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Good morning, this lecture we start with a few comments on what we discussed in the

previous lecture. 

(Refer Slide Time: 00:35)

In the previous lecture, we studied Sturm-Liouville theory and the center piece of that

theory is this theory. This says that if Y m and Y n are 2 eigenfunctions of a Sturm-

Liouville problem corresponding to distinct eigenvalues, then these 2 are orthogonal to

each other  with respect  to  the  weight  function  p x appearing  in  the Sturm-Liouville

problem.

Now, we say that  this  particular  property of the eigenfunctions  of  a Sturm-Liouville

problem, enables us to use the eigenfunctions of a particular family as basis members for

representation of continuous functions, because these will constitute a complete set of

basis function for continuous functions with piecewise continuous derivatives. Now the

question is that why do we really required orthogonality. Linear independence should be

enough for representation of functions as we did in the case of vectors in ordinary vector



spaces, to appreciate the importance of orthogonality let us see a situation in the case of

ordinary vector space and to keep the discussion simple.

Let us take the vector space to be of dimension 2, which we can represent on the board.

So, suppose we have got a vector space of dimension 2 and to represent all arbitrary

vectors in that vector space we want to form a basis.

(Refer Slide Time: 02:20)

Usually in most  of  the scientific  applications,  we do take  a  pair  of orthogonal  basis

members. In Cartesian geometry we take this as x axis this as y axis, the unit vector in

this direction is taken as 1 basis member basis and the unit vector in this direction is

taken as the other basis member right and in terms of these 2 basis members let us call

them e 1 and e 2, and for that to represent this function this vector we draw a line parallel

to the y axis and that cut here at right angle and whatever is the length here that is say c

1. Similarly for this this this length is a c 2 and then this vector get represented as c 1 e 1

plus c 2 each and since e 1 is 1 0 and e 2 is 0 1.

So, the representation of this turns out to be c 1 c 2 right. So, this we know, but this is

orthonormal basis at least orthogonal will be looking for if the axes are at right angle;

however, you will say that this was not necessary; as long as the 2 basis members are

linearly independent which will make them the basis members, the representation should

be all right and that you can see if you say that i will take a oblique coordinates and say

that this is our X bar axis and this is our Y bar axis. Even in this pair of axis we could



represent a vector say we want represent this vector for this purpose what we do? We

draw a line from this point parallel to this and another line parallel to this and then say

that this turns out to be this length turns out to be c 1 or more precisely you could say

that this  vectors length divided by the basis members length turns out to be the first

coordinate and similarly in this case you will have the second basis member and here

also you could say.

That suppose this unit vector is taken as d 1 and similarly this basis this here whatever is

the basis member that is taken as d 2, and then you could still say c 1 scalar in to d 1

basis vector plus c 2 scalar in to d 2 basis vector in this direction will still  give the

representation like this it should be enough. So, in this vector space we find that as long

as the 2 selected vectors are linearly independent, they will be able to form a basis and

we can represent arbitrary vectors as linear combinations of the basis vectors why that is

not enough for representation of functions.

In  the  case  of  functions  why  are  we  so,  eager  to  ensure  orthogonality  of  the  basis

members. We will see the reason if we consider the case that this vector in this vector

space, if we want to represent the vectors with less number of basis vectors for example,

in this case suppose we say that the vector could be in any direction, but we want to

represent the vector only with the help of the first basis member and the second basis

member we will not keep; in that case here we will still say that.

The best representation that this vector can get if we are going to use only the first basis

member that will be c 1 e 1 because we have got this component, which is orthogonal to

this basis member perpendicular, without any regard to this. Now in this case we cannot

say that, in this case we cannot figure out in which direction to draw this line from here

in this case you see we dropped a perpendicular in the case in which we know that the

supposed complete set of basis members are orthogonal to one another in that type of

situation we know that if we want to represent the vector with a linear multiple of even

only then, we know that the length c 1 will be found if we drop of a perpendicular here.

