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Welcome.  In  the  previous  lecture,  we  started  our  discussion  on  partial  differential

equations. And we considered the problem of hyperbolic equations. In this lecture, we

will consider the two other types that is parabolic and elliptic equations.
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So, we take this parabolic equation del u by del t is equal to c square into del 2 u that is

del square u that is the Laplacian. Now, this Laplacian over u will give you a large term

del 2 u by del x square plus del 2 u by del y square plus del 2 u by del x del z square.

Now, in the particular case of one dimension one-dimensional domain only del 2 u by del

x square will remain and that gives us the one-dimensional heat equation which is this

right. Now, we do not go into the derivation of this differential equation governing the

phenomenon of one-dimensional heat equation or one-dimensional diffusion because in

the chapter on vector calculus in chapter 18, you might have already encountered you

might have already got familiar with the derivation of this equation through one of the

exercises.

So, we take this heat equation now and try to see how we solve this for given initial and

boundary conditions. Note here that the time derivative in this equation is involved only

up to the first derivative that is it is a first order differential equation in time; although in

the space variable, it is second order differential equation. So, for x, it will need two

boundary conditions at x equal to 0 and x equal l; on the other hand, for time there will

be only one initial  condition that  will  be required and that  is  the initial  value of the

function that is here at all x. This is the only initial condition that is needed value of the

function because second derivative is not involved in the differential equation only first

derivative is involved. So, this is a complete description of the initial value problem in

which these are the boundary conditions and this is the initial condition.



Now, in  this  case  also  to  try  to  solve  this  differential  equation  with  the  method  of

separation of variables we will assume a solution of this type in which the two variables

are separated. The function u is expressed in the form of a function of x only multiplied

with a function of t only. And then we construct the first order derivative with respect to t

that will be x T prime and that will put here. And then the second order derivative with

respect to X that will be X double prime into T that we will put here and then we get this

differential equation. And here as we divide this entire equation both sides with c square

X T then here X will get cancelled and c square T will come in the denominator here c

square T will get cancelled and X will come in the denominator.

Now, you see that the left side is a function of t only and the right side is a function of x

only. So, sep variables are separated. So, we equate both of these that is each of these to

a  constant.  Again  the  boundary  conditions  over  X  will  require  this  constant  to  be

negative because we want the solution to be zero at x equal to zero and return back to

zero at x equal to l. So, we will need this negative constant, so that the result comes in

terms of sinusoid rather than exponential.  So, then when we separate the so with this

negative constant here we separate the variables and get these two differential equations.

This is a second order ODE, and this is a first order o d e links together through the

common value of p. We first consider this differential equation the solution of which we

constructed in the last problem also.

(Refer Slide Time: 04:55)



And that is this for all values of n, n equal to 1, 2, 3 and so on. And the corresponding

value of p that is n pi by L we take and then the other equation gives us here c p, so c p

whole square, so lambda n is c p. So, when we put that we get the solution for T which is

capital T which is even simpler because that is a first order differential equation, so we

get this exponential solution. And then every product of this and these for every value of

n  will  be  a  solution  and their  linear  combination  is  also  a  solution  that  will  be the

complete  solution  found  through  superposition.  And  this  solution  will  satisfy  the

boundary  conditions  because  each  and every  component  of  it  satisfies  the  boundary

condition.  And  this  will  certainly  satisfy  the  differential  equation  also.  Now,  only

required thing is to find the coefficient of coefficient A n, A 1, A 2, A 3, A 4 and that we

find by applying the initial condition.

So, as we applying the initial condition, we find that we get this which happens to be the

Fourier sine series of the function f which is the initial distribution of u over x. And as

you see that in time this is an exponentially decaying term. And therefore, as in enough

time elapses as t tends to infinity, we will find that this tends to 0, and that means, the

steady state solution of the problem is that is after a lot of time elapses, the steady state

will be reached in which the entire solution will be zero. And that makes direct sense

from  the  physics  of  the  problem  in  which  both  the  endpoints  are  maintain  at  0

temperature,  and  there  is  no  heat  source  in  between.  So,  that  means,  that  whatever

nonzero temperature values were there earlier initially over the rod or bar, so that higher

temperature will reduce and that will happen through heat transfer through the boundary.

