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Good  morning.  In  the  previous  lecture,  we  studied  solution  of  systems  of  ordinary

differential equation. Today we will apply that knowledge, apply those method to the

problem of stability analysis of dynamic systems. At length, we will discuss the special

case of second order linear systems, because of two reasons; one reason for by second

order,  and  the  second  reason  for  why  linear.  As  I  outlined  in  the  last  lecture  a

predominant number of dynamic systems appearing in nature are follow a second order

dynamics. And therefore, the analysis of second order dynamic systems becomes very

important. And apart from that up to second order analysis is to a good extent possible

and a lot of analysis is possible because you can show that analysis on a piece of paper.

Any plot  that  you  make  on a  piece  of  paper  or  the  one  that  we will  make  on the

blackboard once in a while all of that is actually two-dimensional. So, if we have two

straight variables then we can represent the behavior of the dynamic systems in a two-

dimensional plot.



Now why linear because it is first of all easy to analyze linear systems to a great extent

for non-linear systems the analytical procedures get blocked after a point. So, for linear

systems, we can analyze to a great extent, and theoretical predictions or theoretical study

which have far reaching consequences we can draw in a major way in case of linear

systems.  And many actual  systems are either  linear  or to  a  good extent  they can be

approximated by linear approximation. Therefore the second order linear systems have

got enormous amount of research focus for quite a few centuries and the basic facts basic

analysis regarding the stability of second order linear dynamic systems is what we will

consider for the major part of this lecture. And after that we will consider a few issues

regarding higher dimensional or higher order systems and non-linear systems how we go

about stability analysis of those systems beyond second order and beyond linear.

(Refer Slide Time: 03:11)

So, first we go to second order linear systems; and among them particularly we will

consider the autonomous system, second order autonomous linear system. Now, the point

is  that  why  we  are  considering  autonomous  because  stability  analysis  will  make

particular  sense  in  the  case  of  autonomous  systems  where  there  will  be  certain

equilibrium points around which we will discuss the issue of stability. So, suppose we

take a system of two first order linear differential equations like this. Now, note that we

are talking about second order, but we are actually considering two first order differential

equations. Now, there is no discrepancy here, there is no mismatch in the two issues,



because a single second order differential equation can be always broken down into two

first order differential equations as we do in straight place.

So, in straight place a single second order differential equation will also be broken down

in this manner in which there will  be two straight  variables.  So, whether the system

originally  consists  of  two  first  order  differential  equations  or  one  second  order

differential  equation  broken  down  into  two  first  order  differential  equations  for  our

purposes, there will be no difference between the two. Now, in this case we have this

vector equation with in which this entire thing has been written together. And here the

matrix A is 2 by 2 and we have got a system of two first order linear homogeneous

differential equations which are with constant coefficients. So, a 11, a 12, a 21, a 22 these

are constant. Now and it is autonomous also, so anyway these things had to be constant.

In the case of second order systems a lot of terminology got developed when this entire

study was in the hands of people, who were primarily physicists and quite a few words

related to phase have entered into the (Refer Time: 05:25). So, in this kind of a situation

phase means  a  pair  of  values  of  y  1 and y 2 that  is  the  actually  the state  what  we

otherwise call state in this discussion quite often we will be calling it as phase. So, one

value  of  y  1,  and one value of  y  2 consists  of  one  state  of  this  system and in  this

discussion quite often it is also referred to as phase.

Now, if we plot y 1 in one of the axis in our graph paper, and y 2 along the other axis

then the plane in which we will be making the plot that plane is called the phase plane,

the plane of y 1 and y 2. Now, in the phase plane in the plane of y 1 and y 2 from one

point if we start and then that can be considered as the initial condition for the system of

differential equations. And then from there if we draw curve draw a curve, which obeys

this differential equations then that curve is called a trajectory that is as we consider the

independent variable as time then this curve this so called trajectory will show along

which path  in  the  phase plane  the  system will  evolve.  So,  this  trajectory  is  a  curve

showing the evolution of the system for a particular  initial  value problem that initial

value is demarcated by the initial point with coordinate y 1 and y 2 which we can put at a

point.
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Now, in the phase plane then if we start from say this point then the curve can go in some

way. So, this will be a trajectory. Now, if there is another point from where we start we

will get some other trajectory, if we start from another point we may get some other

trajectory right. Now, these trajectories when we put all trajectories that is a number of

trajectories which will represent all trajectories in the sense that how much is the density

of trajectories, you plot that is up to you. But if you go on plotting dense enough set of

such  trajectories  then  together  they  will  show  the  dynamic  behavior  of  the  system

starting from all possible initial conditions, so that picture is called the phase portrait. All

trajectories together showing the complete picture of the behavior of the dynamic system

that is called the phase portrait.