And that will give us this. In this case if we say that this basis vector d 2 this basis vector

d 2 is not in our hand we want to construct whatever best possible representation of this

vector is possible only with the help of d 1, then you will not know in which direction to

draw this line because this vector is not there at all in our hand. So, whether to draw this



line here or here or here we do not know then we will say that we are confused because

we do not know the complete set of basis members of which this partial recommendation

is one part. Similarly say if you want to represent the vector from this point on earth to

an aircraft there.

Now, if you are allowed see vectors then you will say that this much east this much north

and this much upward. On the other hand if somebody says that no no no we do not want

upward we want to find its position only in terms of east and north then what you do?

You just take this much east  this much north and that is the ground position exactly

above  which  the  aircraft  is  currently  flying.  This  you could  do  because  the  3  basis

members are orthogonal if the 3 basis member of oblique of this shape, then you will not

know how to drop this kind of a line.

So, which parallel pipette you need to make you do not know the angles, in the case in

which you are already talking about an orthogonal set of basis members, then you know

that the component along each axis component along each direction will be found in

which  you drop a  perpendicular  as  here  and  therefore,  the  way we worked  out  the

components along the basis members in the previous lecture will make direct sense.

Now, in the case of finite dimensional vector spaces it does not matter too much as long

as you can supply a complete set of basis members. In the case of function space where

the vector space is of infinite dimensions, whenever you want represent a function you

have  to  represent  with  a  finite  subset  of  its  dimensions  and  therefore,  it  becomes

important  that even without enumerating explicitly, all  the basis  members  which you

cannot because they are infinite you should be able to make a respectable representation

and then you have this kind of situation where you want to represent a 2 dimensional

vector  with  only  one  basis  member.  The  other  basis  member  is  not  taken  into

consideration or a 3 dimensional vector you want to represent only with its projection on

a 2 dimensional sub space.

So, whatever  function representation we make we basically  try to project  an infinite

dimensional  vector  in  a  finite  dimensional  sub  space,  because  the  infinite  series  for

computational purposes needs to be essentially truncated at some point. So, therefore,

then it is a question of representing the functions with, limited number of basis member

then it is very important to have the basis members which are mutually orthogonal and



therefore,  in  the  case  of  representation  of  functions  in  the  function  space,  the

orthogonality  property of  the  basis  members  turns out  to  be extremely  important.  In

contrast to the finite dimensional vector spaces in the ordinary linear algebra sense, in

which the number of basis members was finite and it was most of the time possible to

enumerate all the basis members.

(Refer Slide Time: 12:05)

So, this is one important point because of which orthogonality is important. Now another

point  we made in  the  previous  lecture  is  that  eigenfunction  expansions  will  give  us

generalized  Fourier  series  its  representation  in  terms  of  eigenfunctions  of  a Sturm-

Liouville  problem, which will be continuous which will convergent for all continuous

functions with piecewise continuous derivatives that is for this kind of functions for this

class of functions the eigenfunctions of Strum Liouville problem will turn out to give a

complete set of basis members.

Now, there  are.  So,  many Sturm-Liouville  problems possible  and each  of  them will

provide  us  one  family  of  eigenfunctions,  which  one  which  family  to  take.  Now in

different  kinds  of  applications  different  families  of  such  eigenfunctions  are  found

suitable. So, in particular Legendre polynomials turn out to be special even among these

special  functions  for  example,  all  the  functions  which  we  develop  like  this  as

eigenfunctions of different Sturm-Liouville problems, they are called special functions.



So, Legendre polynomials are give us one family of such special  functions; similarly

laguerre polynomials will be another family of special functions special function another

family of another family of special function. Among all these Legendre polynomials are

somewhat more special, in the sense that in the case of any such family of eigenfunctions

we find that they have an orthogonality property and that orthogonality property is with

respect to the weight function p s which appears in the Sturm-Liouville problem. In the

case  of  Legendre  polynomials  the  corresponding  p  s  is  unity  and  therefore,  the

orthogonality in the case of Legendre polynomials turns out to be with respect to one.

