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Good morning, in this lecture we will study methods of numerical integration. So, first

we start with Newton cotes integration formulae.



(Refer Slide Time: 00:26)

So, the problem here is to integrate a function of a single variable from a to b.

(Refer Slide Time: 00:37)

Now as you understand if the function is like this then the integral of f x from a to b is

this area. So, we need to find out this area or find out the integral of function f x from a

to b that is this.

Now, we will start from the definition and the numerical integration procedure basically

works directly on the definition. Now, if you divide this interval a to b into a number of

sub intervals say n sub intervals of equal size and then you call this a as x 0 and b as x n



and in between you have got n equal intervals right of size h then that will mean that x n

minus x 0 is n into h and; that means, this that is for every in sub interval we have the

size h which is b minus a by n. Now, an estimate of the integral you can find by taking

one point from every interval and summing up the function values over all the intervals

that is one point from the first interval one point from the second interval one point from

the third interval and so on.

And if you sum up these and multiply with h, then you get one estimate of the integral

that is in the first sub interval you take one value and then suppose you take this value

this value of the function multiplied with h gives you this area; this rectangular area,

similarly for this next interval, if you take this value and then you get this area. Now, like

that if you go on summing up the rectangular areas then you get one estimate of this

entire area. Now, if you have the steps if you have the number of sub intervals large and

each sub interval of very small size that is h is extremely small, then you get a better and

better estimate.

Now, this is an estimate say j bar; now the question is what is our policy of taking this xi

star whether we take it in the beginning of the interval sub interval or at the end of the

sub interval or somewhere in the middle now depending upon which points of the sub

interval we take say if we take the starting point of the sub interval. Then we get one

such estimate say j  1 and if  we take the endpoint  of each sub interval,  then we get

another estimate j 2. Now, these 2 estimates might slightly differ depending upon how

the function changes.

Now, as n tends to infinity that is as the number of sub intervals become very large and;

that means, and the size of the sub interval tends to 0 then in such a situation if the 2

summations that is 2 estimates of the integral approach the same limit, then by definition

we call the function to be integrable over the interval a to b that is the definition of

integrability and the definition of integral that is if the 2 summations approach the same

value same limit as n tends to infinity and h tends to 0. Then we say that a function is

integral integrable and the common limit to which these estimate approach that limit is

the integral.

So, this is how you define the integral as a limit of a sum apart from giving the definition

this also gives us a rule for conducting numerical integration and that rule can be called a



rectangular rule or a one point rule why rectangular because it is the sum of rectangular

element and why one point because in every sub interval we are considering a single

point now. So, for as the question of selecting the point is concerned we may ask this

question let us make one point clear that if the function is integrable by this definition

then  in  the  analytical  way  of  integration.  We  typically  try  to  look  for  affordable

expression for this function if there is such an expression and then if that expression can

be organized in the form of a function which we know is the derivative of some known

function, then we typically conduct the integration in analytical form to analytical means

as an anti differentiation formulation.

Now, it may happen that there is an expression for f x, but then we by the normal school

a calculus methods we cannot frame it in the form in which it is recognized to be the

derivative  of  some  other  known  function  in  that  case  the  analytical  methods  of

integration will not work apart from that there may be situations where you can evaluate

the  function  at  whatever  point  you  want,  but  then  you  cannot  frame  an  analytical

expression there is analytical expression for the function is not available. For example,

the function that we are talking about may be the result of an experiment that is you

provide x and as with the value of x taken as one of the parameters in the experiment the

result of the experiment turns out to be the function value f x.

So,  that  way you can  evaluate  the  function  at  a  value  of  x,  but  you cannot  get  an

expression of it. So, that way if you can evaluate the function at several points through

experimentation or through some complicated calculation in a computer program then

we can say that effective have, but you do not have an expression for the f x. So, in both

of these cases, one when you do not have an expression for the f x and 2 when you have

an expression, but tackling that by the integration methodologies of the school calculus is

not enough not possible.

So, in both of these cases, you have to rely on numerical integration, if you need the

integral; now we come back to this question that is if whichever point we take as the

single point in every sub interval like this we find that the sum approaches the same limit

if we take a large number of steps of extremely small size h. But then in actual practice

we would like to evaluate the integral with now going into extremely large number of

steps that is we would not lie n to be extremely large. So, what will be efficient neither

the starting point of each sub interval nor the end point of each sub interval.