Now, in this analysis we will be considering the case of non singular A that means, no

degeneracy only the non degenerate case as we did last time in the previous lecture;

similarly here also we will consider non singular coefficient matrices in this place A. So,

that will mean that the equilibrium point will be only isolated equilibrium point. And in

this  particular  case,  where  it  is  linear  homogeneous  then  the  only  equilibrium point

possible will be the origin because with non singular A, A y will be 0 only at y equal to 0

that is y 1 equal to 0, y 2 equal to 0, this will be the only equilibrium point. And around

that if we can complete the analysis then in a way we would have finished analysis for

this particular system. So, we will be allowing isolated equilibrium points and matrix A

is the non singular, origin is the only equilibrium point.



And then how is the behavior of the dynamic system round this equilibrium point will be

governed by the Eigen values of this, because the two Eigen values will show will give

us two components of the solution both exponential in general and then the combination

of that the linear combination of that we will show the complete behavior. So, if we try to

find out the Eigen values of this matrix coefficient matrix then as you know we will be

first trying to solve this. And from there we will get a quadratic equation in lambda so

that quadratic equation will be this-this minus this-this right. So, lambda square minus

the sum of these two lambda plus this product minus this product equal to 0. So, this will

give us the characteristic equation and that is what we have got here.

Now, we will represent for a particular reason, this sum has p and this quantity this value

as q that means, this is a trace and this is the determinant of the coefficient matrix. So,

trace of the negative of the trace, negative of the trace of the coefficient matrix is this that

we will be presenting as p and this determinant we will be representing as q.

(Refer Slide Time: 11:23)

As we do that we get this as the characteristic equation right with p as a 11 plus a 22

which is the sum of the Eigen values and q which is the determinant which is the product

of the Eigen values. Now, we will consider different cases that may arise. We know that

discriminant of this quadric equation is p square minus 4 q, and depending upon whether

this is positive or negative we have different cases of the way we will get the two Eigen

values. Now, first consider this issue that is of course, the two lambdas will be given by



this standard formula for the quadratic equation solution. Now, a particular case, where q

is negative that is the two Eigen values product, the product of the two Eigen values is

negative that is a situation where this discriminant is always positive, because this is p

square.

Now, if q is negative that means, whole thing is certainly positive. Not only that it is

positive and it is larger than p square. Why is that important because in that case this d

will be positive and its square root will be larger than the magnitude of p, and that will

mean that this term which will be root D by 2 will be larger in magnitude than p by 2.

Now, this term in the two Eigen values will appear with opposite signs plus and minus.

Now, if this one if this term has larger magnitude than this then that will mean that when

we take the plus sign this entire value will turn out to be positive, this fellow p by 2 of

whatever time cannot dominate this. So, the sign of the lambda sign of the Eigen value

will be dominated by this term because root over D is larger in magnitude compared to p.

So,  when we take  the  positive  sign,  we  get  the  positive  root  and when  we get  the

negative sign here we get the negative root because this fellow this term will not be able

to dominate over that.

So, in the case of negative q, two things will happen one that this will be positive and

therefore, the roots will be real and this will dominate over this term and therefore, two

roots will be of opposite signs. So, when we have that two roots will  be of opposite

signs. So, now in that case we have got this now there are two different roots distinct

roots so obviously, it is diagonalizable matrix. So, in that case we get the two solutions

like this.  Now, note that one of them is positive the other is negative.  Now, the two

corresponding Eigen values are Eigen vectors one is x 1, the other is x 2.

Now, if lambda 1 is larger that will mean that and that is say, now one will be positive,

the other will be negative. Now, if one is positive and the other is negative that means,

with time the positive one will go that means, its magnitude e to the power lambda 1 t

will  go on increasing  exponentially, and in  that  case this  one will  go on decreasing

exponentially. And that will mean that around origin, note that we are discussing the

behavior around origin because if the initial conditions are given at origin then it will the

system will remain there that is the characteristic of equilibrium points anyway.



