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Good morning. Today we start our module on complex analysis. We start with Analytic

Functions.

(Refer Slide Time: 00:24)



(Refer Slide Time: 00:26)

We define the function of a complex variable z as a rule which will associate a unique

com unique complex number like this for every z in a domain in the z plane and as for

any calculus that is for example, calculus of real functions we start with the definition of

limit  continuity  and derivative.  The  first  limit  if  the  function  f  of  z  is  defined  in  a

neighbourhood of a point z 0, except possibly at z 0 itself. What it means is that for the

definition of the limit at point z 0, it is not necessary for the function to be defined at that

point, you can define a limit without the function being defined at that point.

So, if the function is defined in a neighbourhood everywhere in a neighbourhood of z 0

except  possibly at  z 0 itself,  and if  there is  a complex number i  such that  for every

epsilon every positive epsilon whatever small, you can find a delta such that taking the

point z in a delta neighbourhood will keep the difference of the function value from the

value i  within a an epsilon neighbourhood, then we say that  limit  exists.  That is the

around z 0 you can find a small neighbourhood such that you can approach the function

value as i with any tolerance required, whatever tolerance you want accordingly you ask

for the epsilon delta neighbourhood to be closer and closer. If you can achieve this then

we say that the function has a limit at z 0 and that value i is the corresponding limit.

Now, this limit can be defined even if the function f is not defined at z 0, that is at z 0

even if the function does not have a value associated with it and even if the function has

a value associated with it at z 0, but the functions value is not i, but along every path if



this i value is achieved is approached rather than achieved even then we say that i is the

limit;  that  means,  the function value at  that point and the limit  at  that  point may be

different as in the function of real variable as well.

Now, here you will note that there is a very important difference with real functions, in

the case of real functions of a single variable x the point x 0 could be approached only

along 1 direction from the left or from the right of course,. So, x 0, point x 0 could be

reached either from x 0 minus delta or x 0 plus delta left side and right side, but in the

case of complex variable the description of the variable is not along a line,  but on a

plane.  And  therefore,  there  are  infinite  directions  along  which  the  point  can  be

approached and this is the crucial difference which makes the definition of the limit in

the case of a complex function much more restrictive. That is it is not on not enough for

the limit to be same along two directions mutually opposite, but along all paths in the

complex plane.

So, all paths leading to the point z 0 should give us the same limit and in that case we

will say same limit i in that case we will say that limit exists and that limit is I. Now this

makes it extremely restrictive definition and apart from that if the value of the limit and

the value of the function also at that point is same. Then we say that the function is

continuous at that point that is the function should be defined at that point and limit

should exist in this sense and the function value and the limit must be same. In that case

we say that at z equal to z 0 the function is continuous and continuity in a domain means

continuity at every point of the domain.

Now, after defining limit and continuity at the next step, we define differentiability and

the derivative.
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So,  just  like  real  calculus  we make  the  first  step  in  the  definition  of  a  com of  the

derivative of the complex function and that is from z 0 if we take a small difference and

reach the point z, then this is the difference of the values of the function at the 2 points

and this is the difference of the 2 values of z. Now this limit as z tends to z 0 will give us

the derivative if this limit exists right.

So, as z tends to z 0, if we show z as z 0 plus delta z then it will look like this. Now when

this limit exists; that means, along all paths in the z plane as z 0 is approached a is made

closer and closer to 0. That means, as the point z approaches z 0 along all paths then if all

the limits turn out to be same then we say that this limit exists and correspondingly we

say that f z is differentiable and that value of that limit is called the derivative at z equal

to  z  0,  this  again  is  extremely  restrictive  definition.  That  means  that  for  a  complex

function of a complex variable to be differentiable, it must be extremely nice that is it has

to satisfy such a restrictive requirement and that within itself brings in a lot of desirable

properties to the function.