(Refer Slide Time: 14:09)

That is this P x is unity there and you have the orthogonality property as simply this that

is  this  orthogonality  of  Legendre  polynomials  is  defined with  respect  to  unit  weight

function.

So, that makes orthogonality even more special among the families of special functions;

however, as we have earlier seen that they are orthogonal over the interval minus 1 to 1

right and therefore, Legendre polynomials in the form of their linear combinations can

represent the continuous functions over this interval.

Another question arises that whenever we want to represent a function, all the time we

do  not  want  to  represent  them over  this  interval  only.  Sometimes  we  may  need  to

represent it represent a function or represent some functions over an interval, which need



not be this, but that is a minor issue because suppose we take x in this interval for the

purpose of use like this, that is for the reference of the Legendre polynomials.

Now, whatever is our domain of interest, we can say that another variable a varies within

this  interval  and between this  variable  which will  fit  the domain of orthogonality  of

Legendre  polynomials  and this  variable  which is  the  which  is  in  the domain  of  our

interest we can directly establish a scaling and that scaling will be given as.

Now, see if you take x equal to 0 then you get a plus b by 2 the midpoint of this interval,

and if you take x equal to 1 then this minus a by 2 and this a by 2 will go up and you will

have b by 2 plus b by 2 which is b. So, for 1 you have b here, for minus 1 similarly

minus b by 2 and plus b by 2 will go and you will have a by 2 minus minus plus and

another a by 2 which will give you a.

So, over this interval if you apply this reparameterization then you get the correct domain

for t. So, the inverse also you can establish that is if you need to transform from given

values of t to x so; that means, that if you need the value of a function at t equal to

something, then from the inverse expression which will be this. So, that value of t you

put here, get the x and with that value of x in this interval you use the theory to get the

coefficients and then you get a polynomial and that polynomial in terms of x will come

to you will appear and then in that in the place of from there you make a conversion from

x  to  t  and  then  you  get  the  expression  in  terms  of  t.  But  you  can  do  this

reparameterization this scaling of the variable as long as that interval of your interest is

finite.

If you need to represent functions over an infinite interval which can happen in 2 ways

one is semi-infinite and the other is infinite.
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If your domain of interest turns out to be this, then what you do? No amount of rescaling

will make this infinite interval shrink into the shrink to the finite interval of minus 1 to 1

and for function representation over this intime infinite interval, you will not be able to

use  Legendre  polynomials  as  it  is.  So,  then  you  look  for  some  other  family  of

eigenfunctions.

One issue is very clear that if you use the rescaling which is like this, then over t or say

let us say call this variable as t call this variable as t. So, if you use this rescaling then as t

varies from a to infinity, x will  vary from 0 to infinity. So,  which is  a semi infinite

interval right.

Now, in this you will need a family of eigenfunctions which will be orthogonal over the

interval 0 to infinity and if you look for the suitable family for that purpose you see here

this equation.
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If we try to put this in the self adjoint form or the Sturm-Liouville form in the form of

Sturm-Liouville equation standard equation, then what we need to do? We first need to

divide this  with x getting the coefficient  of y double prime as 1, then whatever  will

appear here 1 minus x by x that is p and then P of x will turn out to be 1 minus x by x

which means this and therefore, we will get integral P d x that will turn out to be integral

of this which is l n x minus x and then we will get the integrating factor, which will be e

to the power this; that means, e to the power minus x into x.

So;  that  means,  this.  So,  that  is  normal  form.  So,  the  standard  form the  differential

equation needs to be multiplied with this integrating form integrating factor to cast it into

the self adjoint form or the standard form of the Sturm-Liouville equation. So, with x the

standard form or the normal form is already multiplied when you have this because to get

the normal form we had to divide by x. So, further we need to multiply it with e to the

power minus x as we do that as we multiply this equation throughout with e to the power

of minus x then we get this equation and note that that term from here to here turn out to

be exact derivative of x e to the power minus x y prime we can verify it.