Now, around the origin whatever point we take and we put that point in this plane around

origin near origin somewhere here. And in that case if the two Eigen vectors x 1 and x 2

from here are have two directions.  Now, one Eigen value is positive,  so around that

direction whatever little solution whatever value is there, whatever initial condition is

there that will keep on growing. So, along that direction the motion with time will go on

increasing. So, whatever is the initial position as we decompose that along the two Eigen

vectors  the  component  along the  Eigen vector  with  positive  Eigen value  will  go  on

increasing with time and the component along the Eigen vector corresponding to the

negative Eigen value will go on decreasing with time. And that means, that over time the

trajectory will get aligned with the larger the positive Eigen value.

(Refer Slide Time: 16:24)

So, see here this will be the case. Now, if these are the two Eigen vectors then if we start

from here then with (Refer Time: 16:31) law, we can decompose the position vector of

this point into two component. One will be along this direction along which that Eigen

value is negative; that means, trajectory is come in; and the other component will be this

one  this  much  and  that  is  corresponding  to  positive  Eigen  value  along  which  the

trajectory go out. So, that means, this component will decay and this component will

grow, and that is why wherever we start if we start here then the component along this

will decay. So, it is coming like this and the component along this will grow So, it is

growing like this. So, all trajectories will move away, and finally, along this direction and

it will get as it goes far away the trajectories will get all bunched together with this.



So, the further away they are that much will be the difference, the two trajectories will

not cross, but all of them will get bunched along this. And if the starting point is below

this line then they will get bunched along this, so either forward or backward. So, all

trajectories  eventually  will  grow in  this  direction  and go away from the origin;  that

means, that this is an unstable equilibrium point. So, this particular equilibrium point in

that kind of a situation is unstable because if we start a little away from the equilibrium

point, a little away from the origin then the trajectory diverges further and further away

from the equilibrium point, so that is the hallmark of an unstable equilibrium point.

So, if q is negative and in that case we get two real Eigen values of opposite sign and in

that  case certainly the equilibrium point is unstable  and such an equilibrium point is

called a saddle point. So, one Eigen value positive, the other Eigen value negative. Now,

other than that if q is positive then what will be the situation note that q equal to 0 case is

not under discussion. Because q equal to 0 would mean that lambda equal to 0 is one

solution  which is  the  case when a is  singular  and that  will  mean that  one complete

subspace will be equilibrium point and that case we have omitted So, q equal to 0 case is

not in our discussion at all.

So, in the case of q negative, we will get saddle point which will be always unstable.

Now, if 1 is positive, now one point is easy to note that the nature of the equilibrium

point will be the same irrespective of the sign of p because p is appearing here as p

square. So, it will be symmetric with respect to the sign of p. So, let us consider p square

equal to 0, larger, larger, larger and so on. So, with q positive, if p square is 0 that is p is

0. If p is 0, then what we are getting we are getting D as minus 4 q and p is 0. So, if p is 0

then this goes off and here we have got a negative discriminant; that means, the Eigen

values will be pure imaginary.

So, if Eigen values are pure imaginary that is plus minus omega i kind of Eigen values

that will mean that when you decompose that exponential e to the power i omega t plus i

omega t minus i omega t. So, you will get basically cosines and sines. So, you will get

sinusoidal output and in that case you will  get this kind of behavior. So, around that

equilibrium point the trajectories will make a closed curve and such an equilibrium point

is called a centre. So, this is stable because started close to the equilibrium point, the

trajectory will remain close to the equilibrium point, it will never go too far.



Now, when you start at that point whatever is the distance compared to that the distance

might increase, but it will again decrease because it is a closed curve. So, this is one

particular case that is if p is 0.

Now, if p is greater than 0 that is if p is positive or negative, say p square is positive.

Now, when p square is positive then whether p square is less than 4 q or greater than 4 q

these two situations will give rise to two different kinds of equilibrium points. If p square

is positive and less than 4 q then this discriminant is nevertheless negative. So, this is

negative. So, in that case you will but then this is not zero this is not zero. So, there is a

non-zero part here and this is negative. So, it will be a full project complex number with

non zero real and non zero imaginary part.

And in that case you will get Eigen values which will be like lambda equal to mu plus i

omega  mu plus  minus  i  omega.  So,  in  that  case  a  solution,  this  solution  these  two

solutions. So, what you do in that type of situation you reorganize the coefficients and

say the solutions will be one solution will turn out to be like e to the power mu t cos

omega t; and the other will be e to the power mu t sin omega t. Now, this cos omega t sin

omega t term will try to give an oscillatory feature. However, this e to the power mu t

part will give the amplitude as variable the amplitude will be exponential.