Similarly, if the inter interior temperature is lower than from the outside of the system, it

will be taken in and the entire rod will reach zero temperature after enough time has

passed. So, this is the solution of the problem with t tends to infinity, this entire thing

will become zero all over x.
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Now, in  this  particular  case,  we had homogeneous boundary conditions.  Now, if  the

boundary condition is non-homogenous in that case we will find that say suppose at x

equal to 0, this is the condition at x equal to L the condition is u 2. Even if u 1, u 2 are

not  zero,  but  equal  the  previous  solution  will  still  be  applicable  because  the  entire

temperature scale will basically rise and rest of the thing will be same. On the other

hand, if u 1 and u 2 are not same if they are unequal that is that two end points are

maintained at different temperature values, in that case we will find that the boundary

conditions do not separate when we try to apply the separation of variables. And that

kind of a situation stops the problem from being a separable problem directly.

And in that case, we try to apply a little adjustment. And in the adjustment, we say that

we assume the solution as a sum of two terms capital U plus u s s this subscript s s refers

to steady state in which we say that this component capital U satisfies the homogeneous

boundary conditions that is zero boundary condition at both ends, and it satisfies the

differential equation also. On the other hand, this satisfies the boundary conditions. So,

then this component as we differentiate it and put inside this, so del u by del t will be

equal to del capital U by del t because this does not depend on t, so that we put here. And

the x derivative second x derivative of this will be del 2 u by del x square that is del 2

capital U del x square plus that second derivative of this. And then we say that we will be

able to separate the variable if this does not enter into the differential equation at all that

is if this fellows second derivative turns out to be 0.



So, the second derivative of this is 0 and it satisfies the boundary conditions, this will

give us a boundary value problem of the ordinary differential equation. And this is the

ordinary differential equation that is second order ordinary differential equation in which

the second order derivative is 0 that means, the solution is linear function of x. And

linear function of x to satisfy, these two boundary conditions must be this. So, this is the

u s s x component that is the steady state solution and the rest which is the transient

solution  when we put  back we find that  that  will  satisfy  the  earlier  boundary value

problem initial boundary value problem with the homogeneous boundary conditions that

is this which we have studied.

So, here in the place of f x which is the initial value of small u will have the f x minus u s

s which is the initial value of capital U. And this change in a initial condition with the

other homogeneous boundary conditions and this differential equation will give us the

same solution which we found earlier and that solution we compose with the steady state

solution and get this complete solution. Now, the steady state solution will be this which

will remain after enough time has passed and this will be the transient component. And

in this case, the coefficients B n will be found from the Fourier sine series of not f x, but

f x minus u s s.
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Another  particular  case  we  can  consider  and  that  is  the  problem  of  the  same  heat

conduction problem, but not over a finite rod not over a finite domain but over an infinite



wire. For example, this is suppose the infinite wire, and in this case we will not need any

boundary condition because the infinite wire will have no boundary, we are trying to find

out solutions which are bounded that is all, so over the infinite domain. So, this is the

differential equation only with an initial conditions, there is no boundary, so there is no

boundary condition.

So, in place of n pi by L, now we will have continuous frequency variable p and rather

than finding the solutions in the form of a sum of discrete components, we will find the

components now are continuous. So, therefore, the summation will be replaced by an

integral. So, earlier we had sigma u n, now we will have integral of u p over d p that is

the d p is the differential of the frequency variable p. And the solution u p in a similar

manner  as  we found in the case of  Fourier  series,  here we will  get  a  corresponding

Fourier integral that is the term here which earlier we equated with the Fourier series,

now will be a Fourier integral in which the Fourier integral coefficients will be found in

the usual manner.

Now, if we combine these two and put here, you can also put this entire term in the form

of the cosine of p x minus p v that kind of a term you can put here, if you insert these A p

and B p expressions  here.  So,  the whatever  role  in the earlier  finite  case was being

played by a Fourier series, now will be played by Fourier integral and everything else

remains same with appropriate changes. So, the frequencies will be now continuous and

this A p and B p the coefficients will be determined through these integrals. Alternatively

in the case of infinite wire rather than using Fourier integral one can also attempt the

solution with the help of a Fourier transform.