Now, x into e to the power minus x into y double prime and then y prime into derivative

of this, derivative of this will be 1 into e to the power minus x which is here and then x

into e to the power minus x with the negative sign, x into e to the power minus x with a



negative sign that is here. So, the terms from here to here turn out to be this and then we

have here 0 plus this y is equal to 0.

(Refer Slide Time: 22:42)

So, for this problem we find that r x in the Sturm-Liouville equation r x in the Sturm-

Liouville equation turns out to be x into e to the power minus x ok which is 0 at x equal

to 0, and also at x equal to infinity.

At x equal to infinity you will find that you have got infinity into 0 or infinity by infinity

form, but you can verify that its limit will be 0. So, its limit is 0. So, this function r x is 0

at x equal to 0 and in the limit it is 0 at x is equal to infinity also. Now since r x is 0 at the

2 endpoints of this interval; that means that this differential equation that we have will

define  a  singular  Sturm-Liouville  problem,  over  this  semi-infinite  interval  with  no

boundary conditions necessary.

And therefore, its solutions laguerre polynomials will be orthogonal mutually orthogonal

over this interval with respect to the weight function p x which is e to the power minus x

here. So, in the case of laguerre polynomials, the statement of orthogonality will be this

the  orthogonality  will  be  with  respect  to  this,  but  with  respect  to  any  function  any

suitable weight function that you get it must be positive definite function which it is.

So, you will find the orthogonality in this manner, over this interval. So, if you want to

express  if  you  want  to  represent  and  manipulate  functions  over  this  semi-infinite



intervals, for that purpose you take not Legendre polynomials, but laguerre polynomials.

Similarly if you want the function representation over infinite interval infinity on both

sides, then you look for a different family of Sturm-Liouville different function of the

family of eigenfunctions solutions of a different Sturm-Liouville problem.

(Refer Slide Time: 25:10)

Which will be orthogonal mutually orthogonal over this entire interval and for that also

we have one such differential equation here you find Hermite equation.

(Refer Slide Time: 25:23)



If you multiply this entire equation with e to the power minus x square then see what we

get.

(Refer Slide Time: 25:42)

If you multiply this with e to the power minus square this Hermite equation then we will

get do you note do you notice that this is the exact differential coefficient of something;

because the derivative of e to the power minus x square is e to the power minus x square

in to the derivative of this, which is minus 2 x which is sitting here.

So, this entire stuff from here to here will be the derivative of e to the power minus x

square into y prime, plus here we have got this and with this eigenvalue e to the power

minus  x  square  will  be  the  weight  function  and  therefore,  in  the  case  of  hermite

polynomials, which will be the solutions of the singular Sturm-Liouville problem defined

by  this  over  this  entire  interval,  those  polynomials  hermite  polynomials  will  be

orthogonal  with respect  with each other orthogonal to each other  with respect  to the

weight function which is e to the power minus x square.

So,  this  way  for  infinite  interval  we  can  use  hermite  polynomials,  for  semi-infinite

intervals we can use laguerre polynomials the solution of this and for a finite intervals

after  rescaling  we  can  use  Legendre  polynomials  themselves.  Now  for  a  finite

polynomials for finite interval there are other proposals also possible and so, it could be

for some infinite cases also and there for different kinds of purposes we look for different

families eigenfunctions. To such further special cases we will discuss in this lecture and



in  the  coming  lecture  and  that  will  give  you  something  more  than  what  is  Sturm-

Liouville  itself  gives  Sturm-Liouville  theory  gives  us  first  orthogonality  and  then

completeness of the basis and further this least square approximation and in that sense.

(Refer Slide Time: 28:04)

We have got in the Sturm-Liouville theory in the eigenfunctions of the Sturm-Liouville

problems, a handle a tool to make least square approximation of functions in the integral

sense.  Long  back  when  we  were  studying  the  interpolation  and  approximation  of

functions, in that context we discussed that interpolatory approximation is just one way

of function approximation. Another very common way of function approximation is least

square approximation.