So,  in  that  case  we  find  that  the  function  that  we  are  talking  about  just  by  in

differentiable by being differentiable, it brings in a lot of additional properties all of them

together is called is the concept of analyticity. So, we call a function analytic in a domain

D, if it is defined and differentiable at all points in D. If there is a domain in which at

every point a function is defined and is differentiable in this sense, then we say that the



function is analytic and it can be shown that the function being analytic at that point

means that it can be expanded in an infinite series of powers of z that can be shown and.

Now, there  are  a  few  points  which  can  be  said  in  continuation  of  this  set  of  nice

properties that are brought in and these are points which will be established or settled

later as we study the integration also. So, one is that if we can establish that a function is

analytic at a point; that means, it is differentiable at a point, then that will also imply that

the derivative itself also will be analytic. That means, it will possess a derivative of its

own and then by continuing on this argument we can so, show that an analytic function

will possess derivatives of all order. And that means that in the case of the real valued

functions  differentiability  did  not  mean  too  much,  a  function  could  be  differentiable

once,  but  that  would  not  mean  immediately  that  the  derivative  itself  will  be

differentiable.

Now, in the case of complex functions the existence of the first derivative itself requires

so much that once the first derivative is established, then it implies a lot of other things

which  will  finally,  mean  that  once  the  function  is  differentiable,  then  it  will  be

differentiable as many times as you need and that is the entire implication of analyticity.

So, this is the great quality difference between functions of real variable and those of a

complex variable.  When we were studying these solution  at  that  stage  when we are

talking  about  the  coefficient  functions  being  analytic  at  a  point,  the  sense  was  this

analyticity that is it is not only differentiable, but it has derivatives of all order and that

means,  that  it  can be expanded in a power series around that  point and that  will  be

convergent.

Now, there are pair of conditions called Cauchy Riemann conditions.
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Which  are  satisfied  by  a  function  if  it  at  a  point  if  that  point  it  is  analytic  and  to

appreciate that, we a consider this situation. Suppose a function f u plus i v is analytic

then we have f prime which is limit of delta f by delta z as delta z tends to 0 now since z

is x plus i y. So, delta z will be delta x plus i delta y. So, delta z tending to 0 will mean

both  delta  x  and  delta  y  tending  to  0  and  this  is  delta  f  from here  and  this  is  the

corresponding delta z. Now if the function is analytic then it will mean that the limit of

this along all paths should be same; that means, for example, suppose this is point z 0

then 1 2 3 4 5 along all paths the point is approached the limit is same in particular let us

consider these 2 paths horizontal and vertical. 

In the horizontal case delta z is equal to delta x because y does not change, and in the

case of the particular path delta z will mean i delta y because delta because x does not

change. Now if all these limits are same then in particular these 2 limits also will be

same, now as we consider delta z along this path then delta z is delta x.

So, this limit immediately will be del u by del x plus i del v by del x that is this if we

consider this path then delta z will be i delta y. So, keep the i delta y here. So, this will be

1 i del u by del y that is this 1 by i which is minus i because minus i square is 1 plus i by

i will go out with gets cancelled rest is del v by del y that is here. So, along this path we

have this derivative expression along this path we will have this derivative expression.



Now from analyticity we know that along all these paths the limit is same in particular

along these two path limit is same.

So, we get two expressions for the derivative and as we equate these two expressions and

separate out real and imaginary parts, then we get del u by del x is equal to del v by del y

and del v by del x is equal to minus del u del y these two conditions are called Cauchy

Riemann conditions or CR conditions or CR equations.

(Refer Slide Time: 13:18)

So, Cauchy Riemann conditions are simply this, and in this derivation we first assumed

that the function is analytic at z 0 and then we found that these 2 should hold at z 0; that

means, that these are Cauchy Riemann conditions are necessity necessary for analyticity

or the function at that point. Immediately the second question that will arise that are they

sufficient also, that is do the Cauchy Riemann conditions imply analyticity answer turns

out to be yes and to establish that we consider 2 function u and v which such have first

order continuous partial  difference equations coefficients  and these conditions among

those partial derivatives hold, that is Cauchy Riemann condition hold. Then we want to

show that the function is analytic for that we construct delta u delta p.

