we apply Cauchy’s theorem

on C with the 2 parts C 1 in the forward direction and C 2 in the reverse direction then

we will find that the contour integral turns out to be integral over line integral over C 1

minus line integral over C 2 which should vanish by Cauchy’s theorem, then that will

mean that this line integral and this line integral are equal and then we can say that this

line integral depends only on the endpoints and not on the curve along which we are

going because as long as we keep these 2 endpoints in hand for any other curve, we can

argue in the same manner.

So, this is the important result that we get that is for an analytic function in a simply

connected domain this line integral from one point to another is independent of the path

and depends only on the endpoints as long as the path is  completely  contained in d

because outside d there is no guarantee of analytical analyticity in d we have taken the

premise  of  analyticity. So,  analyticity  is  the fundamental  requirement  here now as  a

consequence we can talk of this that is keeping one fixed point z 0 as say z 1 in place of z

1 we keep one point fixed z 0 and the other point if we keep a variable point z, then we

can define a new function of z and call it a capital F. Now what does this formulation

suggest  this  formulation  is  looking  similar  to  the  definition  of  a  definition  of  an

indefinite integral because we are keeping this z as the complex variable itself and as a

result we not getting a value of the integral, but we are getting a function of z right now

this will suggest.
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The idea of indefinite integral, but then the implication of a definite integral the direct

meaning  of  a  definite  integral  is  the  sum  of  infinite  number  of  small  infinitesimal

contributions that we have already considered; however, that idea of indefinite integral is

that of a function capital F whose derivative turns out to be to be this integrant then

before formally accepting this function defined in this manner as the indefinite integral

of small F we should ask if we define a function like this and call it capital F, then is

capital  F differentiable  then because if capital  F is differentiable  and if its derivative

happens to  be this  integrand,  then we will  be able  to  accept  this  formulation  as  the

indefinite integral of small F because the idea of indefinite integral is comes through anti

differentiation that is the reverse process of differentiation. So, we ask this question is fz

differentiable or if fz analytic and is the derivative equal to small F to get an answer of

that we consider this from z we make a little variation delta z and then F of z plus delta z

minus fz by delta z we try to evaluate the difference of this quantity with the value of

small f.

Now, if Fz is actually differentiable and if its derivative happens to be F, then the limit of

this as delta z tends to 0 should be same as f; small f and in that case this difference

should tend to 0 as delta z tends to 0. So, we try to first evaluate this difference that is

simplify it and then see whether it has a limit and what is that limit that limit should be 0

for our purposes. Now for this one by delta z is common. So, we keep it common capital

F at this changed point and the original point unevaluated based on this formula. So, in



the one in one place in place of z we use z as it is in other place we use z plus delta z. So,

capital F of z plus delta z is this integral evaluated from z 0 to this point and capital F of

z is here that is the argument of the function appears only in the limit of the upper limit

of the definite integral and everything else is same now here since F is analytic. So, the

integral from z 0 to this minus z 0 to this will turn out to be the integral of F from z to z

plus delta z from the difference of the 2.

And if we say that this fz for the purposes of this integral business is constant because it

is outside the integral sign, but we can always say that this is fz into d psi integrated from

this to this now that is basically verified from the evaluation of this second integral. So,

consider this integral of fz this part integral of fz from here to here fz is independent of

psi. So, fz into psi and the difference of psi will come out to be delta z. So, integral of

this will turn out to be fz into delta z and delta z cancelled it if fz only so; that means,

this fz can be inserted into integral sing in this manner now as we get this then you say

that this difference is equal to this and then if the function is continuous which it must be

because the function is analytic. So, analytic function must be continuous. So, since F is

continuous  then  for  whatever  small  epsilon neighbourhood you demand between the

function values that small epsilon neighbourhood you can achieve by taking a suitable

small delta neighbourhood or the variable itself that is the direct meaning of continuity.