Now, in  the  least  square  approximation  when  the  squares  are  finite  in  number  and

collected  over  discrete  samples,  then  we  have  one  way  of  making  the  least  square

approximation in terms of the finite terms and in terms of integrals of the error we have

got  the least  square approximation  from the Sturm-Liouville  theory. Other  than least

square of approximation of continuous functions with piecewise continuous derivatives

other than this, that is after assuring this much what more we can ask for there are to

particular themes that we will be exploring fresh further. One is that can we represent

functions which have discontinuities and that gives us our next topic, which is Fourier

series. 
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For this purpose for exploring the Fourier series let us take this differential equation. If

we consider this as a Sturm-Liouville equation, then we find that u x is 0, p x and r x

both are 1 r x is 1 because the coefficient here is 1 and in the it is already in the Sturm-

Liouville form and this is simply lambda y rather than q plus lambda p y. So, q is 0 and p

is 1. So, this is a Sturm-Liouville equation with eigenvalue lambda and p x q x r x like

this.

And this tells us that r x is 1 which is constant. So, whatever interval we define over that

r x is going to be constant in particular if our interval is a b then r a and r b are equal. So,

with r a and r b equal we can define a periodic Sturm-Liouville problem with this kind of

boundary conditions y a is equal to y b and y prime a is equal to y prime these are the

periodic boundary conditions which define a periodic Sturm-Liouville problem with this

differential equation with this self adjoint ODE. Now here the interval a b is minus L to L

of length 2 L now we can find out that eigenfunctions of this turn out to be 1 cos pi x by

L sin pi x by L cos 2 pi x by L sin 2 pi x by L and so on.

And this family of functions will constitute an orthogonal basis for representing function

so  far  so  good  and  this  family  of  functions  will  also  give  us  the  least  square

approximation  of  functions  with  limited  number  of  basis  members  consistence

considered which every family of eigenfunctions Sturm-Liouville  problem must give.



But this particular set of basis members this particular family of basis members offers

something more it offers another facility.

So, if you want to represent a periodic function of period 2 L, because we have apply

periodic boundary condition. So, if we want to take a periodic function then whatever is

the representation over this particular period minus L to L that same thing will go on

continuing from L to 3 L 3 L to 5, L and on this side minus 3 L to minus L minus five L

to minus 3 L and so on. So, if you have got a periodic function of this period then we can

propose the function in this manner as an infinite sum of as an infinite linear combination

of these basis members, and we can determine the Fourier coefficients like this, which

we can determine which we can derive this  Euler  formulae can be derived from the

standard Sturm-Liouville, that we discuss in the previous lecture.

And. In fact, these are the precursors of the general Sturm-Liouville and that is why this

this Fourier coefficients and Fourier series were developed earlier and therefore, when

the more generalized eigenfunction expansion was developed by mathematicians, then

the corresponding series was called the generalized Fourier series this  is the original

Fourier series.

Now, you might make a note that in the case of the coefficients of cosine and sin terms

here, we are dividing by L to get this coefficient, but in the case of finding the coefficient

rela corresponding to the first eigenfunction one, we are dividing this integral by 2 L.

The reason is that the norm of this member in the family is 2 L square root square root of

2 L in these cases the norm is square root of L.

Now, with these coefficients defined according to the rooting (Refer Time: 34:00) of

Sturm-Liouville theory, you will get the Fourier series of a function which is periodic

with period 2 L. Now the question is, till now we have been discussing all those facilities

that  Fourier  series gives a which a which any suitable  family of eigenfunctions  of a

suitable Sturm-Liouville problem would give anyway, but Fourier series offer something

more. Fourier series will give us the convergent series representation for even certain

discontinuous functions,  within which in  general  eigenfunctions  of a Sturm-Liouville

problem need not give or may not give is not guaranteed to give.

