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Lecture - 02
Sturm-Liouville Theory

Good morning. In today’s lecture we will be studying Sturm Liouville Theory, which

will  take  us  from  the  domain  of  ordinary  differential  equations  to  the  domain  of

approximation theory.

(Refer Slide Time: 00:35)

So, in between the two theories this Sturm Liouville theory forms the bridge. Now recall

that till now a lot of our discussion has been in the context of initial value problems, with

boundary value problems getting very small share of our focus. In the context of Sturm

Liouville theory we concentrate on boundary value problems, in a particular manner.



(Refer Slide Time: 01:03)

Consider this simple boundary value problem, y double prime plus twice y is equal to 0

with both the boundary values of y at x equal to 0 and x equal to phi given to be 0

everything homogeneous the differential equation as well as the boundary conditions.

We try to solve this boundary value problem first the ODE. As we try to solve this ODE

we know that we will construct the auxiliary equation which will be m square plus 2

equal to 0. So, m will be found to be plus minus root over 2 and based on that we will

form we will form this solution general solution of this differential equation, up to this

point it is fine. Then we will try to supply this boundary conditions to determine the

values of a and b. Now as we force this condition at x equal to 0 y is 0 then at x equal to

0 this term will vanish.

So, we will find that b cos 0 is 0 now cos 0 is 1. So, it will be b equal to 0. So, from the

first condition we find b equal to 0. So, putting that then the solution reduces to only this

much, this y x is a sin x root 2 then we apply the second boundary condition. At x equal

to phi also y is 0. So, as we put x equal to phi, we find that a into sin phi root 2 is 0 now

sin of phi root 2 is not 0. So, a has to be 0 now if we put a equal to 0 here then we find

that y is equal to 0 this  is the only solution possible which you we knew before we

started  the entire  process.  So,  that  is  in  this  particular  situation  with these boundary

conditions  this  differential  equation  has  only  the  trivial  solution  and  no  non  trivial

solution.



In a similar manner we try to solve another boundary value problem in which everything

remains the same except that this 2 changes to 4 and we consider this boundary value

problem. Exactly the same steps will give us in this case this solution, a sin 2 x equal to y

equal to a sin 2 x in which a can be arbitrary. Now you find that in this case we could

find only the trivial solution there was no non trivial solution at all. In this case we have

got infinite number of non trivial solutions with every for every value of a we have got a

non trivial solution. So, what makes the difference between this case and this case?

(Refer Slide Time: 03:57)

In a  more general  setup we can consider  this  boundary problem with k here,  where

earlier we had 2 in one case and 4 in the other case. Now you say that for which values

of k we will be able to find non trivial solutions of this boundary value problem. We

repeat the same steps and find that with k less than equal to 0, there is no hope of finding

a non trivial solution and why so? Because with k negative, we find that this will give

rise to an initial equation an auxiliary equation which is m square minus 1 equal to 0, m

square minus something equal to 0 not necessarily 1.

So, m square minus something equal to 0 and that will mean that m will be will have 2

real solutions, m will have 2 real values and there will be exponential solutions. Now if

you find an exponential solution which will rise from the 0 value at some point then it

will never return to 0 value again. Therefore, negative k we cannot hope for a solution,

with 0 k also there will be no non trivial solution because in that case y double prime will



be 0 which means that y prime will be constant which will mean that y will be a linear

function and a linear function also if it rises at some point from 0, then it will never come

back.

So, with k equal to 0 also we do not find any solution for this except the trivial solution

which is y equal to 0 which will always remain. Now we consider positive values of k

now if k is positive then we can call it nu square. Now we find that with nu equal to plus

minus 1, plus minus 2, plus minus 3 etcetera we can find solutions of this BVP and they

those solutions will be a sin nu x. So, in the earlier case with k equal to 2 we could not

find the solution, with k equal to 4 we could find the solution because this was the case

which fit fits there.

So, we find that for quantized values of k that is 1 4 9 16 and so on we get non trivial

solutions of this BVP and corresponding values of nu are 1 2 3 4 etcetera right. Now for

the purposes of recording these solutions we include 0, to include the trivial solution also

in this factory. So, nu equal to 0 will give the trivial solution, nu equal to 1 will give us a

sin x nu equal to 2 will give us a sin twice x and then similarly a sin trice x and so on.

Will be the non trivial solutions all of these solutions are bound at the 2 values 0 and phi.

This is like a string which can stay tight or which can have this kind of a shape or this

kind of a shape and so on.

(Refer Slide Time: 07:15)

 



So, the different shapes of the string will be one is this, another is this, is another is this,

another is this, and so on for values of nu as 0 1 2 3 and so on. Now and now the size the

amplitude of the solution is here a; as that can be varies continuously you can have the

same solution copied several times with different scale factors. So, that is simply the

scale factor and that scale factor tells us that for the single that amplitude that shows us

that for the same value of nu among these a positive integer values, you can have infinite

solutions every solution for every value of a.