So, in this kind of a situation, what you will have is that whether this mu is positive or

negative, according to that this solution both of them together will grow or decay right,

so that sign will be determined from here because in this case this is the only exponential

part this part will give you this sinusoid. So, the exponential part will grow or decay

depending upon whether p is positive or negative. In any case, it will be if it grows then

and this part will provide an oscillatory component. So, you will have either this going

inward amplitude decreasing, if mu is negative; and if mu is positive then along a similar

curve, the spiral will go out. And because of obvious reasons this kind of an equilibrium

point or critical point is called a spiral.

Now, we come to another situation that is if p square is greater than 4 q if p square is

greater than 4 q then this D is positive. However, with positive q its value its absolute

value will be less than this part. So, if q is positive, so p square minus 4 q is certain less

than p square. So, therefore, its square root even if positive will be certainly less than p

in magnitude,  so that will mean that this plus minus sign will  not play a role in the



lambda. So, final sign of lambda 1 and lambda 2 will be decided by the sign of p. So, if p

is positive then whatever large is this, it will be certainly less than this term. So, then the

total will be positive anyway. Similarly, if p is negative then even the positive sign taken

here will not be able to make the sum as positive. So, the sin of this entire lambda will be

determined by this and not by the plus minus term and therefore, both of them both of

the Eigen values will be of the same sign. Either both positive if p is positive; or both

negative if p is negative.

And that will save the solution from this kind of a situation where one goes and the other

decays in this case if p is positive then both will grow and if p is negative then both will

decay. So, that kind of a situation with the two Eigen values having different magnitude

will give rise to this situation. You see here there are two Eigen values correspondingly

there are two Eigen vectors this is one and this is another. In this case, the sign of p has

been taken as negative for this particular plot. In this plot, in all cases, wherever it is

possible to have a stable situation, we have drawn the stable case in all these cases. So,

here both the Eigen values have negative real part.  So, this  Eigen vector also comes

inward this Eigen vector also comes inward. But then if one of the Eigen values is large,

that means, that the rate of approach for that particular Eigen vector say e to the power 7

t and e to the power 2 t.

(Refer Slide Time: 26:25)



So, this one is large, this one is small. So, as t grows of course, you have negative if you

follow this particular kind of plot in which the arrows are inward. So, this is e to the

power minus 7 t this is e to the power minus 2 t. Now, this one will decay much faster

than this. And therefore, you see that the component along this one will decay much

faster.  So,  from  here  the  component  is  this  big,  but  this  is  decaying  much  faster

compared to this component. So, the component along the larger magnitude Eigen value

will  decay  extremely  fast  compared  to  the  other  one.  And  therefore,  finally,  all  the

trajectories will become tangential to this line, and this is called an improper node, there

are various other cases of nodes. Now this is the situation where the two Eigen values

have different magnitudes.

Now with the same sign if the sign is positive then along the similar trajectories the

system will evolve outward. And in that case, it will be unstable. In the case, which you

see here it is stable just like spiral it could be outward rather than inward. Similarly, here

also now this is called an improper node if p square is exactly equal to four q then what

happens then D is zero and then you have got both Eigen values same p by 2. Now,

depending  upon  whether  p  is  positive  or  negative,  you  will  have  the  Eigen  values

positive or negative, but both of equal magnitude as well as sign, so two equal Eigen

value.

Now when the two Eigen values of the matrix are equal then you are whether the Eigen

vector are full set of two Eigen vectors or only one Eigen vector is there, because with

repeated Eigen values the canonical form could be this or the canonical form could be

this. In this case, there will be two Eigen vectors linearly independent which will mean

that the entire plane is composed of Eigen vectors, all vectors along the plane on the

plane are Eigen vectors in this case; otherwise in this case there will be a single Eigen

vector. Now, if you have got both Eigen vectors that is if the matrix is diagonalizable

then all directions are Eigen vectors and along all directions the behavior will be same

and in that case you have got this situation and this is called a proper node.

So, whenever you start the system whatever initial condition you give the system will

evolve  directly  towards  the  origin  in  the  case  where  this  lambda  is  positive  sorry

negative. On the other hand, if this lambda is positive then from wherever you start that

is  an Eigen vector, so that position vector  initial  position initial  straight vector is  an



Eigen vector, so along that with positive lambda it will  straight go out with negative

lambda it will straight go in. So, this is called a proper node.