So by taking a suitable delta neighbourhood you can achieve an epsilon neighbourhood

of the function value whatever small epsilon is demanded and in that case we choose

delta z to be smaller than this delta which will ensure that this is always less than epsilon

right. So, in that case the epsilon constant is taken out. So, you get epsilon by delta z and

in the integrand nothing remains just one so; that means, that the integral will then be

simply delta z and that delta z will cancel this delta z and will give you epsilon so; that

means,  this  whole thing is less than epsilon and what we have discussed already for

whatever  small  epsilon  neighbourhood  is  demanded;  that  means,  epsilon  can  be

indefinitely reduced in size and; that means, this will tend to 0 as delta z tends to 0 and;

that means, that indeed capital F is analytic and the limit of this as delta z tends to 0 turns

out to be equal to fz because the difference tends to 0.

So, therefore,  we say that if  fz is analytic then there exists another analytic  function

capital  F whose derivative  happens to  be f;  that  means,  if  the  function f;  small  f  is

analytic then we knew earlier that its derivative exists now we come to know that its



integral also exists which is capital F whose derivative happens to be this and the earlier

definite  integral  that  we were talking  about  earlier  definite  integral  which we define

based on path independence that turns out to be available from this formulation.

 (Refer Slide Time: 28:02)

Now, this gives us the same path independence gives us another important tool and that

is for principle  of deformation of paths say we take an analytic function fz which is

analytic everywhere other than for isolated points like this point s 1, this point s 2, this

point s 3 at which the function is not analytic everywhere else the function is analytic I

perform those few finite number of isolated points then what we can do if we construct a

domain as shown by this dashed line which does not enclose these isolated points where

the function is not analytic then we can say that any path connecting 2 points z 1 and z 2

in that can be continuously deformed to any other path without crossing as long as the

path remains within the domain D; D bar, then the path say C 1 can be continuously

deformed to C 2 or C 3 without sweeping over any of these non analytic points right.

And in that case the integral of the function from z 1 to z 2 along all these path will turn

out to be same as long as you do not sweep over these non analytic points if you sweep

over the analytic points then this guarantee will  not be there that is the path the line

integral along C 1 along C 2 along C 3 will be all same because they fall within the

domain that does not enclose the non analytic points on the other hand the same will not

be true for a path which is c star because from C 1 C 2 if you want to change to c star



through continuous deformation then the deformation will sweep through this point. So,

this we can say.

So; that means, the line integral remains unaltered through a continuous deformation of

the path of integration with fixed end points  because we have already seen the path

independence of definite integrals as long as the function remains analytic and as you

sweep across sweep through s 1 as the curve sweeps through s 1 or s 2 or s  3 that

analyticity is not guaranteed. So, you cannot claim the equality of the line integral over c

star. So, the line integral will remain unaltered through a continuous deformation of the

path of integration with fixed end points as long as the sweep of this deformation does

not enclose any of the non analytic points now we try to extend the theorem which is

integral theorem to multiply connected domain.
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Now here consider this multiply connected domain the outer boundary is this and there

are inner boundaries; that means, the domain consists of this region and not the interior

of this not the interior of this and not the interior of this.

Now, to evaluate the integral over this we say that it is granted that the function F z is

analytic over this domain, but about the interior of these internal boundaries nothing has

been  seen;  that  means,  the  function  could  have  a  singularity  could  be  non  analytic

somewhere inside these interior boundaries. So, what we do is that we consider a little

changed contour that is we take the contour as this curve series we start from here we



will come back to here at the end start from here from this arrow we go like this and here

we may a cut and come along this arrow

And then a clockwise turn along C 1 clockwise means actually negative and then along

this same cut line you go back here and then come here many another cut come here

another clockwise turn go back and then come here along the cut come along the arrow

another third clockwise turn and then here and come back. So, this is a closed contour

and this does not enclose any of the singularities this encloses the domain correctly as

long as we keep these forward movement and backward movement along these cut lines

very very close as close as we want.

Now, the domain which this contour has enclosed is a domain in which the function is

analytic  everywhere  and  therefore,  we  say  that  over  this  contour  the  line  integral

vanishes  the  contour  integral  vanishes  and  this  contour  has  enclosed  has  traversed

through curve from here to here and then here to here, here to here which is the curve C

that is this and then it is enclosed this line segment l one forward and backward cancel

this line segment l 2 forward and backward cancelled this line segment l 3 forward and

backward cancelled and the 3 interior  curves C 1,  C 2,  C 3 in  the negative  manner

clockwise.