Now, we ask these questions that for what values of k or Eigen values does the given

BVP possess non trivial solutions and the answer to that in this question is k equal to 0 1

4 9 etcetera and the second question is what are the corresponding solutions we call them

Eigen functions. These particular values of k are called Eigen values and these particular

corresponding solutions are called Eigen functions up to arbitrary scalar multiples, which

is here in the amplitude. Now these 2 questions look very similar to the algebraic Eigen

value problem and which is A v equal to lambda v for which we ask the question that for

which values for lambda this system possesses solutions non trivial solutions and what

are the corresponding solutions v.

So, this is the reason that we get a problem of this kind which we will be calling as the

Eigen value problem, that in the case of this problem we called it the algebraic Eigen

value problem. This qualifier this adjective algebraic was used to basically qualified this

particular problem from the Eigen value problem of the differential equations, which we

are studying now. And as this particular boundary value problem framed in the form of

an Eigen value problem in this manner, has a direct resemblance with the algebraic Eigen

value  problem which  is  this  similarly  we also  have  a  resemblance  of  the  Hermitian

matrix or in the case of real numbers the symmetric matrix with what we call in the

literature of differential equations as the self adjoint differential operator. And that is the

next preliminary idea that we try to develop before going into the actual Sturm Liouville

theory.

So, for considering for figuring out what is this self adjoincy of a differential operator,

we again start from some simple notions.
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Consider  this  second  order  homogeneous  ordinary  differential  equation,  linear

homogeneous equation and in the corresponding first order equation the way we try to

solve  the  equation  Labseque  equation  in  that  we  had  y  prime  plus  P x  y  equal  to

something. Now homogeneous version will be y prime plus P x y equal to 0 and there the

way we try to find the solution was to find out an integrating factor F with which we can

multiply the left hand side to make the entire left hand side the derivative of something.

A similar exercise if we try here then let us say let us see where do we reach.

We say that is it  possible to multiply this entire differential  equation with something

some integrating factor F, such that this entire stuff F into this entire thing turns out to be

the  exact  derivative  of  a  an  expression  which  is  which  involves  up  to  first  order

derivatives in y first order derivative in y. That is can we find out a function F and an

(Refer Time: 11:42) function G such that F into y double prime plus F P y prime plus F Q

y turns out to be the exact derivative of a first order differential expression of y, in which

y prime and y will be involved and y double prime will not be there exact differential of

this.

So, we know that if we can do that, then the coefficient of y prime in that will be F

because if derivative being this will mean that there must be a term in which we will

have F y double prime. So, that is here. So, that is why this term must behave, but what

about the rest of the terms will they oblige to match these terms correctly. So, for that



what we do we say that let us propose some F and (Refer Time: 12:34) F G such that F

times this entire left hand side turns out to be the exact derivative of this involving F and

G. So, we try to differentiate it exactly and find F y double prime matching this first term

plus F prime y prime which is here plus from here G y prime which is here plus G prime

y which is here.

Now, as we try to match this first term with this you know as we try to match this entire

expression  with  this  entire  expression  the  first  term  matches  what  about  the  others.

Coefficient of y prime here it is x P here it is this. So, we say equality will require that

this is equal to F P and then here coefficient of y here it is G prime, here it is x p. So,

equality will require this now what we have got in this line? In this line we have got 2

differential  equations  in  the 2 functions  that  we were asking for that  makes  sense 2

unknown  functions  which  we  would  like  to  determine  and  for  that  2  differential

equations coupled yes this and this are coupled.

So, we say that for solving 2 unknown functions from 2 differential equations, we can try

elimination that is we try to our focus is F the function which is supposed to turn out to

be the integrating factor. So, we try to eliminate  the other  function G x. So, how to

eliminate that? We can differentiate this and their G prime will appear, there we will

insert this value of G prime. So, as we differentiate this we get F double prime plus G

prime. So, F double prime plus G prime. So, for G prime we put F q. So, that is F Q is

equal to derivative of this F prime P plus F P prime.

So, those 2 things we bring to this side this is minus P F prime this is minus P prime f.

So, the 2 parts 2 components of the derivative of F P with negative sign as its come to

this side. Now see what does this mean? This means that it will be possible to find F x

and G x such that F x into this will turn out to be the exact derivative of an expression

like this, if the function F x satisfies this. Now what is this? This is again a second order

differential equation in F, which is of the same type as the original differential equation.

This differential equation is called the adjoint of this differential equation so; that means,

the  adjoint  of  this  differential  equation  is  that  other  differential  equation  which  an

integrating factor has to satisfy such that that integrating factor multiplied with this will

reduce it to the exact derivative of an expression like this.



