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Good  morning.  Today  we  will  study  one  of  the  most  important  lesson  of  applied

mathematics and that is Numerical Solution of Ordinary Differential Equation.

(Refer Slide Time: 00:28)

In many courses and many textbook of differential  equation  you might  find that  the

analytical solutions of differentials equations are discussed first and then it is said that in

all cases you may not be able to solve the differential equation analytically. In fact, in

majority of cases you will not be able to solve and in such situations, we must resort to

numerical solution.

However, we prefer to precede the discussion of analytical methods by the solution of

differential equations by numerical means the reason is that this is most general and this

is the way of historical development way of the field also that is first the initial attempts

where in terms of finding the values of the solution function. And it was later found that

in certain situations the solution can be expressed in terms of full form expressions in



special cases. So, in those special cases where certain analytical solution is possible we

can do much more than getting just values, but is it is the values of the solutions which

have the prime base in terms of the determination of the solution of ODE.

So,  we follow that  methodology that  sequence  of operations  first  we try to  find the

solutions in the most primitive manner in terms of numbers and then we will examine

how sensible are the resulting numbers and then we will consider those special cases in

which  analytical  solutions  are  possible.  So,  first  we start  with numerical  solution  of

ordinary differential  equations this will be our last topic in the module of differential

equations and this uh in the module of numerical analysis and it will be a bridge between

the  module  on  numerical  analysis  and  the  next  module  which  is  going  to  be  on

differential equations. So, this topic we will cover to 3 lectures starting from the current

one.

(Refer Slide Time: 02:57)

First  we  consider  the  straight  forward  problem  of  one  differential  equation  in  one

independent one dependent variable one function one independent variable x and one

dependent variable or function y unknown function which we want to determine now this

is a first order differential equation in y with an initial condition given that is at one value

of x the value of y is given. So, this makes it an initial value problem the initial value of

y is given at x 0 and then for all subsequent values of x that greater than x 0, we want to

find out the values of y.



Further matter we could have asked for the values of y for x values which are less than x

0 as well it is equivalent. So, we want to determine y of x for x in an interval a to b with

a being the initial value of x that is x 0. Now this is in a way somewhat another ways to

an integration problem y here we have got d y by d x and we want to find out y. So, it is

in a way integration and therefore, you will find that numerical solution of ODE have a

lot similarities with the numerical integration problem only major difference is that this

side the d y by d x is not dependent on x only, but it is dependent on x as well as y.

So,  a  first  order  differential  equation  first  we put  in  this  form in which  we get  the

expression for d y by d x in terms of x and y. Now if we are lucky if it just happens that

this function turns out to be d from y, then it is a straight forward integration on the other

hand if it is dependent on x and y, then we cannot solve the problem just by integration.

So, in that case what we can do still is that we may say that we will take a very small

step to begin with. So, starting from point x 0 y 0, we will ask first that just a little ahead

of x 0 at x 0 plus h what is the value of y that is at x 1 what is y one. So, we have x 0 y 0

the point starting point and we want the next point x 1 y 1 where x 1 is only slight ahead

of x 0 that is x 0 plus h.

Now,  for  that  very  small  interval  if  we  can  consider  this  function  not  to  change

significantly then what we can say we can say that the value of that function we evaluate

at x 0 y 0 and that derivative that slope we multiply with the small change in x that is h

and that gives us the corresponding change in y and that delta y we add to the current y 0

and get next value of y that is y one. So, that gives us a point x 1 y 1.

Now, we know that y of x 1 is y 1 and d y by d x at that point we will be able to find out

from f of x 1 y 1 f is a known function. So, we go on repeating these kind of small steps

up to x equal b this is indeed a method and shortly; we will see that this is a method with

a given name and on that we can do certain analysis and so on.