So, that is something which Fourier series gives in addition to which were which it must

give as a family of eigenfunctions of a Sturm-Liouville problem. The additional facility



that Fourier series gives is ensured by this particular result which you get if the function

satisfies Dirichlets conditions.

(Refer Slide Time: 35:01)

If f x and its derivatives is if and its derivative are piecewise continuous on the interval

and are periodic with a period 2 L then the series given earlier converges to the mean of

one sided limits at all points; that means, that derivative is piecewise continuous that is

needed  for  any Sturm-Liouville  problem,  in  the  general  case  of  the  Sturm-Liouville

problems for the function that we want to represent was needed to be continuous itself

the function itself was needed to be continuous.

Here we are saying that even if the function itself is also just piecewise continuous that

will be good enough and in that case at the points of discontinuity, the Fourier series

estimate will  converge to this  as more and more points are taken and this  is  a very

sensible estimate because if there is a discontinuity at a point which is of this nature then

at this point the Fourier series representation converges to the average of these.
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This is the convergence in the mean at those points, where it is continuous the average of

the 2 limits turns out to be the function value itself. In this case where one limit is here

and other limit is here the Fourier series will converge to this point and with this sense

the Fourier series is able to give a representation to even discontinuous functions and this

is the additional facility additional ability that Fourier series provides compared to other

families of eigenfunctions.

Now, rather than minus L to L the interval could be any x 0 to x 0 plus 2 L now; that

means, that since L has been taken as a symbol variable so; that means, that whatever

interval finite interval you want you can put in this. Now a few important properties it is

valid to integrate the Fourier series term by term even if it has a discontinuity of this kind

and this makes very good sense because integration is actually smoothening process. So,

if the actual function has discontinued of this kind, the integral actually will remove the

discontinuity that is in the sense that in the integral you will not find this discontinuity.

Now, this is regarding the integral the function value itself at that point where you have

this this kind of a discontinuity that is at a jump discontinuity, convergence to this is not

uniform. So, at that point the function value is not reliable and it should not be for that

matter  because the  function  value  is  not  this.  So,  at  this  point  function  value  is  not

reliable. So, around this point the convergence could be anything like this or like this and

for that matter it is also noticed that there may be a little rise just near the discontinuity.



So, this is very interesting because the more and more terms you include in the series the

mismatch peak shifts a little bit this is called the Gibbs phenomenon. So, at the location

of the all in the immediate vicinity of the jump discontinuity, the value of the Fourier

series estimate may be unreliable what about differentiation as you see that integration is

smoothing  process,  differentiation  is  a  process  in  which  the  discontinuity  actually

increase. So, therefore, term by term differentiation of a Fourier series is valid at only

those points where the function is smooth at these points. So, the derivative at this point

will not be valid.

(Refer Slide Time: 39:34)

Now, you can find out the statements  of the standard results  like basis  inequality  or

parsevals identity in the context of the Fourier series, in the usual manner in which we

did it for the general Sturm-Liouville problems. And in many scientific applications you

will  note  that  a  periodic  function  f  x  is  composed  of  its  mean  value  and  several

sinusoidal components known as harmonics and they this mean value is given with the

average part, which is here this is the average value mean value and then this these 2

terms with n equal to 1 is for the first harmonic and then second harmonic and so on

So, in any periodic function you can have the separate terms which is 1 is the mean value

average  value,  and  then  several  sinusoidal  components  with  higher  and  higher

frequencies. So, those frequencies will appear here in this manner n pi by L will be the

frequency and in that context parsevals identity which is this is simply a statement of



energy balance the total energy of a wave is equal to the energy of the is equal to the total

of  the  sum total  of  the  energies  of  all  the  harmonics  taken  together  along  with  the

average.

(Refer Slide Time: 41:06)

Now, there are a few extensions which we apply when we need to have series Fourier

series  in  special  situations  for  example,  the  original  spirit  of  Fourier  series  is  the

representation of periodic functions over this infinite interval. So, that is minus infinity to

plus infinity that periodic function is represented completely. Now what about a function

which is defined only on a finite interval and outside that there is no definition what we

do for that function. So, what we do, we make an extension of the function which is

periodic. So, small f is a function which is defined only over this outside this it is not

even defined. So, we say that what about capital F, which we define as small f over this

interval and outside that interval we say that we make a periodic extension of it.