Now, in that in terms of helping in the solution process of this differential equation, did

this  analysis  make  any  contribution  really  know  because  this  was  a  second  order

differential  equation in  which coefficient  of y prime was unity here also this  is  also

differential equation in which the coefficient of F prime F double prime is unity, here the

coefficient of y prime was P here the coefficient of F prime is minus P something similar,

here the coefficient of y was Q here the coefficient of F is Q minus P prime, there is no

reason to believes that this will be simpler compared to this in general right.

So, in terms of procedure to solve the differential equation this discussion did not help,

but the concept that we develop further in this line of argument will help in some other

place.

(Refer Slide Time: 16:47)

So, the next question that we ask is that what are the properties of this adjoint?  For

example, till now we have seen that the adjoint of this differential equation turns out to

be this, where the coefficients of y double prime and F double prime are one in each case

in both the cases, if the original differential equation had a coefficient P x here then the

adjoint will have P 1 of x which is just the negative of P. Similarly if we had Q here then

we have got a Q 1 here which is Q minus P prime, this we have seen just now here Q

minus P prime. So, this much we have got.

So, this is the adjoint of this differential equation where P 1 is minus P and Q 1 is Q

minus P prime. Can we find the adjoint  of this differential  equation? Adjoint  of this



differential equation will be another such differential equation phi double prime plus P 2

plus P 2 phi prime plus Q 2 phi equal to 0 in which P 2 will be minus P 1 and Q 2 will be

Q 1 minus P 1 prime exactly like this. So, P 2 is minus P 1 which is P and Q 2 will be Q

1 minus P 1 prime Q 1 minus P 1 prime, but Q 1 itself is Q minus P prime. So, in place of

this you write Q minus P prime and P 1 itself is minus P.

So, in place of P 1 prime you write you write minus P prime now you find that this 2

cancel this 2 cancel and you get back Q. So, what we have got? We have got that the

adjoint of this turns out to be phi double prime plus P phi prime plus Q phi which is

exactly the same as this differential equation. In this the name of the unknown function

was y, here the name of the unknown function is phi, but they are the same differential

equation. So, what we establish out of this? We say that the adjoint of the adjoint of a

second order linear homogeneous equation is the original equation itself. The way you

used  to  say  that  the  transpose  of  a  matrix  you can  find  and  then  you  can  say  that

transpose of the transpose of a matrix is the original matrix. So, that transposition or the

conjugate transposition have has the same relationship as the adjoint ODE s here.

So, adjoint of the adjoint of a second order second order linear homogeneous equation is

the original equation itself. Now transpose of the transpose of the matrix is the original

matrix then you ask that which matrix is its own transpose and as answer you found that

it is a symmetric matrix or which matrix is the conjugate transpose of itself, as answer

you found that it is the Hermitian matrix. A similar question you can ask here, when is an

ODE its own adjoint. So, for asking this question you find that you have this differential

equation and you say that if this differential equation is to be its own adjoint, then its

adjoint which is this this equation with P 1 and Q 1 like this, then you will find that P n P

1 has to be have to be equal, but P n P 1 are negatives of each other.

So, for being equal as well as negative it has to be 0 so; that means that this kind of a

differential equation can be its own adjoint only in the trivial case, when P is 0. So, if P is

0 then you will find P prime is also 0 and Q 1 is equal to Q in that case it will be at self

adjoint that is the ODE will be its own adjoint.

So,  with  P x  equal  to  0  in  this  case  every  differential  equation  every  second  order

differential equation like this with P x equal to 0 will be self adjoint this is trivial, but

what about something into this that is if you have this as the differential equation? F y



double prime plus F P y prime plus F Q y equal to 0 that is if this differential equation is

multiplied with a factor F F of x then you say that under what condition this will turn out

to be self adjoint. That means, after multiplying this standard form of the ODE with the

integrating factor, when we can say that now it is self adjoint even if P is not 0 and for

that we ask the question in a slightly different manner.

(Refer Slide Time: 21:25)

First we try to ask; what is the adjoint of this equation, and then after finding the adjoint

we compare that adjoint equation with this and then ask under what condition these 2 are

actually the same differential equation. So, we ask this rephrased question of this, what is

the say when we want to find out what is the adjoint of this. So, we if we can look for the

differential equation with the adjoint has to satisfy, then we have reached some level of

answering this question. So, we rephrase the question and say what is the ODE that phi

has  to  satisfy  if  phi  multiplied  with  is  makes  it  an  exact  derivative  like  this.  Phi

multiplied with this whole thing phi F y double prime plus phi F P y prime plus phi F Q y

equal  to  exact  derivative  of  a  first  order  derivative  expression  like  this  first  order

expression.