So, before proceeding for that analysis we have a quick view at the 2 kinds of methods

which we can use one is a single step method in which only the current value only the

current x 0 y 0 and the corresponding f is used at every iteration and there is another

family of method which is called multi step methods in which history of several recent

steps are used.  So, that  kind of a method is  called a multi  step method most of our

discussion here will be limited to single step methods.
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Now resuming  the  discussion  of  this  method,  this  method  is  actually  called  Euler’s

method and at every step this is the methodology at x n, y n evaluate the slope by this

and for a small step h use that value of d y by d x multiply that with small val change in

x which is h and that you when you add to the current value of y you get the next value

of y and this way repetition of such steps will construct the function y of x that is for x

equal to x 0, x 1, x 2, x 3, x 4, etcetera, you will find the corresponding values of y, y 0, y

1, etcetera and those points in the x y plain will give you the trajectory and that will be

the solution of the differential equation.

Now, if we construct the truncated Taylor’s series first order truncated Taylor’s series on

of this function, then we will find that the expected error of this Euler’s method turns out

to be of second order that is order of h square because up to h we are actually re retaining

the change. So, up to from h square onwards there will be errors. So, leading error term

will be h square over every such small step; that means, that from a to b as we go on

taking large number of steps that is if we have divided the interval a to b into n parts each

part of size h and. So, on in that case these kinds of errors will get accumulated and then

the accumulated error as we saw in the problem of numerical integration will be of one

order higher one order lower that is up to linear error.

So, these are at every step will have an order h square error. So, accumulated over steps

the error will be larger; larger means lower error of h; h is a small step now the total



order of the error total error order will be order h which is bad because it is first order

error; error will be in the first order itself so; that means, that if you use Euler’s method

you  are  likely  to  have  a  lot  of  error  first  order  error;  error  means  that  unless  h  is

extremely small,  you will  find that  the error is  significant  and the result  is  not very

reliable.

Now, one question that we should ask at this point is that is the total error over say ten

steps like this will be the sum of errors over the ten steps now the answer is not. So, in

general the total error may be larger than the sum of the individual errors or for that

matter is could be smaller also it depends upon the differential equation in the question.

So, how that happens the total error could be larger than the sum of errors or smaller and

what can be done to improve this error that we will explore next.

(Refer Slide Time: 10:42)

First of all consider this situation d y by d x equal to f of x y with an initial condition

given at x 0 the value of y is y 0, this is the initial point initial condition and as we if we

could solve the correct solution of the differential equation and if we could have got y as

the function of x then suppose y as a function of x for that the graph is this shown by the

curve c now if we take a small step h and move to x 1, then here now I will enlarge this

and try to show.

In this  enlarged figure you can see better  that is this  curve the top curve is  the true

solution now as we start from the given initial condition x 0 y 0, then with the Euler’s



method will be proceeding along the current slope that is whatever is the slope of the

curve; that means, along this direction and wherever this tangent cuts the vertical line at

value x equal to x 1 that is x 0 plus h will get that point now from that point in the next

step of Euler’s method the current tangent will be used and; that means, that along the

current tan tangent that is the tangent here will be proceeding towards this.

Now, note that first of all we have because we moved along the tangent we have left this

true curve currently we are sitting at curve which is this curve second curve from the top.

Now since we will be moving along a tangent at this point in this step that is in the

second step will be leaving this this curve also and will be actually landing up at the third

curve from top that is we will be leaving c in the first step reaching c 1, then at the

second step will be leaving even c 1 and reach c 2 the next curve and so on.

Now note that the error in the first step is this y intercept from the true value at x 1 to this

value where we reach and the error at the second step will be actually must be counted

along this that is this is the true value for the second step because it was trying to track

this curve and it has reached here; that means, the error is this. Now this error in the

second step plus this error in the first step will actually be somewhere here that is second

step error plus first step error and the actual error is from here to here which is larger

than the sum of these 2. Now the sum of these 2 can be found if you draw a line from

here parallel to this tangent that is somewhere here.

So, in this particular example, the error of the first 2 steps is actually smaller than the

total  step that is individual errors error in the first  step plus error in the second step

compared to even this sum the overall error accumulated error in the 2 steps is even

larger. So, these way errors not only accumulate by simple sum, but might even magnify

in another example that could have been lesser than the sum.