So, what is delta u delta u will be u at the change point minus u at the current point and

up to first order we will get this as delta x into del u by del x at the point x 1 y 1 plus

delta y into del u by del y at the point x 1 y 1 right. What is x 1 y 1 here? X 1 y 1 is a

point in the line segment joining the original point to the changed point right this is by



mean value theorem so that means, that by mean value theorem and that is why we could

use this equality without any plus dot dot dot, because we have we are not including a

second order com terms.

So, that is why we have to use the mean value theorem and the remainder form of the

Taylor series that is remainder form of the Taylors theorem. So, we are keeping only the

first order change. So, we use the mean value theorem up to the first order now which is

Lagrange theorem for that matter. So, this x 1 y 1 is a point which is in the line segment

joining x y to x plus delta x y plus delta y; that means, for a xi its 0 to 1, x 1 is this and y

1 is now this gives us the expression for delta u. Similarly we get the expression for delta

v, that  is  v at  the  change point  minus v at  the original  point.  So,  that  gives  us  this

expression for x 2 y 2 being a point joining point on the line segment joining this point to

that point.

Now, x 1 y 1 and x 2 y 2 can be 2 different points, that is x y is here x plus delta x y plus

delta  y  is  here  as  we  join  these  2  we  get  this  line  segment  and x  1  y  1  could  be

somewhere on that this line segment, x 2 y 2 could be somewhere on this line segment

need not be at the same point may be at different point. So, now, this delta u and this

delta v we have got in hand. So, what will be the corresponding delta f? That will be

delta u plus i into delta v that is this; we take this and add to that i times this. As we do

that we get we club together appropriate terms this plus i into this you will find here plus

this into i into this you will find here. Now and an i has been kept outside and that is why

in this case we sorry in this case in this case this plus 1 we replace with minus i square,

ok.

So, that is why this term has come here i into this. So, i is outside this is sitting here and

this is minus i square into this minus i square is 1. So, out of minus i square 1 i is outside

the rest of it minus i. And this whole thing is here now which I have to simplify this. For

simplification  consider  this  if  Cauchy Riemann conditions  hold which is  part  of  the

hypotheses here if Cauchy Riemann conditions hold then del v del y can be replaced with

del u del x here already del u del x is there we will find del v del x here also, ok.

So, then this first bracketed term we will find here.
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The del v del y there has been represented with del v del x. Similarly here in this case we

find del u del y here which can be replaced with minus del v del x, as we replaced del u

del y here with minus del v del x is minus will become plus and we will have del v del x

here that is this whole thing that is this bracketed term right. Now we concentrate on this,

this is del u del x these also del u del x. Now we note that this is at x 1 y 1 and this is at x

2 y 2 if this also if this were also at x 1 y 1 then this whole thing we could have taken

common and what would come inside delta x plus i delta y that is delta z, ok.

So, what we can do is that for the time being here in place of x 2, y 2 we take x y, y 1 and

that will mean that this term will remain and from there remain outside and from there

we will subtract the same thing with x 1 y 1 here; that means, i delta y del u by del x at x

1 y 1 we add and subtract add to this and subtract from here. As we do this we get the

next expression in the process of simplification. Now from here if we add i delta y del u

by del x, x 1 y 1 to this term then this come common and along with that we will get

delta x plus i delta y and that you get here.
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Right now then whatever we added here i delta y del u by del x at x 1 y 1 that same thing

we subtract from here and for that and we will get common i delta y and inside the

bracket we will get del u by del x at x 2 y 2 minus del u by del x at x 1 y 1 that is the

term here a similar exercise we do on this here you see i del v by del x 1 y 1, ok.

And here there is a little mistake let me make small correction delta y delta y is missing

here.

Now here we have i delta y del v by del x x 1 y 1, del i del v by i delta by del v by del x

and outside there is another i. So, i, i delta y del v by del x at x 1 y 1 and along with that

we would like to have del x delta x into del v by del x at x 1 y 1. So, that we add to this

and we subtract from here as we add this we get the i common outside as it is already

there, del v del x at x 1 y 1 we take common. And then we get in bracket delta x plus i

delta y that is here and whatever we added to this that we subtract from here, ok.