So, the first term of that must be phi F y prime so that its derivative can account for this

term plus something into y. So, we compare terms the derivative of this is a graphly

derivative of this, derivative of this will involve 2 terms; one is psi y prime and the other

is psi prime y. So, psi y prime must be equal to this. So, phi F P must be equal to the this,



this will produce another term for the matter the derivative of this is phi x y double prime

plus derivative of phi F into y prime. So, derivative of y prime phi F into y prime. So,

that will have with itself this part ok.

So, phi F derivative into y prime plus psi into y prime. So, phi F derivatives plus psi

should equal the coefficient of y prime here. So, that is this and the coefficient of y from

here  will  be  psi  prime  and that  must  be  equal  to  phi  F  Q that  is  this.  So,  these  2

conditions must be satisfied. Now again our question was what is the ODE that phi has to

satisfy if it is going to work as the integrating factor for this. So, psi is an extraneous

function which we had to accommodate to satisfy the form. So, here in this system of 2

differential equations in 2 unknown functions phi and psi, we want to get rid of psi. So,

we differentiate this and in that way psi prime appears we insert this, ok.

So, eliminating psi we differentiate this we get second derivative of phi F plus psi prime

in which space we insert this is equal to derivative of this which is this. So, this is the

differential equation which phi must satisfy, if it is going to make this an exact derivative

through  multiplication  that  is  the  adjoint  of  this  differential  equation  will  be  this

differential equation which phi must satisfy. So, let us expand it and write it in proper

form. So, second derivative of phi F that will be F phi double prime plus twice F prime

phi prime plus F double prime phi this is the second derivative of phi F plus this which is

here plus equal to sorry equal to the derivative of this F P into phi prime plus F P prime

into phi.

Now, we collect the terms together second derivative terms here only one,first derivative

term one from here and the other from here that is twice F prime minus F P. Phi term

without any derivative. So, F double prime will be here and then minus F P whole prime

plus F Q that is here. Now you say that this is the differential equation which phi must

satisfy to play this role. That means, this is the adjoint of this equation, now we ask this

question that is this self adjoint it will be self adjoint when its adjoint which is here turns

out to be the same differential equation could be because here the coefficient of y double

prime was F here the coefficient of y double prime is F same.

Now, if  the  other  coefficients  are  also  equal  then  this  differential  equation  and  this

differential equation will be exactly same, when will that happen? When F P is equal to

this which will mean twice F prime equal to twice F p; that means, F prime equal to F P



that is F prime equal to F P and if F prime is equal to F P then here you see this is F P.

So, if it is F prime then F prime prime F double prime then this F double prime and this F

double prime will cancel each other and what will remain is F Q, which is the same as

here; that means, this satisfaction of this simple condition single condition will ensure

that  this  differential  equation  turns  out  to  be  exactly  the  same  as  this  differential

equation, but the way we derived this we know that this differential equation is actually

the adjoint of this.

So; that means, that this differential equation will be its own adjoint, if this condition is

satisfied that is if F prime is equal to F p; that means, if the coefficient of the y double

prime is  differentiated to get the coefficient  of y prime,  then we have a self  adjoint

second order  differential  equation.  Same thing  happened when we tried  to  solve the

Labseque equation in that case we had y prime plus P y equal to something and we

multiplied it with F and then we said F y prime plus F P y equal to something, and in this

left side had the condition that F prime must be equal to F P the same condition we get

here ok.

(Refer Slide Time: 28:20)

So,  we  can  cast  a  second  order  differential  equation  into  the  self  adjoint  form  by

multiplying with F x, which is this, the same thing which we found as the integrating

factor in the case of Labseque equation. So, when we have a second order differential

equation like this and we want to convert it into the self adjoint form, all that we need to



do is to get this function P integrate it and put that integral over the exponential in the

index and get e to the power integral P d x and that turns out to be the F, F of x which we

should multiply it is to convert it into the self adjoint form.

So, once we multiply this equation with this particular F x, then we find that the here we

have got F and here we have got F P and then it is certain that the derivative of this F will

turn out to give us first this and then into the derivative of this derivative of this is P and

that P is simply sitting here. So, F will come here P will come here.

So, automatically the derivative of F will turn out to be F P. So, to cast the ODE into the

self adjoint form, all that we need to do is to multiply the equation in this form with this

F x right. So, in that case we find that these 2 terms together will become the exact

derivative of an expression like this, F y double prime will come here and then F prime y

prime will come here because here we will get F P which is same as F prime. So, this

entire term these 2 terms together will be sitting here the exact derivative of this kind of a

combination plus whatever comes here into y ok.