Now, what is actually happening we find that this way at every step will be leaving the

initial curve and then will be leaving the next curve and then will be leaving the next

curve and finally, after 3 steps we would have actually got to a got to a point which is the

solution of the same differential equation with initial condition y at x 0 equal to. So, far

below the bottom curve wherever the bottom curve is that value of y. So, this way this

will  be  the  total  error  in  3  steps.  So,  that  shows  that  with  first  order  error  getting



accumulated the total error over large number of steps may be a bad thing in the case of

Euler’s method.

Now, what is the reason while exploring the reason for this we also ask a question that

from x 0 to x 1 we moved during the entire h along the slope which was given at the

initial point right was it a good idea the slope changes from this one to that one if the

slope changes from this point to that point then how good is the idea of moving all the

time with the same slope as given in the initial point if we could figure out some average

slope then that would have given us a good move now with that intention the Euler’s

mod method is modified and then we have what is called modified Euler’s method or

Heun’s method.

Now in improved Euler’s method or modified Euler’s method what is done is that the

first step is taken now the problem is that it would be nice to be able to take an average

slope, but then how do we know the average slope to begin with we know only the y

value here and therefore, the slope here at the end point or in the middle point of the

interval we do not know the y and we do not know the slope now in improved Euler’s

method what we do from here we take one tentative step and reach q, q 1 we reach q 1

along the slope here after that we say that it was perhaps not a good idea to move from

here with this slope only.

Now let us calculate the slope here after we have got this tentative point at s one which

we have got some value of y 1 call it y 1 bar. And then we evaluate the slope here from

the same f of x y at this point we evaluate the slope then we say that along that tangent

with that slope the new slope here we draw a line suppose that goes here at p 1, then we

say that what is the difference between p and p 1 this difference.

Now, we say that if rather than with the slope here if we had started with the slope here

and moved, then where would we have reached that is rather than along this slope, but

with this new slope which we have now evaluated if we have moved then we would

reach q 2, but then q 1 is wrong because it gives complete weigh age to the initial slope

similarly q 2 would be wrong on the other side because that would be giving complete

weight age to the final slope the true picture should lie somewhere in between.

So, what about taking the average of q 1 and q 2 that is q that is given by improved

Euler’s method or Heun’s method and this is the analytical formulation that is from the



value x n y n take one tentative step and call that value of y at x 1 as y 1 bar y n plus 1

bar. And then evaluate the step if we use that slope that is f of x n plus 1 y n plus 1 bar

with that you will have the step as h into this. Now this is one proposal and h into this is

another proposal; so what about the average of them average will be h by 2 into this plus

this ok.

. So, this is the point taken for this step now this also will have some error, but if you

make an analysis based on Taylor’s series you will find that the corresponding error is

second  order  over  the  complete  domain  over  the  complete  interval  a  to  b  that  is

accumulated error that will be of second order. So, that makes sense because we have

made 2 function evaluations at this point and at this point and we have got a second order

method.

Now, this can be continued with 4 function evaluations we can land up at a fourth order

method and actually there is a family of methods called Runge-Kutta methods.

(Refer Slide Time: 19:16)

Second order Runge-Kutta method generally would go like this first estimate k 1 which

is same as Euler k 1 is estimate for delta y second estimate now here we say that we do

not make the evaluation of this  at  this  n point,  but somewhere in between that is  in

between x; x 0 and x 1 somewhere where that will decide by alpha and beta that is alpha

step from here and beta step in the y direction. So, if we do that then we get this point

where we can evaluate the slope function and based on that we work out the second



proposal  for  the change in  y that  is  delta  y  and then say that  we have got  the first

proposal  from  here  and  then  second  proposal  part  from  here  what  about  taking  a

weighted sum of the 2.