The last case where you have got p square equal to 4 q that means, D equal to 0; that

means,  lambda  both  lambdas  are  same  repeated  Eigen  value  and  the  matrix  is  not

diagonalizable.  In  that  case,  as  we  found  that  in  the  case  of  non-diagonalizable

coefficient matrix, you get this solution y from which you can determine y prime and you

get  situation  like this.  And here you see there is  a time element  coming here in the

coefficient here. So, from that if you analyze then you will find a very peculiar situation

of the phase space. If this is the single Eigen vector then all the solutions will approach

along this Eigen vector only, this is only one Eigen vector. So, all of them come like this.

In the case of negative Eigen value, it will come like this inward; in the case of positive

Eigen  value,  they  will  go  outward  with  the  arrows  reversed.  So,  this  is  called  a

degenerate node.

So, what are the types of critical points equilibrium points we found with real and real

Eigen values with opposite signs we have got saddle point which is always unstable. And

with pure imaginary Eigen values we have got centered, which is always stable, but this

is a border line case because any modeling error. And it might fall in the case of spiral

that is any modeling error and p turns out to be actually a little positive or negative that

will mean there will be an outward unstable or inward stable spiral.

Now, this is the case from p square equal to 0 to 4 q, greater than 0 and less than 4 q; p

square equal to 4 q will give these two cases both Eigen values same and Eigen vectors

both Eigen vectors existing only one Eigen vector proper node degenerate node. And in

the case of p square not equal to 4 q that is p square larger you have got two Eigen

vectors,  two unequal  Eigen  values  of  the  same sign,  and in  that  case  you have  got

improper node like this. A summary of all these cases you can see here in the table and

also in this plot in the plot of p q.
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So, you see with q negative this entire part gives you saddle point which is unstable; q

equal to zero case we have discarded because that is singular coefficient matrix with q

positive that is upper half of this p q plane, you have got saddle point is real opposite

sign Eigen value q negative. So, it is always unstable. Above the p axis, with p equal to

zero you have got this line long which you will get centered, and Eigen values are pure

imaginary this is the case which is stable. In the case of the p q point lying above this

parabola above this parabola p square equal to 4 q, you have got spiral. So, Eigen values

are complex and both real and imaginary parts have nonzero components. So, you get

here negative p stable spiral and positive p unstable spiral.

So, with p equal to negative you get unstable stable points here and with p equal to p

positive you get unstable whether it is spiral or node. So, in the case of nodes, you have

got several cases all with real same sign. So, they are stable, if p is negative; unstable, if

p is positive just like spiral. And here if the Eigen values are unequal in magnitude that

will mean D is positive that means, you are here and if you have got you are on the

boundary that is it is on the p, q point is on this parabola then that will mean one of the

these two cases. In the diagonalizable case, you have got a proper node; in the deficient

case, you have got a degenerate node. So, this is the complete breakdown of all the types

of equilibrium points that you can have in a second order linear system.
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Now, when you get a non-linear system say then what you can do is that around that

around every critical point that you get you can conduct an analysis of this kind, and find

out how the trajectories around that point will behave. And then you can compose the

situations around all the critical points together to complete the face portrait.

(Refer Slide Time: 35:11)

So,  for  a  non-linear  system  where  you  will  have  the  differential  equations  of  an

autonomous system in this manner then first you will try to find out critical points or

equilibrium points. And for a non-linear system origin may not be a critical point and



apart from that you will typically expect more than one critical points. Origin may be a

critical point among them, but there will be expected other critical points as well. So,

what you will do you will first solve f y equal to 0, and collect all the solutions of it. For

each solution of it say call it y 0 then around y 0, you will conduct a linearization and

you will capture the first order behavior of the system around every critical point with

this kind of a differential equation which is linear.

Now, as you put y minus y 0 as z then you will have z prime is equal to this Jacobian J

into z, and then this will be a kind of a system which we just analyzed. So, you can make

the  face  portrait  of  this  system and take  that  portrait  a  small  part  of  it  a  small  part

because this is first order analysis and will be valid only in the neighborhood and that

you can plug in at y 0 in the y plane. And similarly, at every y 0, you plug in a small size

portrait which you get through the analysis of this kind of a system, and then you can try

to assemble the entire face portrait of the original system. So, through the assembly you

will  find that  you are able  to picture  the entire  face portrait  even for the non-linear

system, so that shows that features of a dynamic system are typically captured by critical

points, and their neighborhood.