So, this will be the general form of the self adjoint differential equations that we are

going  to  study.  Now  there  are  2  small  working  rules  which  we  can  immediately

appreciate and remember, one is to determine whether a given ODE is in the self adjoint

form,  we  simply  check  whether  the  coefficient  of  y  is  the  exact  derivative  of  the

coefficient  of  y  double  prime  if  the  coefficient  of  y  prime  is  the  derivative  of  the

coefficient of y double prime. If it is not so, and we want to convert it into self adjoint

form then first  we convert  it  into the standard form by dividing throughout with the

coefficient of y double prime, if it has any non trivial coefficient which is not one.

So, to convert an ODE into the self adjoint form first we obtain the normal form the

standard form by dividing the entire equation with the coefficient of y double prime.

After that whatever appears as the coefficient of y prime call that P x and then multiply

this  new equation  throughout  with  this  integrating  factor  this  F  x,  and the  resulting

equation is in the self adjoint form. Now with this self adjoint form what can we do?

With this self adjoint form in our hand, we have a certain an interesting theory which is

the basic issue in Sturm Liouville theory. This way when we define the equation and in

the next step we are going to expand this and have a lot of other terms involved in it

including the so called Eigen value.
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In the place of F x now we will have this small r x and in the place of this capital R x we

have this large thing, in which this lambda that is getting involved here will be termed as

the Eigen value and this equation which is a little bigger version of the previous equation

that we studied is called the Sturm Liuoville equation.

In which the functions p q r etcetera have certain properties, what are those properties?

First of all p q r and r prime we need all of these to be continuous over the close interval

a b and p x must be a positive definite function on a b and r x is also a positive definite

function on this interval a b. In some of the variations so the Sturm Liouville problem,

this also is needed to be on the close interval, but there are situations where it is required

only in the open interval because at a and at b, r x is allowed to be 0 in one version of the

Sturm Liouville problem.

So, only this much is required for the general case, in which this is the Sturm Liouville

equation. Now with this Sturm Liouville equation we can define 3 different classes of

Sturm Liouville problems with different kinds of boundary conditions. If we define the

boundary conditions in this manner, that is at x equal to a at one boundary we have got a

condition like this, that is this linear combination of y and y prime is 0 and at the other

boundary this linear combination of y and y prime is equal to 0 in which both a 1 and a 2

should not be 0 together that is a 1 and a 2 together is a nonzero vector one of them could



be 0 but not both, because if a 2 is 0 that will simply mean that at that boundary the

boundary condition is y a that is y a equal to 0.

Similarly, if a 1 is 0 that will simply mean that at that boundary y prime a is 0, but if both

a 1 and a 2 are taken to be 0, then this will mean nothing. So, therefore, a non trivial

boundary condition is given when a 1 and a 2 are not both 0 at the same time. So, a 1 a 2

is a nonzero vector similarly b 1 b 2 is a nonzero vector. So, if the boundary conditions at

2 ends are like this, then what we have got with this Sturm Liouville equation is a regular

Sturm Liouville problem it is a boundary level problem. Now in a very specific case

where this function r has equal values at both the boundaries at a and b. In that case

another special kind of boundary condition is also will define a Sturm Liouville problem

and that is if y a and y b are equal similarly, y prime a and y prime b are equal. 

So, this will define what is called a periodic Sturm Liouville problem, this makes sense

direct sense in a situation where the variable under question say x is a cyclic variable like

the angular position theta on a cylinder. So, in that kind of a situation r 0 and r 2 phi will

be same. So, in that case this is a natural condition y 0 and y 2 phi is same, y prime 0 and

y prime 2 phi will be same. So, this is the periodicity involved. So, over that interval a to

b if we try to define the problem, then this will  be the boundary condition which is

periodic in nature.

So, we define we can define a periodic boundary problem with this kind of a condition

which is fundamentally different from this kind of a condition, and this will define a

Sturm Liouville problem the periodic Sturm Liouville problem when r a is equal to r b,

that  is this  function has same value at  the 2 end points of the domain interval.  In a

singular Sturm Liouville problem, which is a very special critical kind of a case in which

if this function r a is 0 at one boundary say at x equal to a, then to define the Sturm

Liouville problem at that boundary we do not need a boundary condition.

Similarly, if r b is 0 then at that boundary at x equal to b, we will not need a boundary

condition and in that case while solving this boundary value problem, we will just look

for bounded solutions over a b, that is solutions y of x we will look for in this interval

which are bounded functions of x that is which are continuous and bounded do not get

undefined that kind of a solution we will just look for over the interval.