(Refer Slide Time: 14:17)

And the way to do that is this. We first use the derivative formula of Fourier transform

and with respect to one of the variables in this case x we apply Fourier transform. So,

here, we on the left side, we have to apply the Fourier transform of u t. Now, derivative

is with respect to the variable  t  and Fourier transform we are taking with respect to

variable x. Since, these two variables are independent then we can change the order of

differentiation  and  integration  note  that  the  Fourier  transform  basically  involves  an

integration. So, the Fourier transform of derivative with respect to t is this which we the

same as the time derivative of the Fourier transform. On this side, the derivative is with

respect  to x and a Fourier transform is  also taken with respect  to x.  So,  we use the

derivative formula of Fourier transform that is the Fourier transform of the derivative is i

w  into  Fourier  transform  of  the  original  function  So,  second  derivative.  So,  twice

derivative formula has to be applied, so i w whole square, and then this is u hat there is

the Fourier transform of u.

Then this differential equation that we have got is a first order differential equation with

respect to time in the function u hat that is Fourier transform of u with respect to x that is

we have converted this differential equation partial differential equation to an ordinary

differential  equation of the Fourier transform of u with respect to x. Now, the initial

value  problem we can construct  by  taking  the  Fourier  transform of  the  initial  value

function also that is both sides we take Fourier transform and that gives us the initial

value of the Fourier transform. So, as we take the Fourier transform here, so we get u hat



at time equal to 0 as f hat of w, so that means, for this differential equation which is a

first order differential equation we have got this initial condition.

So, this differential equation with this initial condition first order differential equation.

So, the solution is very easy. So, we get this solution. This is the solution of this first

order differential  equation with this initial  value. Therefore, it  is appearing here. And

then  we  say  that  after  we  have  got  the  solution,  now  we  take  the  inverse  Fourier

transform of this. An inverse Fourier transform will give us this one from the directly

from the formula that is f x into e to the power minus c square omega w square t in to e

to the power i w x integrated over w from minus infinity to plus infinity. Which if we put

this here then we can put it in this form and we have actually expressed the solution in

the form of quadrature and this same solution we would get from the Fourier integral

representation also. Now, how this integral how this quadrature is to be evaluated that we

will consider a few lectures later after we have studied complex analysis also.
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Currently we proceed to the discussion of the third type of differential equations that we

are going to and do here and that is the elliptic equations. The same heat flow equation

that we have been discussing that is del u by del t is equal to c square in to Laplacian of

u. So, in that the Laplacian involves del 2 u by del x square plus del 2 u by del y square

plus del 2 u by del z square, till now we have been discussing one-dimensional problem.

Now, let us take a two-dimensional heat flow problem. So, if you consider the heat flow



in a plate. So, the entire boundary of the plate will require boundary conditions. So, this

will give us the two-dimensional heat equation in this manner.

And then you say that  for this  particular  problem we consider  that  enough time has

passed and we want to find out the final steady state temperature distribution over the

entire plate if we prescribe conditions appropriate conditions over the boundary of the

plate.  So,  then if  enough time has been elapsed and the temperature  distribution has

reached a steady state that means, del u by del t will be 0 and then we get this equal to 0,

and this is the Laplace equation. Laplace equation is an elliptic equation.

Note that in this particular case the original equation this is actually a parabolic equation

in time and space variables. In time, you have got this first order derivatives in space

variables you have got this term. So, between time and space, you had the parabolic

nature of the differential equation, but after the steady state has been accomplished this

time  derivative  gets  removed  from  the  differential  equation  and  then  what  remains

among the space variables it is elliptic. Now, when we try to solve this Laplace equation,

this  elliptic  equation  then  if  we  apply  the  separation  of  variables  method  over  the

boundary value problem of this for a rectangular plate to keep things simple. Now, in this

rectangular plate the three sides of the rectangle that is x equal to zero that is left side x

equal to a that is right side and y equal to zero that is bottom and y equal to b.
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That is this is one boundary, this is another boundary, this is third boundary, and this is

the fourth boundary. So, over this boundary, if we prescribe the temperature values over

the entire boundary then we have got a Dirichlet  problem. So, this is the differential

equation  and  boundary  conditions  are  here.  Now, notice  that  on  three  sides  we  are

replying zero boundary conditions for this particular case, it could be different; on the

fourth side we are applying an arbitrary boundary condition in the form of f function f x.

Now, if this also f zero then we know what is the solution, then only solution possible is

over all 0. So, therefore,  to make a nontrivial  problem we are applying and arbitrary

boundary condition on the fourth boundary. So, we have got the Dirichlet the problem

over  this  rectangular  domain  that  is  here.  As  we  apply  the  separation  of  variable

technique that is as we try to apply we get we start with this proposal, and the second

order x derivative of this that is here, this one will give us X double prime into Y and del

2 u by del y square will give us X Y double prime. So, this we get and then over all as we

take this on the other side of the equation and divide throughout with X Y then we get

this equal to this. So, variable separation has succeeded this is dependant only on X, this

is dependant only on Y. 