So, we added delta x del v by del x at x 1 y 1. So, that same thing we subtract from here

and then the result is here right. So, we find that delta x expression has come to this stage

and now we want to divide with delta z note that this delta z this is delta z. So, as we

divide delta z we get delta f by delta z, as this plus i into this that is these 2 things plus a

lot of things from here.



So, here what we will get? I delta x by delta z into this whole thing, plus i delta y by

delta z into plus into this whole thing right; now we want to take the limit of this as delta

z tends to 0 and if that limit exists then we will say that the function is analytic. Now we

ask this  question  whether  that  limit  exists,  these  derivatives  are  all  existing  that  we

already know. Now note this that as there del delta z tends to z; that means, z tends to z

plus delta z tends to z and that means, that the 2 points between which we considered the

line segment in the in which we found x 1 y 1 and x 2 y 2 as 2 points and; that means,

that as delta z tends to 0, this line segment shrinks and we do not get too much space to

get 2 points x 1 y 1 x 2 y 2. That means, all these point shrinks to x y, x 1, x y itself that

is z.

So; that means, that as z tends z as delta z tends to 0 these points have get shrunk over a

length of 0; that means, these 2 points have to collapse together and that means, these

will have limit 0, but what about these 2 fellows? Now since delta z is delta x plus i delta

y that means.

If this is z and this (Refer Time: 23:51) number is delta z, then this length is delta z this

length is delta x this length is delta y right. So, delta x by delta z is cosine of this angle

and delta y by delta z in the size sense in the (Refer Time: 24:07) sense, that is the sign of

this angle. So, both cosine and sin are less than 1 in magnitude ok.

So, these 2 are less than 1 in magnitude. So, as delta z tends to 0, these bracketed terms

will tend to 0 and these terms are bounded that is they do not turn to infinity. If at the

same time these fellows could turn to infinity then this indeterminate form of remain. So,

as delta z tends to 0 these are anyway bounded, bounded by 1 the magnitude of these 2

and these turn to these approach 0. And therefore, in the limit these terms will vanish and

this will be remain, ok.

So, therefore,  the limit  exists and that limit  happens to be this at x y itself.  So, then

whether  you  write  it  like  this  or  you  write  it  like  this  using  the  Cauchy  Riemann

condition, it is the same and the limit exist. So, we find that Cauchy Riemann conditions

are not only necessary, but also sufficient for analyticity. That means, the moment some

function is known to analytic, you can immediately use Cauchy Riemann condition on

the other hand the moment you can establish Cauchy Riemann condition a for a function



you  can  immediately  conclude  that  the  function  is  analytic  and  all  properties  of

analyticity you can assume immediately.
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Now, if we take the Cauchy Riemann conditions and if the function possesses secondary

derivative also it will possess, because if the first order this Cauchy Riemann condition is

satisfied  then  analyticity  is  established  and  we  have  already  discussed  that  analytic

function is again its derivative is also differentiable. That means, derivatives of all order

will exist. So, if we differentiate this, then you find del 2 you by del x square is equal to

del 2 u by del x del y. Similarly del 2 u by del y square is minus del 2 v by del y del x

then from here you can also find del 2 by del x del y or del y del x as equal to del 2 v by

del y square and similarly from here you get this.

So, the second order derivatives will satisfy these requirements and then you can note

that if we add these 2 then we get to del 2 u by del x square plus del 2 u by del y square

and that is this plus this is 0. Similarly if you add these 2, if you add this and this if you

add these 2 then you will find or subtract rather in this case you have to subtract from

here you have to subtract this. Del 2 v by del y square plus del 2 v by del x square then as

you subtract this minus this you will get 0 that means, u and v the real and imaginary

components of f in that case both will satisfy the Laplace equation that is both will be

harmonic functions.