Now with this differential equation with this kind of boundary conditions or with lag

with no boundary conditions in the case of singular problem, as we define a boundary

value problem, like that what are the solutions of such a boundary level problem defined

as the Sturm Liouville problem and what are the applications of them. The great property

of the solutions of such a boundary level problem is the orthogonality. And the way we

have defined the problem itself the proof of the theorem turns out to be quite straight

forward if y m and y n are 2 Eigen functions or solutions of the Sturm Liouville problem

defined as such defined as earlier corresponding 2 distinct Eigen values lambda m and

lambda n that is corresponding to different lambdas lambda m and lambda n if these are

the 2 Eigen functions 2 solutions.
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Then they turn out to be orthogonal with respect to each other with the weight function p

x here. So, this is the definition of orthogonality of 2 functions y m and y n over this

interval a to b i-th weight function p x. So, mutually the 2 functions will be orthogonal if

they are the solutions of the Sturm Liouville problem corresponding to different Eigen

values distinct Eigen values. Now this can be proved quite easily, what we do for that is

that if y m and y n both are solutions of that boundary value problem that we have

defined; that means, they are in particular the solution of the differential equation also

and that will mean that y m is a solution of the differential equation corresponding to

Eigen value lambda m will mean this and when we multiply this with y n we get this ok.



So, this multiplied with y n is here and this term with multiplied y n has been taken on

the other side of the equality. Similarly y n is a solution of the differential equation with

the Eigen value lambda n that will be this, and this equation we multiply throughout with

y m and then we get  this.  Now simply we subtract  these 2;  as  we subtract  these 2

equations q terms will cancel out, and we will have lambda m minus lambda n into p y m

y n that is the integrants here. So, we will get this and on this side we will have this

minus this right so; that means, this will be positive that is here and this will be negative

which  is  here  and  in  between  these  2  terms  are  actually  same  we  have  added  and

subtracted.

Now, these 2 terms together will be the exact derivatives of r y m y n prime, see r y n

prime derivatives into y m plus y m derivative into r y n prime and similarly these 2

terms together will give us the derivative of this r y n y m prime. So, together the 4 terms

will be the derivative of this whole thing and that is equal to this. Now we integrate both

sides from a to b and these are this is constant. So, this stays outside the integral and we

have got this which is equal to this is exact derivative of this bracketed expression. So,

its integral will be this bracketed expression with the limits at x equal to a and x equal to

b subtracted that is that entire expression at x equal to b minus that entire expression at x

equal to a.
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Now, note the 3 kinds of boundary conditions, in the regular Sturm Liouville problem we

had this boundary condition a 1 y m plus a 2 y m prime, at x equal to a is 0 and a 1 y n

plus a 2 y n prime at x equal to a is 0. Since y m and y n both are solutions of the Sturm

Liouville problem. So, that condition at x equal to a is satisfied or satisfied by both y m

and y n. So, they constitute these 2 equations and now since a 1 and a 2 are both not

zero; that means, this system of 2 equations has a non trivial solutions, which means that

this coefficient matrix is non this coefficient matrix is singular, which means y m y n

prime minus y n y m prime at x equal to a is 0. Similarly the other boundary condition

satisfied by y m and y n will mean that this is also 0; that means, this is 0 and this is 0

and; that means, this entire side is 0 and since lambda m and lambda n are distinct Eigen

values they are not equal; that means, this is nonzero which will mean that this integral is

0.

Now, in a singular Sturm Liouville problem r a and r b both are 0 both are same. So,

now, r a and r b are both 0 in a singular problem in periodic problem they will be same.

So, r a and r b both are 0 in a in a singular problem or if the singular problem has a

singularity  only  at  one  end  and  not  at  the  other  then  at  whichever  end  it  has  the

singularity that is say only r a is 0, then at x equal to a we do not need a boundary

condition if r b is 0 then at that end we do not need the boundary condition; that means,

if this is 0 then we do not need this to be 0.

Similarly, if this is 0 then we do not need this to be 0 if at both ends of the domain we

have r x equal to 0 that is r a and r b both 0, then we do not need boundary conditions at

either of the end anyway this will this entire expression will become 0. In a periodic

Sturm Liouville problem r a and r b are not equal, but are not zero, but they are equal to

each other r a is equal to r b and in that case y a and y b same y prime a and y prime b

same will constitute the periodic boundary condition, which will mean that r a and r b are

same and this bracketed expression and this bracketed expression will turn out to be the

same and in that case also though individually the terms are not zero, but their difference

will vanish.

So, in all the 3 cases of the Sturm Liouville problem defined regular singular as well as

periodic, we find that this right hand side vanishes and lambda m not being equal to

lambda m lambda n that will mean that this integral will vanish in each of the 3 cases.

So, we find this and this shows us that y m and y n are orthogonal functions with respect



to the weight function P x over this interval and that shows that if the 2 Eigen functions 2

solutions of the Sturm Liouville problem that we take corresponding to distinct Eigen

values, then they must be orthogonal to each other. Similar is a situation of the Eigen

value algebraic Eigen value problem of the symmetric matrix, when we took the 2 Eigen

vectors corresponding to distinct Eigen values and found the 2 Eigen vectors must be

orthogonal similar is the case here.