Now, in this particular case the weight w 1 and w 2 you will expect that w 1 plus w 2

should be 1, otherwise this will not make very good sense as a weighted sum and take

that  k.  Now we ask what weight values,  we should use and for that we try to force

agreement up to second order that is h term in the error and h square term; in the error,

we try to force to 0 to get the appropriate values of w 1 and w 2 how do we do that we

say that based on this if we try to work out on y n plus 1 that will be y n plus this k w 1

into this this w 1 into h f plus w 2 into k 2 that is this w 2 into k 2 now if we try to work

out a Taylor’s series of this truncated Taylor’s series of this then you will get f at x n y n

plus alpha h into first derivative with respect to x plus beta k 1 into first derivative of this

function with respect to y plus higher terms.

Now, if we simplify this and collect h f terms together and then h square terms together

then we get this right this is the Taylor’s series of y n plus 1 which we are getting now at

x n plus 1 the Taylor’s series value of the original function y at x n plus 1 without this

formula that would be y n plus h into d y by d x which is this plus h square by 2 into d 2

y by d x square which will be this by chain rule of this this function that is this and so on.

Now when we compare these 2 when you compare these 2, we get the error and in that

we say that we want the error to have 0 value up to the second order; that means, first

order error should be 0 first up to first order this should match and second order also this

2 should match.

So, the first order terms here and here if you match then you get w 1 plus w 2 equal to

one which you would expect and then as you equate the second order terms you get these

also there is alpha into w 2 should be from here 1 half and when you equate these 2 you

get beta into w 2 is half. So, there are 3 equation here in w 1, w 2, alpha beta if you try to

solve them 4 unknown from 3 equation you can get 3 of the unknowns in terms of one

remaining unknown w 2.

Now, depending upon which value of w 2 you select you may get slightly varying second

order Runge-Kutta method it is a family of methods now if you take w 2 equal to half



and that will mean that alpha beta will turn out to be one then you get what we just now

discussed that is improved Euler’s method.

(Refer Slide Time: 23:21)

On the other hand, popular choice of second order Runge-Kutta method is w is equal to

one which means that you take the first proposal as Euler’s method and for the second

proposal for delta y that is k you evaluate the function at the midpoint of the chord of the

step that has been taken at that midpoint you evaluate the function and thereby workout

the second step second proposal for the step and then take the second step only not the

first step at all. So, that will mean that w 2 is 1 and w 1 is 0, this has been used only as s

stepping stone for evaluating this function and after that is not used at all the actual step

has been taken equal to k. So, this is second order Runge-Kutta method.

Similarly with 4 function evaluations you can get a fourth order Runge-Kutta method.

Now this point onwards, I am not trying to derive or prove, but without proof let us state

this that if you work out the first proposal as based on the initial value just like Euler’s

step and second proposal of delta y that is k 2 as we have just now done and then the

third proposal as k 3 which is this in which in place of this a you use k 1 you use k 2 the

fresh one and finally, the last evaluation is made with first step h and k 3 and for delta y

here you use the most recent estimate and then you have got 4 different proposals for

delta y and take this sum 1 by 6; 2 by 6, 2 by 6, 1 by 6 sum is 1.



Now, this particular arrangement of the 4 possible delta ys ensures that the error over an

interval up to fourth order is 0; that means, over a particular inter subinterval over a

particular step h the error that the leading error turned at you will get will be h to the

power 5 that is only up to fifth order only up to only from fifth order there will be errors;

that means, over accumulated; accumulated over several step for the entire domain the

error will be fourth order and that is why this method is called fourth order Runge-Kutta

method with 4 evaluations of the function you get a fourth order method.

However, you can work out higher order methods also in the Runge-Kutta family, but

then for getting a fifth order Runge-Kutta method, it is not enough to make 5 function

evaluations; however, with 6 function evaluations you can work out a fifth order method

that particular arrangement has some further merits which we will be discussing a little

ahead.

Now, through whichever method whether it is a second order method or fourth order

method you develop the solution of the ordinary differential equation how do you figure

out whether the resulting value is right that is what is the magnitude of the error which is

really important in a practical situation how do you determine the magnitude of the error.

(Refer Slide Time: 26:37)

So, this is an; in particular whether the error is within tolerance for that purpose you can

do 2 things one is you can make an additional estimate which will give you a handle to

monitor the error and based on that you can develop further additional further efficient



algorithms that is whatever best you get with a particular order of method. So, if you

have additional estimate, then you can develop an estimate of the error and on the same

basis you can develop further efficient algorithms that is you can reduce the error as well

as you can know; how much is the error.