So,  this  is  a  great  property  of  analytic  function  that  both  the  real  and  imaginary

components of analytic function satisfies the Laplace equation,  that is their harmonic

functions  and  in  that  case  the  2  harmonic  functions  are  also  called  the  conjugate

harmonic of each other that is conjugate harmonic of u is v. Now we already know that

families of curve curves a family of curve curves u equal to c. And another family of

curves v equal to k are 2 mutually orthogonal families of curves in the x y plane, except

possibly at point where the derivative turns out to be 0. This you can see because if you

take the function u of x y equal to c and then from there you try to find out the slope of a

curve from this family then.

We will consider delta u as del u by del x delta x, plus del u by del y delta y and the slope

of this will be given as minus this derivative by this derivative. Similarly if you take the

family if you take the take a curve from the other family, v equal to k then this will give

you its slope as m k which will be this.

Now, if you multiply these 2 you will note that del u by del x will exactly cancel with del

u by del y, and del v by del x will cancel with minus del u by del y leaving minus 1 in the

product. In all those cases where the 4 derivatives only 2 of which are unequal, because

Cauchy Riemann conditions are satisfied in the case that both of them are non zero this is

obvious even say if one of them is 0, that is suppose del u by del x is 0 in that case this

will be infinite; that means, the curve of the u equal to c family will be vertical that is the

tangents will be vertical, but in that case if del u by del x is 0 then del v by del y is also 0;

that means, the slope here is 0; that means, the curves of the other family are horizontal

at that point, ok.

Curve of the other family at that point is horizontal. So, this vertical and this horizontal is

again orthogonal are again orthogonal with respect to each other. Similarly if del u by del

y is 0 then the curve of the first family is horizontal and correspondingly del v by del x 0

is  0  in  that  case  the  curve  of  the  other  family  through  that  point  is  vertical  again

orthogonal. The only problem will arise if both the derivatives are 0 that is del u by del x

as well as you del u by del y is 0.

In that case this slope is undefined and this slope is also undefined. So, it may happen

that you may not be able to figure out that the product is minus 1 or 1. And therefore, we

say that kind of a situation can arise only at a point where del u by del x and del v by del



x both are 0. In that case del f by del z is actually 0 and that is what we say here that

families of curve u equal to c and v equal to k are mutually orthogonal at all points

except possibly at those points where this derivative turns out to be 0.
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Before proceeding further please note this correction. The slope of the curve u of x y

equal to c was written on the board as m c is equal to minus del u by del y by del u by del

x this is not right, it should be minus del u by del x by del u by del y. Similarly the slope

of the curve v of x y equal to k was written in the board as m k is equal to minus del v by

del y by del v by del x, this will be corrected to minus del v by del x by del v by del y.

Thank you now you can continue further in the rest of the lecture.

Now, a good question a very important question is that if u of x y is given, then how to

develop  the  complete  analytic  function.  This  is  actually  an  exercise  the  basic  work

regarding which we did much earlier when we were solving the first order differential

equation. When we were studying first order differential equation in that context we have

actually studied this particular problem, and what we do for that is that we construct del

u by del x and del u by del y from the given u and using Cauchy Riemann conditions we

get del v by del y and del v by del x and using del v by del x del v del y we construct v of

x y.

So,  that  way after  constructing v of x y we get  the complete  analytic  function;  that

means, if one of the components real or imaginary of the complex analytic function is



given,  and then the other  one can be derived using Cauchy Riemann conditions  and

integration. Now another important concept in the case of analytic functions is conformal

mapping.
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Conformal the word means of similar shape conformal; conformal mapping means shape

similar mapping. So, a conformal mapping is defined by a analytic functions except that

those points where the derivative is 0, f prime z is 0. So, a function a now a function will

give you the mapping of elements in domain to their images in range, the domain is the z

plane and the corresponding co domain is the w plane.

So, from points in the z plane as you map the points to the w plane, you get the mapping.

Now here depiction of the comp in the case of real variables you plotted the independent

variable x in the horizontal axis and dependent variable that is the function y along the

vertical axis, you cannot do this here because the depictions of a variable itself over its

domain will require a full plane. So here, how you show the mapping? You take 2 planes

z plane and w plane.  So,  depictions  of a  complex variable  will  require  a  plane.  So,

depictions of mapping will require 2 planes together, ok.