So, the best result you will find by taking the midpoint of every interval if you want to

take a single point in the every in every interval and therefore, to answer this question

which point to take as xi star a common sense answer will be take the midpoint as the

best representative and therefore, one special case of the rectangular rule which is most

commonly used that is obtained which is the midpoint rule.

(Refer Slide Time: 08:32)

So, selecting xi star as the midpoint of the sub interval you get over one such sub interval

you get a integral as h into that value that is neither in the beginning nor in the end, but in

the midpoint the understanding is that whatever is the trend of the function whatever is

lost in this half is compensated in this half to a good extent. So, with that intention with

that background we typically take the midpoint for a single point rule. So, this is the

estimate of this integral over a particular sub interval and over the entire domain from a

to b these things will be added from x 0 to x 1, x 1 to x 2, x 2 to x 3 and So on. So, that

sum over the entire domain is given by the summation of this for i equal to 1 to n, right.

Now, after we have found this midpoint rule or single point formula for the numerical

integration we need to figure out how good it  is now the way we conduct this error

estimate is through the Taylor series. So, suppose we from the Taylor series of f x about

this point about this midpoint then Taylor series of f x around this midpoint is f at the

midpoint plus f prime at the midpoint into x minus midpoint plus second derivative into



delta x square by 2 and so on, right. So, this is the Taylor series of f x around xi bar the

midpoint.

Now, the correct integral of this Taylor series would be this; this is constant; constant

into h; h is xi minus xi minus 1 that is the size of the interval plus noun node; what will

be the integral of this the integral of this will be this is constant number and the integral

of this will be x minus xi bar whole square by 2, but then that is a whole square. Now

when you evaluate the square at this and this in both cases.
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We will get the same value; that means, x minus xi bar whole square by 2, now this is xi

and this is xi minus 1 right.

So, when we put xi in this place then we find this is h by 2 because the size of the

interval is h. So, midpoint is h by 2 away from the endpoint. So, this is h by 2 right. h by

2 square by 2 and when we put this value we get this as minus h by 2, but it is square. So,

it will be the same thing and so, when you subtract we get that cancelled. So that means,

h square by 2 h square term will be absent from the error because you can simply see that

this is an odd function. So, its integral from minus h by 2 to h by 2 is 0. So, this part will

go missing in the integral.

The leading term in the integral after this will be different right and this one will be this

is square. So, it will be cubed by 3, right. So, the integral of this term we will get as cube



by 3 and already there is a 2 sitting here. So, we will get it as 6 right and outside we will

have this f double prime, right. So, then when you evaluate this at xi, we will find this is

h by 2 when you evaluate it at i minus 1 we will find it minus h by 2. So, we will get h

by 2 cube minus minus h by 2 cube which will give us 6, right.

So, here the terms will survived. So, h cube by 8 plus h cube by 8 that is h cube by 4

divided by 6; that means, h cube by 24, we will get. So, that shows us that the leading

error term will be this and similarly we will find that the f triple prime term will get

cancelled just like this part. And the next term similarly if you can if you calculate then

you will find that you will get this now note that this is that term which we will get in the

actual midpoint rule integration formula.

So, error will be the rest of it and in that series of the error it is this term which will

dominate. So, the leading error will be of the third order and therefore, this is called third

order accurate that is accuracy of the midpoint rule is of the third order which means that

the error term will be error will be dependent upon the step size up to the cubic order, but

then that is only for one sub interval as you try to sum up such components over all these

sub intervals then the complete formula you get as from a to b. So, such terms added

over all the sub intervals that is i equal to 1 to n; n sub intervals.

Now, this same thing when we add up now in this addition this term has been turn out

this term has been neglected because the leading error term is this. So, when we add up

this for i equal to 1 to n this is of course, this in which the; this is the midpoint rule

formula result and this will be the error. So, when we try to sum it up, then we find that

here the error will have this sum of the second derivative at these midpoint whatever is

the second derivative.  Now, if the second derivative is varying, then somewhere it is

small somewhere it is large and so on then from the mean value theorem you will find

that there will be some value of x between a and b where the second derivative value is

the average over the complete interval.