So, it is pretty much like what we did with Richardson extrapolation in the case of the

numerical integration process suppose in a particular interval from x n to x n plus h you

have developed one particular estimate of the value at x n plus h that is y n plus 1 1

estimate. So, we are showing it as with this super script one and that is the correct value

plus some error

Now, if you have used the fourth order Runge-Kutta method, then the leading error will

be fifth order right plus higher order terms. Now what you can do is that you can now

evaluate the same y n plus 1 not with 1 step of size h, but 2 successive steps of size h by

2 then the corresponding second estimate will be y n plus 1 plus 2 such steps. So, twice c

into this coefficient is same constant is same c into the h by 2 to the power 5 because

every step is now of h by 2 size. So, in the first step you accumulate c into h by 2 to the

power 5 in the second step also that is the estimate; so 2 half steps that is the estimates.

Now, note that here you have got 2 equations in the true value and c h you know and

these 2 estimate you have got through the RK 4 formulas Runge-Kutta formulas. So,

these left sides you know and h you know. So, you have got 2 equations in y n plus 1 and

c these things you do not know now 2 equations into one linear equations into one you

can solve. So, as you solve that you find that difference of the 2 estimates will throw out

one of the unknowns that is y n plus 1 and give you this is c h 3 to the power 5 and this is

c h 3 to the power 5 by 16. So, difference is 15 by 16 c h to the power 5. So, this gives

you the difference of 2 estimates.

And what is the error here error here is c h to the power 5 by 16 that is 1 by 15 times this

right.  So,  you have got  an error  estimate  that  is  error  estimate  of  the second value;

obviously, this value is better  than this because this is with one step of this size this

estimate is based on 2 half steps. So, this is a better estimate and in this the error is c h to

the power 5 which turns out to be from here related to the difference of the 2 estimates

right. So, difference of the 2 estimate will be giving you 1 by 15 of the difference of the

2 estimates is c h to the power 5 by 16 which is the error estimate here right.



So, if you use that or if you multiply this with 16 multiply this with 16 and take the

difference then also you get the same result in any case between these 2 equations you

can solve for c h to the power 5 by 16 which is the error estimate and the true value or

the best estimate till now that is y n plus one. So, this is the best ever value out o0f these

2 estimates. So, this way you get 2 things one is an estimate of y n plus which is better

than both of these which you get like this and 2 you get an error estimate of this that is c

h to the power 5 by 16 which is the difference of these 2 divided by 15.

So, now you can say that if that is within your required accuracy within your tolerance.

(Refer Slide Time: 31:26)

So, if you find that the delta that you are ready to tolerate is quite large; that means, if

delta is quite large compared to the epsilon value which you are ready to tolerate then

that will mean that the current step size is too large for accuracy. So, in that case you

subdivide the step further and take smaller steps.

On the other hand if the delta that you get is much much less than epsilon; that means,

what; that means, the error is within tolerance, but perhaps you are taking too small steps

even larger steps would be alright to solve the problem within the required accuracy, but

then you have already determined. So, many function evaluations you have already made

computational  steps  computational  resources  already  spent.  Now,  you  cannot  do

anything further to save the computational resources spent. So, that is why the at the

starting you should stay you should keep the steps size not too small reasonable step size



not too small and if you find that at some location the delta that is coming with this

estimate is too large then that particular step you subdivide further.

So,  start  with  a  large  step  size  not  extremely  large  reasonably  large  and  then  keep

subdividing intervals whenever you find delta is greater than epsilon. So, that will mean

that suppose you want to solve this from this initial point to this final point.

(Refer Slide Time: 33:02)

So, this is x 0 when the value of y is given this point. So, what you can do you can say

that initially this entire interval from x 0 to say final x this entire domain over which you

want the solution of the ODE you can say that I will try to solve it with 4 steps.