So, in this manner, this is a z plane in which we take the domain and this is the w plane

and between z plane and w plane we consider this function w equal to e to the power z.

Now every point here will give you a corresponding point here, let us consider 4 points

here a b c d a rectangle. So, the point a from here which is origin. So, that will you give



you e to the power 0. So, there you will get one. So, 1 plus i 0 the point b that will give

you that is here one. That means, 1 plus i 0. So, e to the power 1 will give you e this is 2

point 7 1 8 and so on that is p prime c is 1 plus i into pi by 2 say 1 point 5 7 pi by 2 c is 1

plus i pi by 2.
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So, as you write e to the power 1 plus i pi by 2, e to the power 1 is i sorry e to the power

1 is e into e to the power i theta is cos theta plus i sin theta. So, cos pi 2 is 0 and i sin pi 2

is 1.

So, you get e into i. So, that is why you get e magnitude i that is in the vertical direction

c prime comes here similarly d prime is simply i pi by 2. So, that will be e to the power 0

into i pi by 2 sin i sin pi by 2 that will bring you here. If you try to draw the diagonal you

will find that diagonal a c will come like this, now this line segment a b comes like this

line segment b c will come like this, c d will come like this and d a will come like this.

The shape of this rectangle has changed, but you will note one important issue a b and b

c were orthogonal mutually perpendicular at b, here also a prime b prime and b prime c

prime the curves are perpendicular to each other here similarly b c c d are perpendicular

here also b prime c prime and c prime d prime meeting at c are perpendicular.

So, all the edges have gone to the w plane in such a manner, that these between the

tangents you are all getting you are getting all the right angles. This diagonal a c has been

mapped to this curve a prime c prime, but note emerging from a whatever angles u are



getting here a b a c a d, similar same angles you get here a prime b prime a prime c prime

a prime d prime, that is along the tangents you will get the same sector here and that will

happen everywhere that is because this happens to be a conformal mapping.

That is it is same shape mapping similar shape mapping, that and that similarity of shape

is  in  terms  of  the  local  shape  only  make  that  point  very  clear.  We can  very  easily

establish this fact the demonstration of which we just saw through these figures.
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The conformal mapping is a mapping that preserves the angle between any 2 directions

in magnitude as well as sense. Just now we verified this fact for this particular mapping

w equal to e to the power z. So, this analytic function defines a conformal mapping. So,

we find that through relative orientations of curves at a point at points of intersection, the

local shape of the figure is preserved. At every point whatever rays we draw here and the

corresponding rays we map to the target plane, the co domain the range we find that the

relative angles here and relative angles there are preserved.

So, why should this happen? We take the curve we take a curve apart from rays we were

taking rays earlier, now we take a curve z of t in the z plane passing through this point z

0 at t equal to 0. Corresponding image is w of t, which is f of z of t, because w is f of z

and passing through w 0 which is f of z 0 at t equal to 0. Now if the function f is analytic

then we can have its derivative, then w dot from here through chain rule will be f prime z

evaluated at that point into z dot that is this right.



So, w dot evaluated at  t  equal to 0 will  be f  prime at  0 into z dot evaluated at  the

corresponding t equal to 0, and this will imply that this side and this side these 2 are

equal in magnitude as well as direction. The magnitude equality is here and direction

equality will be here that is argument of this is equal to argument plus argument of this

right. Now as we draw several points through the same point z 0, then their directions

will be different here 5 curves through z 0, will have 5 different angles here, but for all of

them this is same because this does not depend on the those curves is a property of the

function itself f itself. And therefore whatever are the differences of angles among the

curves here as we map them as we map those curves to the w plane, the differences here

will be that is every curve from this plane to that plane turns through this angle and this

angle is same for all the curves because all of them are passing through z 0. 

So, for several curves through z 0 image curve pass through w 0 and all of them turn by

the same angle and turning is this. So, through z 0 if in the z plane we draw 4 curves call

them 1 2 3 4. So, if curve 1 turns through the mapping through an angle 30 degree; that

means, this argument is 30 degree. So, curves 2 3 4 also have to turn to the same 30

degree which is this and this depend only on the function and not the curve that we are

drawing through z 0.