So, that is that is why minus the contour integrals over C 1, C 2 and C 3 this whole thing

is 0 because fz is analytic everywhere in the contour that has been actually traversed now

this gives us the result that if fz is analytic in a region bounded by the contour c as the

outer boundary and non overlapping contour C 1, C 2, C 3 etcetera as inner boundaries in

this manner, then over that outer boundary turns out to be equal to the sum of this plus

this plus this that is this; that means, whatever are the inner boundaries around those

inner  boundaries  if  we develop the  contour  integrals  then  the  sum of  these  contour

integrals is going to be the contour integral over the outer boundary; that means, that

whatever contribution to the contour integral over this curve C is to be made that must be

made by the contours enclosing the non analytic regions inside the interior boundary

only.

Those places where the function is analytic will make no contribution to this contour

integral so; that means, that if we find that in the domain there are a few spots of non

analyticity then around that non analyticity non analyticity non analytic small integer



parts  if we evaluate  the small  contour integrals  and then sum of these then that will

account for the entire contour integral over the outer boundary and in the region in which

the function is analytic  from that region no fresh contribution will  be made next we

proceed to develop the Cauchy’s integral formula.
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Suppose fz is a function which is analytic in a simple connected domain D and then at a

point z 0 in d and a simple close curve C enclosing that point that 0, we want to evaluate

this integral a contour integral of fz by z minus z 0 and Cauchy’s integral formula tells us

that this happens to be the expression for this integral that is integral around the curve C

closed curve C is given by 2 pi i times the function value at the integer point.

Now we see that this function fz is analytic, but fz bu z minus z 0 is certainly not analytic

at z 0 because at z 0 it is singular. So, which closed curve we consider as c we can

consider any closed curve as long as it can be obtained through continuous deformation

or any other curve right. So, without loss of generating we consider c as a circle with

centre z 0 and radius rho because any other curve could any other such simple closed

curve enclosing z 0 could be reduced to this circle through continuous deformation over

the analytic domain right. So, if we consider this particular curve then this integral we

can evaluate as splitting it first in 2 parts that is we consider this fz as F of z 0 plus fz

minus F of F 0 that F of z 0 first part we take here and that is that being independent of z

comes out and we get this and the rest of it is here now the this integral we have already



evaluated earlier whoever when we are considering the integral of z to the power n. So,

now, through a coordinate shift this will give you the same thing and this is the; for the

power n equal to minus 1 in which case this was giving us 2 pi i.

So, this part we know and from continuity of fz we can find out a suitable delta in order

to make this less than epsilon for any small epsilon and then z minus z 0 we can take less

that delta that is a small delta neighbourhood which we give this as within an epsilon

neighbourhood and then if we take the radius of the circle that rho radius of the circle as

even smaller than the corresponding delta then that will ensure that this whole thing this

is less than epsilon and whatever delta is necessary for this if we take even smaller rho as

the z minus z 0 as the radius of the circle then this thing will be less than epsilon by rho

the lower the denominator is taken as even smaller. So, this side becomes larger. So, with

rho less than delta.

So, then this fellow will be less than epsilon by rho and then as we consider the upper

bound of this then this will give us less than epsilon by rho into the size of the in into the

length of the path and the length of the path is 2 pi into radius 2 pi rho. So, the integrand

is bounded epsilon by rho and then the pass length is equal to 2 pi rho. So, this integral

will be limited the integral absolute value will be limited by the product of these 2 from

ml inequality; that means, epsilon by rho into 2 pi rho; that means, 2 pi epsilon. So, this

fellow will be bounded by 2 pi epsilon and that will happen for any epsilon whatever

small.

That means epsilon can be demanded smaller and smaller and smaller and accordingly

we will get delta and therefore, rho which is even smaller smaller smaller. So, as we

make it small enough we will be able to make this in the limit vanish and then integral

will be evaluated at this and the integral of this we already know. So, the integral of this

will give us 2 pi i. So, 2 pi i F of z 0 that is the result. So, this establishes the Cauchy’s

integral  formula and what are the applications  of this  formula there are 2 significant

applications?
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One is evaluation of contour integral as it is proposed that is if we want to evaluate a

contour integral like this then by evaluating the function at the integer point at z 0 around

witch the in contour integral is there. So, at that point z 0 if we evaluate the function F

then we get the integral of this  function which happens to be singular note that F is

analytic, but fz by z minus z 0 is the integrand which is not analytic. So, when we want

to find out the contour integral of this around a contour inside which there is a point of

singularity then singularity of this integrand fz by z minus z 0 fz is still analytic.