So, this step you find that you develop one estimate and another estimate based on that

you get a third much better estimate and an error estimate now find out whether that

error estimate is acceptable if it is acceptable then take the best value that you have got

till. Now similarly you try to do it for this step and suppose here again from he; this point

you find that you have got one estimate second estimate and based on these 2 you get a

third much better estimate and at the same time an estimate further error. Now suppose in

this case the error turns out to be too large can you say in this location this step is going

to turn out to be too large? So, you subdivide and do the same thing for this and this. So,

now, over this small step you operate and get this next whatever.



So, whenever you find that the error estimate shows that too much error is coming then

subdivide  the  interval  further  otherwise  continue.  So,  this  ensures  that  you  keep  on

marching fast  over those segments of the function where the function is smooth and

those segments where you get quick changing fast changing situation there you make

small steps and where to make the small step that this delta will tell you. So, this is what

is called adaptive step size algorithm.

Now, another interesting thing another interesting feature of Runge-Kutta method is that

as we discussed just now that with 6 functional values we can get a fifth order formula

fifth order Runge-Kutta formula not only that using a different combination of those 6

function values you get another formula which is a fourth order formula. Now with this

situation with 6 function values a fourth order formula is found embedded in a fifth order

formula and this helps you in 2 ways that is you get 2 ways independent estimates of the

value of y n plus 1. And another estimate based on the same 6 functional evaluations and

this is called Runge-Kutta fehlberg metal and most of the professional implementations

use that RK 45.

However, if you are a beginner in this kind of implementations then, and if you want to

implement  your own solution of ODE routine then I  would suggest that  RK 4 itself

fourth RK Runge-Kutta method itself with these straight forward formulas id also going

to be.

(Refer Slide Time: 36:36)



Quite effective for your purposes with adaptive step size which we just now discussed;

however, if you call a library shelf routine, then most likely you are going to get a RK f 4

5 routine available in most of the important library func; libraries numerical libraries.

(Refer Slide Time: 36:54)

Now, till  now we  have  been  discussing  a  single  first  order  equation  now, but  then

whatever  we have been doing is directly  applicable to a first  order vector ODE if  x

remains scalar, but y becomes vector. And therefore, f of x y becomes vector; vector

function even then all the operations that we have been conducting can be still conducted

that is why whatever we have been discussing in the context of a single first order ODE

can be immediately extended to a vector ODE. That means, a system of first order ODEs

like this of course, in that case the initial condition has to be available for all the ys. So,

the entire y vector has got an initial value initial vector y 0. So, this can be solved with

the help of the same formulas only with the change that ys become vector x remains

scalar still ok.

However if you have an a high order differential equation then an n eth order ordinary

differential  equation  can  be  always  converted  into  n  first  order  ordinary  differential

equation for that the way is to develop the equations in the state base; that means, that

you first define a state vector including the unknown function, if first derivative second

derivative up to n minus one eth derivative if the ODEs of nth order that is if the ordinary



differential  equation involves derivatives up to n eth order, then the state vector will

involve derivatives up to n minus one eth order one order less ok.

So,  these  this  vector  completely  defines  the  state  of  the  system that  the  differential

equation is trying to describe and then you try to work out d z by d z d z by d x partly

from this definition and partly from the differential equation how you see here that one is

y. So, d z by d x is going to be y prime which is z 2 then y prime now z 2 is y prime; that

means, d z 2 by d x will be y double prime which will be next entry that is z 3; that

means, from here to here except the last one z 1 prime will be z 2 z 2 prime will be z 3

and. So, on till z n minus 2 z n minus one prime will be z n; this one this is z n z n prime

will be the nth derivative of y and that you get from that you get from the differential

equation and initial conditions also will get this kind of values whatever is the values

given for y y prime y double prime etcetera, etcetera, up to the n minus oneth derivative.

So, those will form the initial condition for that and then you solve the system with the

same RK 4 formulas, etcetera, etcetera.