So, whatever is f x over minus L to L the same thing we go on repeating for capital F

beyond this interval now according to the original spirit of Fourier series then we can

develop a Fourier series for capital F which will exactly match with small f over that

interval of interest now further function small f for which we are looking for the function

representation the values outside. This interval will have no meaning, but whatever is the

value whatever is the series representation over this interval will be the same as that for f

x capital F x. So, this is the periodic extension of a function which is not periodic. So,



this is a non-periodic function defined over a finite interval we make a periodic extension

of it.

Now, you will make another note that in the Euler formulae when we try to find out the

Fourier  coefficients  then  for  an  even  function  we  found  that  the  coefficients

corresponding to the sin term is  0 and that shows that the Fourier series of an even

function turns out to be a Fourier cosine series in this manner the sin terms are absent.

So, there we can find out the coefficients like this for even function we need not integrate

from minus L to L by twice the integral from 0 to L we can find this.

Similarly, for an odd function the cosine terms will be missing and a sin terms will be

there and of course,  the average also will  be missing because for odd function from

minus L to L average value will be 0.

(Refer Slide Time: 43:58)

So, similarly we can get a Fourier sin series for an odd function and that gives us another

important tool in our hand another important weapon in our hand sometimes we need a

series of only sin terms or only cosine terms this kind of a requirement we will face when

a few vectors down the line you will be studying partial differential equations. So, there

in order to  satisfy certain  boundary conditions,  we will  need only sin terms  or  only

cosine terms.



So, in that case what we can say that over 0 to L, if we need only sin terms or only cosine

terms then we can make first a and odd extension over minus L to 0 or an even extension

over minus L to 0 and then for that entire function from minus L to L we can go on

repeating that is a periodic extension. So, suppose this is our function over 0 to L like

this and then like this it has a jump discontinuity at this point and for that matter another

at this point. So, for representation of this function in the form of a cosine a series what

we do is that whatever is this function from 0 to L we make a symmetric reflection of it

from minus L to 0 like this.

Now, this becomes from minus L to L this becomes an even function and for this even

function we make a periodic extension which will  look like this  the same thing gets

repeated from minus L to minus 3 L to minus L here and again L to 3 L here 3 L to 5 L

and so, on. So, now, the Fourier series of this will turn out to be a cosine series similarly

if we want a sin series then here we make a make an antisymmetric reflection. So, 0 to L

the function is defined like this  over minus L to 0, we defined the extension in this

manner and then repeat that sequence minus L to L and this will give us a sin series.
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So,  these  were  the  corresponding  series  that  we  get  out  of  it  are  called  half  range

expansion which are valid only for the half range from 0 to L, beyond that it has no

meaning beyond that its values have no sense. So, for Fourier cosine series this is the

even extension and then this is the periodic extension. Similarly for Fourier sin series this



is the odd extension that we make which pictorially we saw just now and this is the

periodic extension.

So,  these  processes  give  us  ways  to  get  sin  series  or  cosine  series  for  non-periodic

function with the definition only over limited finite intervals. In a special situation where

we have the function values available only in terms of a table that is at different values of

x we have got the values of f x, how to develop the Fourier series for such a function

which is available only as a set of tabulated values or a black box library routine that is

whenever we call the library routine, we get the value for that we can still develop, the

integral which is needed for the evaluation of the Fourier coefficients through numerical

integration process.

Sometimes it may be it may happen that we have got values of the function from some

experiment, which can be conducted over only limited values of x there and that also not

at constant intervals. In such situations also we can use numerical integrations in order to

develop the Fourier coefficients and in any form that we have the data regarding the

function values, then from that we can work out the Fourier coefficients with the help of

other formulas integral may be needed to be evaluated numerically.