And then as we equate it to a constant Y negative in this case because we want the x

equation to have periodic solution that is starting from zero should come back to zero

because at x equal to zero and x equal to a the value is zero; for y such a compulsion is

not there. So, therefore, the x solution we want to be periodic and therefore, we take a

negative constant here corresponding y solution will be exponential. So, then we separate

the two ODEs get this. And this now the solution of this will have sin and cosine terms, it

will be periodic the solution of this will be exponential.
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So,  then  this  boundary  conditions,  we have  been  seeing  for  quite  some time  in  the

previous lecture also we saw this. So, then this gives us the solution which is the same as

earlier cases sin n pi x by a. Now, this one either you can write the solution of this in the

in terms of e to the power p y and e to the power minus p y or you can write in terms of

hyperbolic cosine and hyperbolic sin that is obvious that the two are equivalent. Because

hyperbolic cosine is nothing but e to the power y plus e to the power minus p y by 2; and

similarly sin hyperbolic will have a minus sign here. So, since we are talking about linear

combination of that two. So, whether we talk in terms of two exponential functions or sin

hyperbolic and cos hyperbolic result is equivalent.

So, now, with this Y n and this X n when we put them together back into the proposal

then every X n into Y n will  be a solution of the differential  equation each of them

satisfying the boundary conditions. So, infinite some of such products such products this

kind of products will give us the solution in which the initial condition that is Y of 0

equal to 0 that we get from here that is as we put small y equal to 0 in the boundary

condition here as we put small y equal to 0, here we get u equal to 0, so that means, in

the proposal the corresponding capital Y has to be 0. So, that gives us A n equal to 0 that

means, this part goes off because sin hyperbolic is anyways zero, so A n coefficient has

to be 0, so that gives us only this term. So, then we have got the solution here like this.

So, the complete solution will be an infinite sum of such terms for n equal to 1, 2, 3, 4

and so on that is this.



Only remaining thing now is the determination of these coefficients b n and that we do

by imposition of the last boundary conditions that is over this boundary y equal to b. So,

as we impose that condition we get the this as a constant and that value into b n into sin

of this. So, that gives us Fourier series so; that means, as we apply this last boundary

condition we get the coefficients B n in terms of the coefficients of the Fourier sine series

of the function f x and that completes the solution.

So, in this particular case, we found that the boundary conditions on the three sides were

homogeneous that helps us a little that is finally, we had to track only one Fourier series.

On the other hand, if the boundary conditions over all the four sides are nontrivial then

we can split  the problem into four different  parts  in  each of the parts  one boundary

conditions is taken as nontrivial others are zero. And then finally, when we combine the

four solutions we get the complete solution we get the correct solution now till now we

have seen cases where the differential equation is separable, but the boundary conditions

are not sometimes boundary conditions are not separable. And then we took the steady

state solution separately and constructed a solution there could be also situation where

the differential equation itself is not separable.
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For example, if there is a heat generation in the same problem then you may get. a phi x

y like this that is Laplace equation will change to for poissons equation is rather than

zero on the right side you have got a function of x, y. Even a constant will create a



problem with the separation of variable; in this case the variables will not be possible to

be separated. So, separation of variables will be impossible with a non zero term here.

So, while solving the Poisson’s equation, we need to do something else something more.

So, for that we can construct the solution in two steps, we consider a solution in this

manner in which we have got a u h component which is actually the solution of the

corresponding Laplace equation del 2 u equal to 0, and take u p, a particular solution of

this differential equation.

And  then  the  way  we  solve  the  ordinary  differential  equations  as  summing  up  the

complementary function and particular integral particular solution in this in that manner

we can find the solution of this Poisson’s equation. For that the sequence of steps is also

important. In this case, in the solution of Poisson’s equation we first find out a particular

solution of this differential equation by some method by some means is if we can find

one solution of this which perhaps does not satisfy the boundary conditions then we keep

that. And after finding that particular solution which most value does not satisfy all of the

boundary conditions may be does not satisfy any of the boundary conditions, but still that

having a solution the differential  equation itself  helps.  Because then we consider the

solution of this Laplace equation for u h in such a manner that u h plus u p together

satisfies the boundary conditions. Then u h plus u p together this proposal satisfies the

boundary condition and u h satisfies del 2 u equal to zero and u p satisfies del 2 u equal

to phi and that means, the sum will satisfy del 2 u equal to phi.