So, in general if you have got a number of ordinary differential equations each of order

higher than the first then also you can follow the same procedure and break down the

entire system into a large number of first order of differential equations in general if you

have  got  a  system  of  higher  ODEs  with  higher  order  derivatives  of  the  unknown

functions y 1, y 2, y 3, y 4, etcetera being n 1, n 2, n 3, etcetera, then you can cast the

entire system into the state space form with the state sector of dimension n 1 plus n 2

plus n 3 etcetera; let us take an example.
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So, this state space formulation is directly applicable when the highest order derivatives

can be solved explicitly for example,  let us take these example this is a system of 2

ordinary differential equations in 2 unknown functions x of p and y of p which we want

to solve. So, we want to solve for x of p and y of p.
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So, 2 unknown functions. So, we have got 2 differential equations right and what is the

highest order of derivative of x that is involved here up to second order right similarly

what is the highest order of derivative of y that is involved up to third order. So, in the



state space we will have x and d x by d t, this we will not have in the state space that is if

the if up to the n eth order derivative is involved, then up to the n minus one eth order

derivative will appear in the state vector. So, d 2 x by d t square is there as the highest

order derivative of x.

So, in the state vector we will have up to d x by d t in y will have we have the third order

derivative of y as the highest order derivative. So, the state vector will have y d y by d t d

2 y by d t square that is up to second order derivative. So, the state vector will be x d x

by d t this will not be there the highest order derivative will not appear immediately for

from y will have y d y by d t and the second derivative of y not the third one because the

highest  order  derivative  will  be  actually  found  will  be  solved  from  the  differential

equation  itself  now see  what  we have  got  3  derivatives;  derivatives  of  3  of  the  the

components here will be trivial because z 1 is x. So, z 1 prime will be d x by d t which

happens to be z 2. So, z 1 prime is z 2 similarly z 3 is y. So, z 3 prime will be y prime

that is d y by d t which happens to be z 4 similarly z 4 is d y by d t its derivative z 4

prime with second derivative of y which happens to be z 5 that is given. So, these 3

derivatives are trivial we need to find out what is z 2 prime and what is z 5 prime that

you  find  from here  from  this  differential  equation  from  the  above  first  differential

equation you can write y z 2 prime minus 3 z 4 z 2 square plus twice z 1 z 2 square root

of z 5 plus 4 equal to 0 right just match term by term we have written this differential

equation y is in place of y actually we can write z 3 in place of y we can write z 3.

So, just go on reading this first differential equation in terms of these as z 1 z 2 z 3 z 4 z

5. So, y is z 3 look up there then this second derivative is z 2 prime that is prime of this

minus 3 then d y by d t that is z four. So, z 4 here and then we have got d x by d t whole

square that is z 2 square plus twice z 1 twice z 1 and then these derivative which is z 2 z

2 and then square root of this which is third prime. So, square root of z 5 plus four. So,

from this differential equation can we not find z 2 prime we can find z 2 prime we take

this whole thing on the other side of the equation divide by z 3.

So, as we take this whole thing on the other side of the equation.
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We get this and then we divide this whole thing with z 3; of course, this will be valid in a

domain in which z 3 does not become 0.
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So z 2 prime turns out to be a function of z 1, z 2, z 3, z 4, z 5, right and we have already

found that z 1 prime is z 2 and we have already found that z 3 prime is z 4; z 4 prime is z

5 and z 5 prime we need. So, for finding z y z 5 prime that is the derivative of this which

is here actually; so we do a little further more in this box here.



The second differential equation here we write in the language of zs from here, so e to

the power x y e to the power x y. So, x is z 1 and y is z 3 into d 3 y by d t cube, right. So,

that is z 5 prime which we want to determine is equal to sorry minus or we can take is

equal to and write the other things with the same style z 3 z 5 to the power 3 by 2 two z 1

minus one minus e to the power minus e do we get that plus. So, just relock this e to the

power x y there e to the power z 1 z 3 into this third derivative which is the prime of z 5.

So, z 5 prime is equal to. So, these things will take on the other side y that is z 3 into d 2

y by d t square to the power 3 by two; that means, z 5 to the power 3 by 2 this also goes

to the other side minus 2 x minus one minus 2 z 1 minus one plus e to the power minus 3

that is here.