Now, from the foregoing discussion that is that the Fourier series can give you infinite

series representation of functions, even those functions which have jump discontinuities

like  this  we  find  that  apart  from  giving  least  square  approximation  Fourier  series

representation  is  even  richer  and  it  is  more  powerful  compared  to  other  kinds  of

representations. One problem however, is still unaddressed we considered the original

Fourier series for infinite interval, if the series itself is if the function itself is periodic.

Now, for non-periodic functions which have definitions on the a word a finite interval

that is in which that finite interval is of our interest and nothing beyond it then we could

make a periodic extension of that finite interval itself and we could still represent the

function in the form of a Fourier series a for the entire infinite interval and out of which

that particular interval will make the correct sense the rest of it we can ignore. What

about a function which is defined over the infinite interval, but which is not periodic. So,

for that what we can do? That takes us to the concept of Fourier integral that is how to

apply the idea of a Fourier series to a non-periodic function over on infinite domain.



Now, this is a single period of infinite size. So, for that what we do? We take a single

period and magnify that to infinite size for that purpose.
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Let us consider this Fourier series of function f L of period 2 L, which will look like this

an infinite sum a series n h p n is n pi by L and that is the frequency of the n th harmonic

in the ordinary Fourier series we had n pi by L sitting here right. Now what we do we

insert the expression for the Fourier coefficients a n and b n and a 0 then in place of a 0

we have got this for a n we have got this f L in place of f L x we are writing f L v because

this variable then actually is the dummy variables for this integral and nothing else. Now

we cannot use x because x has remaining outside this integral. So, we have f L v cosine n

pi v by L into d v. So, this is the Fourier coefficient.

Now, here this Fourier coefficient in that here we have removed the 1 by L and put 1 by

pi here with this delta p here, because delta p is pi by L why delta p is pi by L because

with a large number of terms we have 1 term which is n pi by L the next 1 will be n plus

1 pi by L what is the difference of the 2 values of p p n and p n plus 1 that is pi by l. So,

that is delta p. So, that delta p pi by L is sitting here. So, pi by L into 1 by pi that is

giving us the 1 by L which we needed in the ordinary Fourier series.



(Refer Slide Time: 00:52)

Now, if we can find the limit, then in the limit if we take this as L tends to infinity we are

magnifying a single interval of size 2 L minus L to L. Now we are saying that as L tends

to infinity we are actually stretching this single interval to infinite size minus infinity to

plus infinity. So, as we stretch that single interval from minus infinity to plus infinity,

these will turn out to be integrals from minus infinity to plus infinity and pi by L will

turn out to be extremely small; that means, delta p will tend to 0, then we will be calling

it d p and then this sum will be corresponding to p 1, p 2, p 3, p 4 each varying from the

neighbours by extremely small distances which is d p; that means, this sum of discrete

items  discrete  terms  will  get  replaced  with  the  sum  of  infinite  terms  which  are

continuous and that is an integral.

So, this sum from n equal to 1 to infinity will become the integral from 0 to infinity and

in between this minus L to L integrals for the coefficients will turn out to be simply

integrals from minus infinity to infinity and delta p can be now replaced with d p. So,

this turns out to be not a sum of large number of terms not an infinite series, but an

integral.  So,  this  in  the  limiting  case  in  the  limit  the  Fourier  series  goes  to  Fourier

integrals and that is the way to represent a periodic functions, non periodic functions

which are defined over the entire interval and entire infinite interval minus infinity to

plus infinity entire real line.



So, in the next lecture we will start from this point and study a few interesting forms of

the Fourier  integral  and out of one such particular  form, we will  also make a quick

definition for what is known as Fourier transform. And after that we will consider in the

next lecture another special facility that a particular Sturm-Liouville problem will give us

in the eigenfunctions of the Chebyshev problem and that is the family of Chebyshev

polynomials. So, these are the issues which will be discussing in the next lecture.

Thank you. 