And this shows that the local shape get preserved if one of them turns by 30 degree then

all of them turn by 30 degree through the mapping and the magnitude changes like this.

So, magnitude changes direction also changes, but all the directions these curves from

here say these are 4 curves drawn from a particular point in z plane. Now as they as these

rays go to the w plane their lengths may all change by this factor and they all may turn

by this angle. So, as all of them turn they look like now this; that means, all of them turn

together. So, their shape does not change, but the important points to note in this regard

is that this will happen only at those points where this magnitude is non zero, because if

this magnitude is 0 then this will collapse. So, this analyticity is must apart from that for

formality of the mapping the rally value of the derivative should be non zero.

Now, if f prime is 0 at that point then the argument is undefined and conformality will be

lost or may be lost, now one point to another point to notice that the derivatives varies

from point to point. And therefore, we say that the shape does not change locally. So,

local shape is preserved. So, as around this point all of them turn by 30 degree around



another  point  where  f  prime may be  something else the rays  may be turning by 35

degrees another point rays may be turning by 45 degrees and so on.

And therefore,  the scaling and turning effects  at  different points are not the same, at

different points of the z plane are not the same. And therefore, the local shape at every

point is preserved through the conformal mapping, the global shape is not preserved the

global shape may change in general that does change and that is what we saw here even

though locally the collection of every rays through a collection of all rays through every

point preserves their mutual angles, but the overall shape of the region defined by a b c d

is not preserved, here it was a rectangle here it turns out to be a part of and a sector of an

annulus. So, global shape may change because f prime z 0 at different points z 0 will be

different in general.
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So, from the foregoing discussion we can conclude that an analytical function defines a

conformal mapping at all points except at its critical point where its derivative is 0. Now

except at critical points we find that analytic function is invertible also so; that means,

that for any conformal mapping we can establish an inverse and this fact is of enormous

practical importance. So, we are coming to that practical point later first let us see a few

examples a few quick examples of conformal mappings. Linear functions like this will

define conformal mappings for all non zero a, linear fractional tranfa transformation like

this will define conformal mappings except for the case when a d minus b c is 0 why so,



because if you try to differentiate this you will find that in the case a d minus b c you will

have 0 derivative.

Now, other elementary functions like z to the power n e to the power z etcetera though

they have completely different meanings in the case of complex functions as we put e to

the power x plus i y, we find that turns out to be e to the power x into cos y plus i sin y.

So, that turns out to be complex function in which the real part is e to the power x cos y

and imaginary part is e to the power x sin y. So, it is quite different from the real function

e  to  the  power  x  which  is  all  through  exponential.  So,  even  then  these  elementary

functions with similar expressions similar meanings that we defined in the case of real

calculus. Now as we put those same formulas here we get quite I mean similar formulas

will yield different meanings here, yet all of these will define conformal mappings except

for those situations where the derivatives vanishes.

Now, these analytic functions and you can show that in whichever case the expression of

f of z you can put in terms of z only, after collapsing after collapsing all the x y terms

such that x and y do not appear alone separately such functions you can always show that

they define they satisfy Cauchy Riemann conditions as long as the derivative expression

does not become undefined.

So,  these  will  establish  conformal  mappings  and  special  significance  practical

significance of conformal mappings is that a harmonic function phi of u v in w plane that

is  in  the  w  plane  a  function  which  satisfies  a  Laplace  equation  is  also  a  harmonic

function in the form phi of x y in the z plane. As long as the 2 plane z plane and the w

plane  are  related  through  a  functional  relationship  which  itself  defines  a  conformal

mappings, ok.