So, in this manner if we can get hold of one solution of the Poisson’s equation even if it

does not satisfy the boundary conditions it will be good because using that solution we

will  apply the boundary conditions  on u h appropriately. So, that whatever boundary

conditions u p gives that component gives the other component u h which is in our hand

which we know how to solve with homogeneous boundary conditions. So, we find out

that what boundary conditions u h should satisfy which will satisfy the given boundary

conditions  and also compensate  for the boundary values of u p,  so that way we can

construct the solution of a boundary value problem of this also.

So,  in  this  case  only  separation  of  variable  did  not  help,  but  through one  particular

solution we could reduce the rest of the job to the solution of a Laplacian equation that is

this, so one example in the textbook that we are considering in a state this particular



situation.  As our next example,  let  us consider a three variable problem. Till now all

problems that we have considered have been two variable problems.

(Refer Slide Time: 30:06)

Suppose, we have got rectangular membrane rectangular because we want to keep the

discussion simple otherwise the member could be of any shape. So, for a rectangular

membrane suppose a boundary the rectangular boundary of it is bound and fixed and

then  the  membrane  can  vibrate.  So,  earlier  we  have  seen  that  the  one-dimensional

analogue of this the one-dimensional version of that is the vibration of string problem in

which we had del 2 u by del t square equal to c square del 2 u by del x square that is all.

Now, rather  than are string,  which is  a one-dimensional  medium. Now, I have got a

membrane which is a two-dimensional entity two-dimensional domain. So, we have got

this.

Now, this equation is actually a hyperbolic equation, as any vibration problem will entail.

When we say that it is a hyperbolic equation, we mean that hyperbolic nature is manifest

between the time and the space variables, that is between this and this it is a hyperbolic

relationship. So, the Cauchy problem of the membrane will be this that is the difference

equation along with these initial conditions initial position over the entire x, y domain

and initial velocity over the entire x y domain. And these will be the boundary conditions

u at u 0 y, t that is x equal to 0, x equal to a and y equal to 0, y equal to b this same



rectangular domain over this rectangular domain around the boundary we have got this

boundary conditions.

Now, how to solve this particular initial  boundary value problem? So, first we try to

separate the time variable from the space variables. So, for that we propose a function of

x, y of the space variables multiplied with a function of time variable only in this manner

we propose the solution in this manner. Now, as we propose this solution and affect the

derivate differentiation, so this will be the del 2 f by del x square that derivative that is F

x x this will be F y y that is this is will be F x x into T and this will be F y y into T. And

here this will be F into T prime by T double prime that is second order derivative with

respect to small t. So, then we will have this differential equation as f t double prime is

equal to c square into F x x T plus F y y T.

Now, to separate the variables x, y from the variable T overall we will have to divide

with f and t and if you want with c square also. And as you do that then here we will get

as we are dividing with c square F T, so c square will go off T will go off F will come in

the denominator, so F x x plus F y y by F, so that is here. On this side F will go off and c

square T will come in the denominator that is here. Now, again we say that this side

depends only on the space variables and this side depends only on the time variable.

Now, for both of them to be equal they have to be equal to a constant.

What kind of a constant. So, for answering this what kind of a constant we will again see

that if we take a positive constant here then F x x plus F y y minus that positive content

constant  into  F  will  come  and that  will  require  that  in  space  the  solution  increases

continuously  or  decreases  continuously.  And  in  that  case  this  kind  of  homogeneous

conditions the boundary will not be able to fulfil. Therefore, here we need a negative

constant. So, we put minus lambda square as we put minus lambda square then this equal

to minus lambda square will give us this equation because f will go here minus lambda

square brought on this side of the equation it will give us F x x plus F y y plus lambda

square F equal to 0. And this differential equation will give us the periodic sinusoidal

solution of x and y which will be able to satisfy this boundary conditions, this equation is

called the Helmholtz equation.