(Refer Slide Time: 37:38)

Let  us  take  a  small  example  say  we  consider  this  population  model  of  a  pair  of

competing  species  who  depend  on  similar  resources.  So,  suppose  x  and  y  are  the

populations of the two species as functions of time. And the dynamic system is each term



here  with  its  coefficient  has  a  meaning  this  coefficient  a  represents  the  rate  of

reproduction and growth of species x that is its inherent rate of growth positive. Now,

this B represents the result of interspecies rivalry between members of this same species

x,  so  that  is  why  it  is  the  interspecies  rivalry.  Rivalry  basically  depends  on  two

individuals, and the more number of individuals that are available as the first party of the

rivalry will make the rivalry sharper. Similarly, more number of individuals available to

form  the  second  party  in  the  rivalry  that  will  also  make  the  rivalry  even  sharper

therefore, it depends upon x square is proportional to x square. And this term comes as

with negative sign because of the interspecies rivalry where both individuals from the

species will try to corner the same resource, so that will in some way lead to decay of the

species, because they are fighting within themselves to corner the same resource to grow.

Similarly, this term shows the effect of interspecies rivalry with the other species trying

to  corner  the  same resources.  So,  this  capital  C represents  the  effect  of  interspecies

rivalry, rivalry with the other species its effect on the first species. Similar, coefficients a,

b and c, small a, b and c will represent the similar actions for the second species this is

small c. Now, with this you can see that this is a non-linear system.

Now, if you denote r as the vector x y, then this f of r will have two components this and

this. So, r prime will be f of r, which will have these two component. Now what will be

the Jacobian of this, Jacobian of this you can find out. And before that you can try to find

out what are the equilibrium points which are those points where if the population is

from the beginning at a particular time t equal to 0, then the population will be constant

will never change, what are those equilibrium points. So, for that you can solve these two

equations and find out those equilibrium points.

So, if you solve these two equations for x and y, you will get the solutions as one is one

solution is origin; obviously. So, you will find the solutions are origin A by B, 0, 0 small

a by small b; and the fourth one is complicated a b minus C a divided by d b minus c c, B

a minus A c divided by B b minus C c. So, these are the four equilibrium points. You can

verify very easily 0, 0 will and these are two quadratic equations. So, in total they will

have four solutions. So, origin is obviously, a solution. Now, if you take y equal to 0,

then this term goes off this term goes off, and then from here you will get x as capital A

by capital B, and y is 0 of course, so that is 0.



On the other hand, if x is 0, then this is 0, this is satisfied and sorry these are y. So, if y is

0, then this is satisfied and this is 0. So, x is a by b, and if x is 0 then this is satisfied

anyway and this is 0. So, y will become small a by b that gives you this. If neither x nor

y is 0, then the solution is a little complicated, but you can see that substituting this you

will find that these two equations are satisfied. So, these four points will fall here origin

capital B by capital A 0, 0 small a by small b and the fourth one will be somewhere here.

Now, around origin if  you now if you can find out the Jacobian matrix,  so you will

basically differentiate this with respect to x and get A minus 2 B x minus C y, this is x

derivative Now, the y derivative of this will be minus C x. Then x derivative of this will

be minus small c y and y derivative of this will give you this.

Now, you see at each of these four equilibrium points, you can find out the value of the

Jacobian. And then for every such point you will get the differential equation system up

to first order as y minus that equilibrium point any of the four, you can put there this

multiplied with the J at that point this will be z prime that is y prime minus y 0 that is y

prime itself. So, y prime and z prime will be same. So, we can put it like this. So, e

around each of the equilibrium points you can find out the value of the Jacobian by

putting the x,  y coordinates  of that  equilibrium point and frame a linear  system and

analyze.

You will be able to see very easily that this point is a node is an unstable node; and

because as x and y you put as 0, 0 then this matrix will be A, 0, 0, small a. So, this will

be  a  node both Eigen values  will  be positive,  so this  is  an unstable  node.  Why the

logically you find that if the initial population of both of them are not 0 that is if any one

of them or both have any nonzero small nonzero population that will mean that at that

time the resources are plenty because the members in the two species are very small. So,

lots  of natural  resources around. So, they will  go on consuming those resources and

grow. And at that time with small x, small y values these terms anyway will not play a

major role, these will be dominant.