So,  this  fact  gives  us  an  advantage  in  solving  a  lot  of  inters  important  problems,

underlying the solution in such cases is the famous Riemann mapping theorem.
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And that tells us that if D is a simply connected domain is at plane in z plane, in z plane

you take a domain simply connected domain which is bounded by a closed curve. Now

whatever closed curve it is? Whatever is its shape as long as the region that it encloses is

a simply connected domain then there will exist a conformal mapping that will give you

a 1 to 1 correspondence between this  curve e  and a unit  circle.  That  means,  also in

between the interior of this curve interior of this region with the unit disc that is interior

of the unit circle ok.

So, such a conformal mapping will give us this 1 to 1 correspondence there will be a

conformal mapping, which will give us 1 to 1 correspondence between this domain d and

the unit disc which is this as well as between the boundaries now this important fact

gives us a very handy tool to solve boundary value problems. For example, suppose we

have got a boundary value problem in which the domain is of a very complicated shape,

but as long as it is simply connected what you can do we first establish a conformal

mapping between the given domain and a domain of simple geometry for example, the

unit disc.

Next solve the problem in this simple domain and then in the case of the conformality

the mapping will also have an inverse. So, after the solution is available in the simple

domain  we use  the  inverse  of  the  conformal  mapping and thereby we construct  the

solution for the original domain. Now one particular advantage one particular application



of this is through the poissons integral formula which is this now let us first see what this

integral formula tells us, r e to the power i theta is a point z in the z plane expressed in

the polar coordinates, you see x plus i y in polar coordinate will mean r cos theta plus i r

sin theta right

So, if u take r common then you get cos theta plus i sin theta which is this e to the power

i theta. So, this r e to the power i theta is nothing, but x plus i y in polar coordinates, and

the formula tells you that this value of the function at z can be found through this integral

1 by 2 pi into integral from 0 to pi over the full circle this integral if we evaluate then we

get the value of f of z. Now what is this integrant and what does this involve it involves

capital R that is radius value small r the radial coordinate of z and it involves theta that is

the polar this theta coordinate of z and it involves phi now phi. 
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This circle at a point at the circle is r phi and a point in interior is r theta

So, this Poisson's integral  formula tells  us that a the function can be evaluated at  an

interior point here through the cyclic integral 0 to 2 pi of this integrant over this circle

over the circle and for that the function value is required only at the circle right. So that

means,  if  we know the boundary values all the boundary values then by using those

boundary values here for different phi running from 0 to 2 pi for constant R we can

evaluate this integrant at every point for any interior point r.



So, interior point r where we want the function value gives us the value of R and theta

small r and small theta small r and theta the small r and theta and point here has radial

value R capital R and the value of phi changes to 0 to pi. That means, if we know all the

boundary values then we need these function values. So, by using the boundary values

through this integral we can find the value of the function at any point in the interior

practically. That means, that we can solve the Derichlet problem for the function f that is

boundary point value we know and in the interior we want to find out the function. So,

this formula itself we will be able to establish after we study a little interior calculus of

complex functions also.

Now apart from that what else is the application of conformal mapping, we have already

seen that the relationship between one family of curves u of x y equal to c. And another

family v of x y equal to k is established through Cauchy Riemann conditions.
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So, in the case of the analysis of two dimensional potential flows, if we have the velocity

potential phi of x y that gives us the velocity components in this manner and we know

that a streamline is a curve in the flow field, the tangent to which at any point is along

the local  velocity  vector. So,  stream function  is  a  function remains  constant  along a

streamline. So, psi of x y that is the stream function turns out to be a conjugate harmonic

function of the velocity potential function and the complex potential function consisting

of phi and psi together defines the flow completely.



So, in the fluid flow problems if we encounter a solid boundary of a complicated shape,

conformal  mapping  allows  us  to  transform  the  boundary  conformally  to  a  simple

boundary a boundary of a simple shape and this transformation helps us facilitates us

facilitates the study of slow pat pattern through analysis of the simple boundary. This is

what we do in the case of complicated stream line shapes and also in the case of the

airflow studies. 
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So, these are the points which we studied in this particular lesson- Cauchy Riemann

conditions, conformality, and applications of the complex analytic functions in the case

of boundary value problems and flow descriptions. In the next lecture we will take up the

question of integrals in the complex plane; integral of complex functions.

Thank you.