If that value is this xi, then you will you can say that the sum of the second derivatives

over all the intervals is n times the second derivative value at that point whatever maybe

that point. So, n times this. So, take that n from here and combine it with 1 h. So, nh is

the size of the interval n sub intervals of h size. So, nh is the size of the complete interval

complete domain which is b minus a that is why you find that one power of h has got



reduced here and then; that means, that the error in the integral over the entire domain is

proportional to h square that is it is proportional to the square of the step size so; that

means, that the third order accuracy over each sub interval will mean that over the entire

domain it will be second order accurate this is midpoint rule.

Now, this was the result of getting taking one function value in every sub interval if you

decide to 2 decide to use 2 sub intervals then that will mean that for every a 2.
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Points or every sub interval then that will mean that over every sub interval, you will not

approximate the function with a constant value, but you will approximate it with a say

this is the interval shown accelerated. So, whatever is the function like this? So, if this is

one interval,  then the next rule is trapezoidal rule which makes a linear interpolation

between these 2.

So, just over a constant value the next possible approximation next possible estimate is

the linear interpolation between the 2 end points, in this case, the linear interpolation

between 2 end points will basically try to work out the integration of this function which

will be this area of this trapezium and that is why the corresponding rule is called that

trapezoidal rule what is the area of this trapeze trapezium half into h into the sum of

these 2, right. So, that is as if you are taking this area. So, the next step next higher rule

will be by approximating the function with the linear interpolation.
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Then you will find half into h into the sum of the functional values at the 2 points write 2

end points.  So,  that  is  the next  rule  now here again  if  you sum of over  all  the sub

intervals then you will sum this for i equal to 1, 2, 3, 4, 5, 6, up to n, right as you do that

you will find that the first sub interval gives you x 0 and x 1, second one will be giving x

1 and x 2, third one will be giving x 2 and x 3. This is an advantage of trapezoidal rule

that every internal point x 1, x 2, x 3, up to x n minus 1 is actually used of in 2 places;

that means, the function evaluation at that those points are use very efficiently.

So, then all the internal points turn out to appear twice and the initial point x 0 and the

final point x n appear only once and therefore, this half function value at the initial point

half function value at the final point and every individual point x 1, x 2, x 3, up to x n

minus  1,  they get  use  twice  in  the  entire  sum therefore,  half  plus  half  they get  full

contribution here 1 to n minus 1. So, this is the complete trapezoidal rule for the full

domain.

Now, similarly  a  similar  to  the  case  of  midpoint  rule  if  we try  to  conduct  an  error

analysis in this case then again, we compare this result that we get this is compare over a

single sub interval this result that we get if we try to compare that with the Taylor series

we find this Taylor series expansion about the midpoint that same expansion we use for

xi minus 1 which is there in the formula here and fxi. There is starting point of the sub

interval end point of the sub interval and then we get this you note that xi minus 1 is



midpoint minus h by 2. So, you get minus sign in the odd terms and xi is midpoint plus h

by 2. So, you get all signs plus.

Now, if we try to see what do we get in this from this formula then we will sum of these

2 right and then a multiply that with h by 2. So, as you sum of these 2 we find that this

comes twice and then multiplication with h by 2 gives us twice this into h by 2; that

means, h into this; this what we got in midpoint rule and then this will cancel out, these

fellows these 2 added together will give us h square by 4 multiplied with h by 2 we will

get h cube by 8 and similarly these will cancel out these will give us 384 straight away

and so on

Now, this turns out to be what we get from the trapezoidal rule and then we can recall

this actual Taylor series of the integral of f x around the midpoint that was this. So, this

same expression if  we use here and then we find that  this  is  what  we got  from the

trapezoidal rule and this is what we get by the integration of Taylor series is tells term by

term. So, the difference of these 2, we will give us the error estimate of the trapezoidal

rule as we try to find out the error estimate this completely cancel out because this much

is correct  and the difference of these and difference of these will  give you the third

degree and fifth degree terms in the error estimate the leading term will be the third

degree term.
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So, as we do that we find that this is the integral based on the Taylor series this is a

integral which trapezoidal rule gives us and this is the these are the leading error term

cubic term fifth the term and. So, on that is obtain just by subtracting these 2. So, you see

1 by 24 and 1 by 8. So, which is 3 by 24 difference will be 2 by 24 that is 1 by 12. So,

that 1 by 12 is here in the cubic term and so on.