So; that means, that we can solve for z 5 prime as.
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Now, you see the prime the derivative or the factor function z that is z 1 prime z 2 prime

z 3 prime z 4 prime and z 5 prime all these 5 are available in terms of the 5 sets and e;

that means, together we can write the factor z 5 as this function with these 5 components

in the same standard form right. So, that is this form and this is the state space equation.

So, this is how we can formulate a system of higher order ODEs into the state space form

and then use the same numerical methodologies that we discussed for the scalar single

function.



Now, apart from these single step methods that we have discussed till now there is a

family of methods called which used several earlier steps results as well?
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For example in single step method every step of h is taken as a brand new initial problem

in which the current value is there and from there we try to develop the slope function

and take one step; now can we not try to capture the trend by learning from the history of

several recent steps that is the kind of thing that is there in multi step method a typical

multistep formula for solution of ODE is this that is in which you take y n plus 1 that is

the next value of y as the current value plus h into a sum of several function values

inverted sum of several function values. So, c 0 into f at the next point plus c z e 1 into f

at the current point plus c 2 into f of the nex previous point plus c 3 into f at the yet

earlier point and so on. So, this a typical multi step formula.

Now, based on what do we determine the coefficients c 0, c 1, c 3, etcetera, we say that

we want the leading error terms h h square h cube h to the power 4 as 0 0 0 0. So, as the

leading error terms are forced to be 0 that gives us a system of linear equations in the

coefficients c 0, c 1, c 2, c 3 and those coefficients are used in a multi step formula now

you will say that we cannot use a multi step formula at the first step because at the first

step all that we have is this starting from there x 0 y 0 before that there was no step no

function evaluation that is why a typical multistep formula can be used as a multi step

formula only after the single step results have been accumulated. So, they have to be



started with single step formula method single step methods and after some steps have

been developed then only this kind of a formula can be used.

Now, there are 2 kinds of multi-step formulas one is explicit where c 0 is 0 that is the

next value y n plus 1 is explicitly available in terms of the current and old value on the

other hand if c 0 is not 0 then the corresponding method is called not an explicit method,

but an implicit  method; that  means,  y n plus 1 has been expressed in the form of a

function which involves y n plus 1 itself and from that to determine y n plus 1 we really

have to solve the equation in y n plus one. So, that kind of a method is called an implicit

method. So, it is of course, not explicit. So, it is difficult to evaluate as a solution of an

equation, but such methods have better stability.

And. So, far as the issue of stability is concerned in the next lecture we will discuss the

issue of stability in more detail and talk of implicit methods in comparison to explicit

methods even in single step formulas the kind of formulas that we have been discussing.

So,  far  and  the  most  famous  most  popular  multi  step  formula  is  called  the  Adams

Bashforth Moulton method in which there is a solution predicted using the using the

Adams Bashforth formula and the solution is the corrected using the Moulton; Adams

Moulton formula. So, this combination of a predictive formula and a corrector formula

by which you predict and then make a correction. So, that kind of a predictor corrector

formula is used in multi step method and if you need multi step methods then you can

look up further literature on this kind of methods.

So,  for  the  time  being,  we  stop  here  with  this  little  summary  over  what  we  have

discussed.
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In this particular lecture one is the basics of Euler’s and Runge-Kutta methods and the

second is the one of the very important professional of step size adaptation for really

non-linear problems in which you use the step size in an efficient and effective manner

without wasting too much of computational time. And the third important thing in this

lesson is the state space formulation of dynamic systems with the way to reduce higher

order differential  equations  or their  systems into larger number of lower order larger

number of first order differential equations and then develop the state space formulation

in this manner which can be then numerically solved. So, this state space formulation is a

necessary precursor to any numerical solution of ordinary differential equation.

In the next lecture, we will consider advanced issues of ODE solutions.
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We will discuss stability analysis and the utility of implicit methods and their specific

usefulness  in  the  case of  stiff  differential  equations.  And then we will  continue  into

discussing boundary value problems in ordinary differential equations.

Thank you.