You can extend this and also say that Eigen values of a Sturm Liouville problem are

necessarily real and the way you prove that is also similar to the algebraic Eigen value

problem,  you  assume  a  complex  Eigen  value  and  then  force  Eigen  function

corresponding to that to satisfy the Sturm Liouville problem and then you can show that

the imaginary part  turns out to  be 0,  the way we found the corresponding result  for

symmetric matrices. Now as an example of this orthogonality let us take the Legendre

equation which we studied in the previous lecture previous lesson.
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You will recall that this is the Legendre equation in which case this is already in the self

adjoint form why because the derivative of this coefficient of y double prime is minus 2

x which is exactly the same as the coefficient of y prime.

So, it is already in the self adjoint form and these 2 terms together can be written as the

derivative of 1 minus x square into y prime and that is exactly what we will do when we

consider that in our context here, say we take the Legendre equation which is this. 
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The 2 terms having y double prime and y prime we have put together here and k k plus 1

is sitting in the place of lambda the Eigen value. Here in place of r x we have got this

function in place of q x we have got 0 in place of p x which is here we have got 1 and in

place of lambda we have got k k plus 1. Now if we find 2 solutions of this corresponding

to different values of lambda; that means, different values of k k plus 1 lambda m is m m

plus 1 lambda n is n n plus 1.

Then we can write down the corresponding solutions as y m and y n and continue with a

with an analysis which is similar to the general case that we considered here, but we can

also observe that this turns out to be a singular Sturm Liouville problem over the interval

minus 1 to 1, because this function r x 1 minus x square is singular is 0 this is 0 at x

equal to minus 1 and x equal to 1 that is at a and b a equal to minus 1 b equal to one at

these 2 values this function is 0.

So,  over  this  interval  from  a  to  b,  this  differential  equation  without  any  boundary

conditions  defines  a  singular  Sturm  Liouville  problem  and  as  such  the  Legendre

polynomials P 0 P 1 P 2 P 3 P 4 etcetera that we will get we will turn out to be mutually

orthogonal with the weight function p x in this case it is 1; that means, that other such

families of solutions or Eigen functions of Sturm Liouville problems will turn out to be

mutually orthogonal with respect to the weight function p x, which appears in the place

here in the general Sturm Liouville equation format here that function is 1; that means,



the Legendre polynomials will turn out to be orthogonal with respect to one; that means,

we will have this integral equal to 0 for every case of m not equal to n and if so, then we

already know that Legendre polynomial of order k turns out to be a case (Refer Time:

48:48) polynomial expression right and then if we have P 0 as 1, P 1 as x, P 2 which is

this ok.

So, then we will find actually P 2 is 1 by 2 of 3 x square minus 1 as we found in the

previous lecture. So, then we can see that 1 can be expressed in terms of P 0, then x can

be expressed in terms of P 1, x square can be expressed as a linear combination of P 2

and P 0, x cube can be expressed as a linear combination of P 3 and P 1 and so on; that

means, that all ordinary polynomial terms 1 x x square x cube x to the power 4 etcetera

etcetera can be expressed as linear combinations of P 0 P 1 P 2 P 3 P 4 etcetera. So, x to

the  power 4 will  consist  up to  P 4,  x  to  the  power  k  will  be  expressed  as  a  linear

combination of P k, P k minus 2, P k minus 4, P k minus 6 up to either P 1 or P 0 and so

on.

If these turn out to be expressed in terms of the Legendre polynomials up to that order

that will mean that suppose we have gone up to till this point, then we say that P 5 that

will  define  will  be  orthogonal  to  each  of  these  expressions  because  this  is  a  linear

combination of P 0, this is linear combination of P 1 that is up to this 1 x square, x cube,

x to the power 4 all these are linear combinations of P 0 P 1 P 2 P 3 P 4 then P 5 will be

orthogonal to P 0 P 1 P 2 P 3 P 4 as we have found from here and that means, P 5 will be

orthogonal to any linear combination of these 5 Legendre polynomials P 0 to P 4, which

will  mean  that  these  5  will  be  orthogonal  to  all  these  5  functions  and  any  linear

combination of themselves; that means, that P 5 will be orthogonal to all polynomials up

to the fourth degree.

Similarly, P 7 will be orthogonal to all polynomial expressions of the sixth degree and so

on. So, P k will be orthogonal to all polynomials of degree less than k. So, this gives us a

handle to represent  the polynomial  polynomials  or other  functions  in  terms of linear

combinations of Legendre polynomials. Other such families of Eigen functions also can

be used for similar purposes and that is the great use of the solutions of Sturm Liouville

problems or Eigen functions of a Sturm Liouville problem.
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Now, this case of real Eigen values we can vomit the proof of this, but you can try to

establish this small result in the same manner as we did in the case of symmetric matrice.
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Now, we  come  to  the  most  important  application  of  the  Eigen  functions  of  Sturm

Liouville problems, and that is for function representation. So, Eigen functions of an sl

problem  give  us  a  convenient  and  powerful  tool  to  represent  and  manipulate  fairly

general  classes of functions.  So, for function representation if  you select a family of

functions y 0 y 1 y 2 y 3 etcetera which are continuous functions over an interval which



are usually orthogonal. Then a representation of a function over this interval could be

made as a linear combination of this family of course, this will be an infinite series in

general and this kind of a series is called generalized Fourier series, which is analogous

to  the  representation  of  a  vector  as  a  linear  combination  of  several  basis  vectors

orthogonal basis vectors.