The other part will give an equation in the function capital T. First we consider this these

again  a  partial  differential  equation  because  it  has  got  two  independent  variables



involved x and y. Note that from this differential equation as we applied separation of

variables between time and space variables. So, this time variable was separated in the

other differential equation that we will get and this is an equation in the space variables

only. And among the space variables this happens to be an elliptic equation in this elliptic

equation involving the space variables only we apply one more round of separation of

variables and for that.
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We assume F x, y in this manner as we do that the first term F x, x will involve X double

prime into Y, this  will  involve X into Y double prime.  So, we can write this  in this

manner x double prime into Y plus X into Y double prime plus lambda square f which is

x y equal to 0. Now, in order to separate x and y terms we can do it in several ways. So,

one possible way to do it is to divide overall with X, Y capital X capital Y.
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So, as we do that from here y will go off X here from here X will go off Y will appear

here and from here both will go off. So, we will get this right and then we can take these

two terms on the other side or we can take only this term on the other side. So, suppose

we take both of these terms on the other side the equation, and then we will get this

entire  term minus Y double  prime plus lambda square Y by Y. So,  this  whole  thing

depends only on Y component and this depends only on X component. So, this again we

want to equate to a constant.

And here again this equated to the constant of separation will give us a straight forward

differential equation in x which we have earlier also seen and that will have X double

prime plus  mu square equal  to  X.  And therefore,  this  is  necessary  to  be taken as  a

negative constant minus mu square, because otherwise in X the solution would not come

back to 0. On the other side, when we equate these two, we find that negative sign gets

cancelled and we get Y double prime plus lambda square Y equal to mu square Y that

means, y double prime plus lambda square minus mu square into y. And that lambda

square minus mu square has been mentioned has been denoted here as nu square which

basically gives us a representation of lambda in terms of mu and nu that is the lambda

that we chose here.

Now, gets represented in terms of the two new constants mu and nu that we are choosing

now. So, in mu and nu a that is in capital X and capital Y, the two differential equations



are similar. And for the those with homogeneous zero boundary conditions, we know the

solutions  already  and  we  construct  those  solutions.  This  homogeneous  boundary

conditions over x and y which we derive from the homogeneous boundary conditions

given for the variable the function u itself we get the solutions in this manner.

So, we find mu equal to m pi by a will give us solutions for x nu equal to n pi by b will

give us solutions for y. And for every value of m and n that mu and that nu will give us

different solutions for x m and y n. And corresponding value of lambda will be found

from here that is mu square plus nu square under root, so that is for every value of m and

for every value of n we will get a value of lambda. That means, we take large number of

m equal to one two three four and n equal to one two three four then for that we will get

a set of sixteen values of lambda, lambda 1 1, lambda 1 2, lambda 13 and so on. So, for

every pair of values of m and n we will get a value of lambda.

Corresponding lambda will give us from here the corresponding differential equations

for the function T of time and that will be T double prime plus c square lambda square

capital T that is this T double prime plus c square lambda square capital T equal to 0.

Now, we know the solution of this also will be found in this manner itself, but here we

write the complete solution because on this it is time variable involved and we do not

have so straightforward boundary conditions as we had in the case x and y conditions.

So, here we write the complete solutions in terms of lambda m n and coefficients A m n

B m n that means, for every pair of values of m and n we will get coefficient different

coefficient here corresponding to different lambda m n values. So, this will be denoted as

t m n. Now, we find that X m of x into Y n of y and corresponding T m n of t the product

of these three terms will give us one solution of the original differential equation that will

satisfy the differential equation and all the boundary conditions.



(Refer Slide Time: 41:51)

So, we get the complete solution through superposition of all these solutions for different

values of m and different values of n that means, we get the solution in the form of this

double summation the outer summation is with respect to m the inner summation has

been shown with respect to n. So, this is T of t this is that is T m n of t this is X m of

small x this is Y n of small y this is the complete solution which will satisfy all the

boundary conditions and certainly the differential equation.

Now, as we put the initial conditions we put T equal to 0. So, at t equal to 0, this sin term

will vanish and we will get a m n this cosine will be 1. So, A m n sin m m pi x by a into

sin n pi y by b that is this which will be the initial configuration of the membrane that is

given and when we differentiate it then this will give us sin. And upon substitution of t

equal to 0 that will be 0, and this will give us cos along with a coefficient c lambda m n

that is here and upon substitution of value t equal to 0 that cosine will be 1. That means,

c lambda A m n into B m n into sin and sin that will be equal to the initial velocity of

every particle over the membranes that is for all values of x and y.

So,  now  you  find  that  the  coefficients  A m  n  and  B  m  n  can  be  found  from  the

coefficients of the double Fourier series of f x, y and g x y. One simple case of this is

given in the exercises in which case you then go ahead and continue to find the values of

A m n and B m n from expansion of the Fourier series of the initial condition functions.