So, at that point if we evaluate fz that is F of z 0 multiply that with 2 pi i then we get the

integral of this singular function singular at z 0 analytic everywhere else because one by

z minus z 0 has a single singularity at z 0 and fz itself has no singularity anywhere. So,

this rest of the function fz by z minus z 0 has a single singularity at z 0 around which we

have the contour. So, evaluating the function at z 0 function F at z 0 will give us the

integral of this that is a direct application that is if a function gz is analytic on the contour

and in the enclosed region then Cauchy’ theorem implies its integral to be 0 on the hand

if the contour encloses its singularity then Cauchy’s theorem does not give us a result,

but then if gz is has a singularity at z 0, but it is removed by multiplying with z minus z 0

that is if fz like this is analytic then this formula Cauchy’s formula supplies a a non 0

contribution to that integral around that particular point.



So, this is the purpose of evaluating the contour integral now if it happens that we do not

know the  function  value  at  the  interior  points,  but  we  know the  function  value  the

boundary points if that is the situation, then the same formula can be used for the reverse

purpose and that is the solution of boundary value problems that is evaluation of function

at an interior point if finding the interior if finding the integral on the left hand side is

relatively simple then we can use the same formula to evaluate fz; fz 0 that is if the

function is  easy to integrate  over a contour and because its  value over the boundary

points is known and in the integer point we want to evaluate the function then this same

integral formula can be used to develop this integral divided by 2 pi i and that gives the

function value at the integer point z 0 this is the application of this integral formula for

solving boundary value problems. So, this is for example,  in the previous lecture we

discussed this  integral  formula  Poisson’s integral  formula  which is  this  now we can

develop this formula; now say we take the boundary point as capital R phi in this manner

z and the integer point z 0 as this small r theta.
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We want the values at z 0 integer point and we can easily find the value of the function

on the boundary points. So, capital R is larger than small r small r is integer point. So, if

we put it in the Cauchy’s formula then we get 2 pi if z 0 is equal to integral over the

circle and; that means, 0 to 2 pi off pi that is the boundary; boundary integral and this if

fz by z minus z 0 and this whole thing is actually dz, right. So, if z is this then we will get

dz as this and through this substitution through this change of variable this phi i will vary



from 0 to 2 pi and now this if we try to substitute everything directly and simplify a lot of

imaginary terms will remain.

So, to get rid of that what we can do is that we can consider a complimentary term; so, in

place of small r if we put capital R square by r then you see here and here we put that

small r in case of small r we put capital R square by r and in that case if small r is inside

smaller than capital R then this will be larger than capital R right and that will mean that

the corresponding point this will be outside this contour where the function is anyway

analytic and therefore, the line integral will be the contour integral will be 0.

So, for that 0 is equal to 0 to 2 pi the same thing in place of small r if we write capital R

square by r, then we will be talking about the contour integral around the point which is

actually outside. So, that integral is 0 and now throughout the simplification what has

been done in this simplification small r has been multiplied. So, this small r has gone it

has  appeared  here  and  this  small  r  will  be  appearing  here  this  capital  R  has  been

cancelled with this r here. So, 1 r will vanish from here the other one r will go from here

the capital R will remain e to the power i phi and e to the power i theta with these 2

factors we are dividing it. So, e to the power i phi will go up e to the power minus i theta

will remain. So, in the denominator in the numerator that will happen in the denominator

e to the power i phi will vanish here e to the power minus i theta will come and the

reverse will happen here right. So, we get this.

Now, as we subtract this  from here in a left  side 0 is subtracted.  So, the same thing

remains on this side; however, a lot of things happen first of all this is common. So, this

remains and this i is common here as well as here. So, this i goes outside that will also

remains and other than that what will remain this r e to the power i phi by this and this

small r e to the power minus i theta divided by this. So, this is positive powers this is

negative powers everywhere now as we simplify this then we will find that those terms

which would give imaginary parts they will cancel out and we get this result through

simplification and in the denominator as we multiply out we get this and this is exactly

what we studied in the what we saw in the Poisson’s integral formula earlier.