Now, how to determine the coefficients? To determine the coefficient a n we can do a

similar thing as we could do in the case of ordinary vector spaces and that is we take the

inner  product  of  this  f  with  the  n-th  function  in  this  for  which  we are  seeking  the

coefficient and if we construct this inner product, that will in the case of functions the

inner product is given like this which we have studied earlier in the context of function

space.
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Now if we substitute the expression the summation expression for f x here sum of a m, y

m then we will find that this integral will give us a series of inner products like this.

Now, since y m and y n are orthogonal corresponding to m not equal to n therefore, in

this sum only that particular term in which m and n are equal will survive all others will

become 0. So, you will get this and y n norm turns out to be the square root of the inner

product of y n with itself  which is this. Now these this a n which we get out of the

division  of  this  inner  product  with  this  norm  square  turns  out  to  be  the  Fourier

coefficients.



Now other than the orthogonal family of functions y 0 y 1 y 2 y 3 we could also say that

we  look  for  orthonormal  family  of  functions,  in  which  all  functions  are  mutually

orthogonal and each of the basis functions has a unit norm, in that case from the same y 0

y 1 y 2 etcetera we could have defined phi 0 phi 1 phi 2 etcetera like this which will be

an orthonormal basis and in that case the Eigen function expansion in orthonormal basis

will be given like this.
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Now, the question arises what c 0 c 1 c 2 etcetera will give us the best representation of

the function and that is very interesting result that is, if we say that we are looking for an

expansion of this kind and then up to capital N times if we take a finite sum a finite

number of terms if we keep in hand, then we will get this phi n that is sum up to capital

N. Then in that case the error will be this actual F minus phi N norm square, and when

we try to put that f x and this phi n here and try to find out which values of alpha 0 alpha

one alpha 2 etcetera this norm will be this error norm square will be minimized, then we

find that the first order condition del E by del alpha n equal to 0 will give us alpha n

equal to C n.

That means the previous method of finding the coefficients based on the inner products

will give us that particular composition for a finite number of terms in the series, which

gives us the least square error. And that is why the least square approximation or as it is

called  the  best  approximation  in  the  mean  involves  these  orthonormal  coefficients,



orthonormal components and the coefficients based on the inner product as we have seen

earlier.
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Now, using the Fourier coefficients you can find out the error the least error that you get

as this, this is something like the vector error that is for this vector if you try to represent

with the help of several vectors in the space several basis vectors, then if you take a

partial sum not taking all the basis vectors, then the error that remains will turn out to be

this square plus whatever minus whatever components you have accounted for. So the

size of the function square minus whatever components you have accounted for will turn

out to be the error square that has remained.

Now since this is greater than equal to 0. Therefore, you find that the sum of the squares

of the coefficients is always less than equal to square of the function norm and this is

called  the Bessel  s  inequality, and if  you if  the  number of  terms  capital  N tends to

infinity, then the sum converges to the function norm and that is called the Parseval’s

identity.
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Now, we can  omit  this  steps  and the  most  important  result  out  of  this  entire  Eigen

function expansion is that this is Parsevals identity. So, we say that an orthonormal set of

functions on an interval is said to be complete in a class of functions or to form a basis

for it, if the corresponding generalized Fourier series convergence to the mean in the

mean to the function. That is as you include more and more components as you include

more and more terms, the sum of the terms converges to the actual function then you will

say that for all functions in that class. 

Then you say that that set of basis functions is complete in that class of functions and

here  is  the  great  use  for  the  solutions  of  a  Sturm  Liouville  problem,  that  is  the

generalized Fourier series in terms of Eigen functions of a Sturm Liouville problem, turn

out to converge for all continuous functions with piecewise continuous derivatives. That

is  functions  of  this  kind  with  which  are  continuous  and  the  derivatives  also  are

continuous piecewise for all such functions, the solutions of a Sturm Liouville problem

turn out to form a complete class of basis functions and therefore, they serve to expand

the arbitrary functions of this class in order to represent and manipulate them.

In the coming two lectures we will consider a few cases of such representations and that

will  include  Fourier  series  and  its  generalizations  in  terms  of  Fourier  integrals  and

Chebyshevs polynomials.

Thank you.