Now if other than this rectangular domain the domain is of some other shape. So, then

you find that sometimes the differential equation that you get are not so straightforward

in which case we get the solutions by solving a simple solution like x double prime plus

lambda square x kind of things, but for domains of circular symmetry which is important

in many practical systems say cylinder. So, in the case of cylindrical domain quite often

we find that the b v p that we construct gets modelled more conveniently in terms of

cylindrical polar coordinates and sometimes in domains which are spherical in shape we

similarly use spherical coordinates.

So, use of cylindrical polar coordinates and spherical polar coordinates quite often leads

to  individual  separated  equations  in  the  form  of  Bessel’s  equation  or  Legendre’s

equation. And in that case the component ODE that we solve to find out the solution with

respect to one of the variables turns out to involve the Bessel’s function and Legendre’s

function also. So, depending upon the shape of the domain you may find that the solution

of  the  resulting  ordinary  differential  equation  that  is  resulting  from  the  process  of

separation of variable may turn out to be the straight forward differential equation that

we have been solving with constant  coefficients  or depending upon the shape of the

domain with circular symmetry quite often Bessel’s equation or Legendre’s equations

also evolve.  And that  actually  is  the starting point  of  the study of Bessel’s equation

Legendre’s equation in the ODEs.

So, now that we have already discussed the series solutions and Bessel’s polynomials.

So,  these  since  we  have  already  studied  the  solution  series  solutions  of  ordinary

differential equations and we are already acquainted with the Bessel’s function as arising

out of this kind of equation and Legendre’s polynomial as arising out of the solution of

this kind of equations. So, as we consider such symmetries circular symmetries, we can

get the component solution and construct the complete solution and then apply the initial

conditions to these situations also.

In the exercises  in the textbook in this  chapter, you will  find some examples  which

involves such cases. However, if the domain in the x y plane or the x y z space does not

have any such symmetries neither rectangular nor cylindrical nor spherical then that is if

the domain is general shape in that case such analytical solution will not be possible. And

in  that  case typically  we try  to  solve the differential  equation  in  a  with  the  help  of



numerical means and numerical solution of partial  differential  equations is in itself  a

large topic and then we do not go into that as part of this course.
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So, let us summarise at this point, what are the things that we have discussed in these two

lectures on partial  differential  equations.  First  is that the partial  differential  equations

appear in several physically relevant contexts. And some of the very important governing

equations of phenomena we have tried to study through some analytical solutions with

the help of Fourier series Fourier integral and Fourier transform based solutions through

the method of separation of variables. In that we have discussed the initial and boundary

conditions their meanings and their different situations in the different kinds of problems

that we apply them and we have studied the separation of variables method. 

And examples of such boundary value problems or initial boundary value problems in

with hyperbolic parabolic and elliptic  equations of a few cases we have discussed in

some cases we have conducted the modelling and then the solutions and then interpreted

the  solutions  in  these  two  lectures.  And  in  the  last  example,  in  the  case  of  two-

dimensional  membrane  problem,  we  have  also  seen  one  particular  case  of  cascaded

application of the same separation of variables twice.  In the case of a three variable

problem  the  first  application  of  the  separation  of  variables  technique  produces  one

ordinary  differential  equation  in  one  variable  and  another  new  partial  differential

equation in two variables. A second application of the same separation of variables over



this  partial  differential  equation  splits  so,  equation  into  three  different  differential

equations that is complete separation. And that kind of a cascaded separation of three

variables  will  finally,  involve  a  double  Fourier  series  for  the  determination  of  the

coefficients the Fourier coefficients.

Now, this  gives  us  a  very  brief  overview of  the partial  differential  equations,  which

appear most often in practical situations. And in the course as we have throughout tried

to emphasize on interconnections of several different areas of applied mathematics this

particular topic puts those interconnections in a very intricate manner. And some of the

solutions which we have got here will be completely reduced after we develop some

integrals based on the theory of complex analysis.
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Our next module of this course is on the complex analysis in that we will have next three

lectures  devoted  to  the  area  of  complex  analysis.  And  after  the  third  of  those  three

lectures, we will develop some tools by which we develop quadrature formulae for some

of the quadrature some of the integrals that appear as a result of the solution process of

some of the partial differential equations that we have studied in this lecture. So, next

lecture, we start with the first topic of complex analysis and that is the topic of analytic

functions.

Thank you.