So, this is F of z that is u plus iv is equal to this; this same u plus iv over the boundary

points are here. So, at the integer point the function gets its value through the integral

over  boundary  points  integrated  from 0  to  2  pi  this  gives  us  the  poissions  integral



formula for a disc and if we take the real and imaginary parts separately say writing only

for real part  then we will get the corresponding u is equal to 1 by 2 pi this integral

everywhere the same thing here that function u will come over the boundary points. So,

this establishes the Poission’s integral formula this is just an example for the unit disc for

the disc as the domain, but for other such domains also this kind of formulas for solution

of boundary problems can be established.

(Refer Slide Time: 49:21)

Now, another important aspect in the evaluation of integrals is this, you know we have

already discussed that Cauchy’s integral formula evaluates contour integral of gz if the

contour encloses a point z 0 where the function gz is non analytic, but gz into z minus z 0

is analytic that is one multiplication with z minus z 0 makes it analytic in that case we

get the integral evaluation through Cauchy’s integral formula that is if gz into z minus z

0 is analytic then gz.



(Refer Slide Time: 49:56)

Turns out to be an analytic function divided by z minus z 0 an integral of such a function

is given by the Cauchy’s integral formula, but then if it happens that even this is analytic,

but to make it analytic another multiplication of z minus z 0 is required then what to do

through further processing over Cauchy’s integral formula we can find a way for that

also. So, this is the Cauchy’s integral formula that we have discussed earlier now if we

try to differentiate this expression with respect to z 0, then we get F prime z 0 and the

these for these formal expression can be found by differentiating under the integral sign

noting that z 0 and z are 2 different variables z is a boundary variable and z 0 is an

integer variable.

So, if we differentiate with respect to z 0 and that is independent of z then differentiation

under the integral sign will proceed directly and that differentiation and integration order

can be change. So, the derivative of this will  be the integral of the derivative of the

integrand with respect to z 0 and with respect to z 0 differentiating this is easy because

we get fz into 1 by z minus z 0 square negative and another negative sign will come

because of this and. So, 2 negatives will cancel and we will get this the further derivative

also appear as minus 2 fz by z minus z 0 to the power 3 into minus 1. So, minus minus

again will cancel that 2 will appear and this power will get raised to 3 and so on; we can

go on differentiating this the expressions of these derivatives can be established simply

by differentiation under the integral sign now the actual rigorous establishment that this



really happens will require a an exercise similar what we earlier conducted to establish

the analyticity of the integral of fz.

(Refer Slide Time: 52:20)

In a similar manner we could consider this to establish the this derivative to establish this

derivative we need to consider an expression like this and through several simplifying

steps in which we will try to separate out this part and whatever is the difference we will

try to expand that and then use appropriate considerations to show that this tends to 0 as

we do that finally, through the application of ml inequality we will be able to show that

this part vanishes in the limit and that will show that this really tends to this and this is

this is this tends to this value as delta z tends to 0 and that will mean that this turns out to

be the derivative of fz 0 that is F prime z 0 and if this we can do the detailed derivation

you can consult from the textbook.

Then if this part is established then by a similar exercise over this function we will be

always able to evaluate this, this, this and so and this shows that and analytic function

processes  derivatives  of  all  orders  at  every  point  it  is  domain  and  this  is  the  great

property  of  analyticity  that  we  discussed  in  the  previous  example  the  analyticity  is

implies much more than mere differentiability it implies differentiability up to any order

desired now with this established if gz is non analytic at a point z z 0, but then gz z

minus z 0 to the power anything 3, 4, 5, 6, n turns out to be analytic then for that n what

we do is now say for n plus 1 say for n plus 1 it is analytic then what we can do we can



we use this and then the gz is expressed as that analytic function gz into z minus z 0 to

the power n plus 1 which is fz and then this integrand becomes gz. So, integral of gz gz

will turn out to be 2 pi i the n th derivative evaluated at z 0 divided by factor of n.

So, that way if as long as z minus z 0 multiplied a finite number of times makes the

functional analytic then through the use of some suitable derivative formula in this series

we can evaluate the contour integral of gz and this is the great property which will be

used in our next lecture also which will be a complete which will completely stress on

the singularities of complex functions.
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So, we use the results that we have found in this lecture into the study of singularities of

complex functions in the next lecture.

Thank you.