So, growth of both will be supported. Of course, the one which is of larger growth rate

depending upon whether capital A is large or small a is large that will grow faster in any

case both of them will grow. So, you see that suppose capital  A is large that means,

around for this the growth will  be faster so that means that  all  trajectories  will  start

moving like this, like this in proper node. Now, at this point what is happening at this



point at this point you will find let us mention the Jacobian here, I will give you the

Jacobian at this point. The Jacobian at this point, at this point we had simply right. At this

point, the Jacobian turns out to be minus A minus C A by B 0 and a minus c a by b.

Now, for this Jacobian, you can see very easily that 1 0 is certainly an Eigen vector of

this matrix. Try to multiply this matrix with vector 1 0, you will get minus A plus 0; and

in the lower one you will get 0 plus 0. That means, if you multiply this with 1 0 you will

get minus A 0 1 0; that means, 1 into this plus 0 into this. So, you get minus A 0. So, that

means, minus A is the Eigen value and 1 0 is the Eigen vector. So, at this point, this is

one of the Eigen vector and along that the Eigen value is minus A, and that shows that

this point along this direction at least is stable.

Now, what is the situation along the other direction, along the other Eigen vector. And

that could be positive as well as negative, depending upon what is the other, what are the

values of these coefficients. So, one possibility is that this is the other Eigen vector and

that means, that if along this it goes in then along this it goes out like this. Similar could

be the situation here, this will be one Eigen vector. and this could be the other Eigen

vector. So, along this it will go in, along this it will come out, along this it will go in,

along this it will come out. So, you see that these directions these trajectories might meet

here, because at this point as you come it could be a an inward node that is stable node.

So, try to analyze this particular case, the analysis is there in the book try to in the text

book that we are considering. So, the entire analysis is there in the book. So, as you

consider different cases you will find that if you draw the phase portrait around these

four  equilibrium points  and try  to  assemble  together,  you will  find  that  you get  the

complete picture of the face portrait of the system.

Now, here we will raise another question other than the non-linearity one question within

non-linearity and another question apart from non-linearity regarding dimensions. There

is one particular feature, which is not covered in the analysis here. Here we found saddle

points, centre, spiral node these kinds of equilibrium points. Now, linear systems can

have  only  this  much  only  these  many  features  such  points  they  can  have.  There  is

something else, which is possible in non-linear systems. Non-linear systems also will

have in  certain  points equilibrium points  which are nodes,  saddle points,  spirals  and

centre  points,  but  apart  from that  in  the  case  of  non-linear  systems there  is  another



feature which is possible that is for limit cycle. And in that case you have isolated closed

trajectories,  this  is  not  like  centre  point,  around  centre  point  centre  point  is  one

equilibrium point around which there are trajectories which happen to be close.

Now, limit cycles are completely different. The entire close trajectory is such that the

entire trajectory behaves like equilibrium point kind of thing. So, this kind of a feature,

this kind of a situation can arise only in non-linear systems. In chapter 29, in one of the

exercise problems, this example exercise 29-2. The exercise simply is an exercise on

numerical solution of one second order differential equation, but then if you analyze it

for  enough time or  if  you study the solution  of that  particular  exercise  given in the

appendix of the text book, you will find that this case gives you a limit cycle. And that

shows that if you start from outside the limit cycle say it is the limit cycle is a close

trajectory like this  and if  you start  outside then this  is  the trajectory and finally, the

trajectory merges on the limit cycle does not go in.

On the other hand, if you start from inside say from here then you go outside and then

you merge with the limit cycle and do not go out. So, this cycle this closed trajectory is

called a limit cycle that kind of a thing is possible only in the case of a non-linear system.

This particular example of exercise 29-2 is this non-linear differential equation. This is a

non-linear, see this is a non-linear here. So, this non-linear equation will give you a limit

cycle of this kind. So, limit cycle is one feature of non-linear dynamic systems, which

the linear analysis, linearized analysis will not be able to capture.

Now, one more issue what do you do in systems in the case of systems with higher

dimensional  straight  space,  there  straight  forward  face  plane  analysis  you  cannot

conduct. However, you can always try to linearize the system of equations around every

equilibrium point like this and then conduct linearized analysis and then try to work out

the features. Now, in the case of non-linear systems quite often you might find that in

one sub space of the straight space, you get a spiral like feature where the other sub

space shows a node like feature, so that kind of a situation is possible. So, such things

might happen in the case of higher dimensional straight space. There is another technique

of analysis of stability for non-linear dynamic systems and that is the famous Lyapunov

stability analysis.
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There  are  quite  a  few  important  term  as  said  with  Lynpunov  method,  the  precise

definition of stability here is this. If y 0 is a critical point of the dynamic system this, and

for every positive epsilon if there exists a delta such that the initial point taken within a

delta distance of the critical point keeps the system always within an epsilon distance

then you say that the critical  point y 0 is stable. What is the idea here that is if you

prescribe  epsilon  that  is  if  you  say  that  will  your  system remain  within  this  much

distance  of  the  critical  point  then  you  answer  that  yes  it  will  remain  if  you  start

sufficiently close say within delta distance.

If you can say so that if there exist a delta such that if you can say if you can prescribe

such delta for every given epsilon then you say that this point y 0 is a stable critical

point. That is if you can keep the system close enough by starting close enough then it is

a stable critical point. There may be situations where whatever close you start eventually

you will go far away from the critical point then that critical point is called unstable. So,

this is the criteria for stability. If further not only that it stays close if as enormous time is

passed eventually  if the point y 0 is approached then you call  that point as not only

stable, but asymptotically stable.

You  would  be  able  to  see  that  in  the  earlier  case,  stable  nodes  and  spirals  were

asymptotically stable. On the other hand, centre points which were always stable were

stable,  but  not  asymptotically  stable,  because  in  that  case  the  trajectory  does  not



approach the critical  point. In the stability analysis, due to Lyapunov there is another

important issue there is another important term that is the positive definite function. A

function with value zero at the origin, if it is always positive for non-zero points that is

away from origin and that is called a positive definite function, as we know positive

definiteness in general.

What is a Lyapunov function? If positive definite function of the straight vector having

continuous partial derivatives with a negative semi-definite rate of change that is if V is

positive definite function, but if its rate of change with respect to time, it was respect to

the independent variable T is negative definite or negative semi-definite then you call it a

Lyapunov function. A Lyapunov function is actually a an abstraction of the concept of

energy in physics. So, energy is can be considered as a positive definite function total

energy.

And then the way the system evolves is in order to decrease the total energy, so its rate of

change with respect to time is negative it could stay at constant for that matter that is v

prime could be 0, so that if I semi definite is there. So, this kind of a function which is

positive definite  function of y, but its rate of change with respect to the independent

variable T is negative semi-definite such a function is called Lyapunov function. With

this kind of a definition the actual stability criteria becomes quite straightforward and

that is the theorem.
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That is for a system like this with the origin as a critical point. If you can construct a

Lyapunov function, which is positive definite with a negative semi-definite rate then you

can conclude that the system is stable at  the origin. Further if v prime is not simply

negative semi-definite, but negative definite then that will mean that energy will not only

be non-increasing,  but it  will actually  decrease and in that case you can see that the

trajectory will actually approach the critical point. And in that case, it is asymptotically

stable. So, it is actually a generalization of the notion of total energy. So, negativity of its

rate will corresponding to trajectories tending to decrease this energy.

Now, Lyapunov s method is important because in the case in the non-linear case or in the

higher  dimensional  straight  space  case  or  in  the  in  those  cases  where  the  linearized

version  of  the straight  space of  the  straight  equation  if  the  linearized  version of  the

straight equation is unable to allow any analysis in such cases Lyapunov s method turns

out to be a useful method for analyzing the stability of a non-linear system. However,

caution should be exercised in using this Lyapunov’s analysis because it is a one way

criterion only. If you can construct a Lyapunov function then you can say that the system

is the origin is  a stable  point of the system, but if  you fail  to construct  a Lyapunov

function that does not mean that the system is unstable. So, it is only a one way criterion.

(Refer Slide Time: 60:25)

So, in this lesson the important issues that we have studied are analysis of second order

systems,  critical  points  of  different  kinds,  and  non-linear  systems  with  their  local



linearization  to  describe the system, and straight  space analysis  which has enormous

application  in  branches  of  science  -  physics,  engineering,  economics,  biological  and

social processes. So, this in a way completes one module of our course, from the next

lecture  again  we will  go  back to  solution  of  differential  equations  certain  situations

where analytical method fail, but much better than numerical methods we can use and

that  is  three  solution.  So,  next  lecture,  we  will  start  three  solutions;  and  in  that

continuation,  we  will  slowly  move  from  the  study  of  differential  equation  to

approximation theory.

Thank you.