Similarly, over an extended domain if we sum up these for i equal to 1, 2, 3, 4, up to n

then  that  sum  will  give  us  this  formula  for  these  which  we  have  already  got  half

contribution from the first term and the last term and full contribution of integer terms

this will be obtained from the trapezoidal rule formula and the leading error will come

from here right. So, the same evaluation again f double prime xi bar summed over all the

intervals all the sub intervals will give us n times the average value and average value is

this and nh is b minus a.

So,  again  we  find  that  the  leading  error  term  over  the  entire  interval  is  this  now

interestingly we find that here also the error order is same as the midpoint rule over a sub

interval it was cubic order over an in over the entire domain it was a quadratic order even

though in the midpoint rule in every sub interval only one function value was used. And

in the trapezoidal rule over every sub interval 2 function values were used still there are

the error order is the same the actual error magnitude may vary, but the order of the error

is same.

Now, in  this  case  midpoint  rule  has  an  advantage  and  trapezoidal  rule  has  another

advantage what is the advantage that midpoint rule has midpoint rule has the advantage

that just by using one function value at the midpoint the leading error on this side and

that side can 2 cancel out this is advantage of midpoint rule and the trapezoidal rule has

the advantage that the boundary is use and so, every interior boundary is actually used in

on both sides. So, that way over an extended interval the number of functions function

evaluations function values that was used in this and this actually do not differ by much.

Even though it sounds as if the number of function values here is almost double, but

actually it is not double it is very marginally more than these how here you find that in

every sub interval one function value was used the midpoint, but that was used only in

that sub interval because it was an internal point integer point midpoint. So, over n sub



intervals n function values where use here; here over n sub intervals; how many function

values were used n plus 1 not much.

So, that way between n function values and n plus 1 function values if you get the same

error order then it is not a very surprising situation and you do not; you do not miss much

that is the combination resource that you has spent here is actually comparable to the

computational resource that you have spent here another question is considering this.

These  2  different  sources  of  merit  different  sources  of  merit  in  midpoint  rule  and

trapezoidal  rule  in  the  midpoint  rule  use  of  midpoint  leads  to  symmetric  error

cancellation which will be an advantage of all those methods all those rules which use

symmetric positioning of points in a sub interval or over a panel of sub intervals.

On the other hand trapezoidal rule has a merit that is use of end points allows double

utilization of boundary points in adjacent intervals. Now how to use both the merits that

is any method with uses symmetric positioning of sample points will have this advantage

on the other hand any method that uses the boundary points of the sub intervals will have

this advantage right you can think of using (Refer Time: 26:34).
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In which you use the boundary points as well as the midpoint say if this is a function and

if you use the boundary this is a sub interval this is sub interval and if you use this

function value this function value. And this function value then you see that over this sub

domain over this sub domain the 3 points are used symmetrically midpoint is there and 2



other points are there which are equally disposed compare to the midpoint. So, this is

symmetric positioning of point in putting the midpoint.

And the other advantage is that the boundary points are used; that means, in the next sub

interval this boundary point will be used once more, right. So, if we use these kind of 3

points positioned, then the rule that you get is Simpson’s one-third rule and that will have

both of these advantages the Simpson’s.

(Refer Slide Time: 27:45)

Here what  we do is  that  we divide the overall  interval  overall  domain into an even

number of intervals why even because in every interval we will use double the size of the

interval that is if we have 2 n intervals then 2 interval here 2 interval 2 sub intervals here

2 sub intervals next 2 sub intervals next and so on.

So, if we divide the entire domain from a to b into an even number of sub intervals even

number of intervals then over every such pair of sub intervals we evaluate the function at

3 points, one at this end one at the midpoint and one at this end right . And then we say

that  through  these  3  function  values  we  can  fit  a  quadratic  model  in  this  local

neighborhood and then consider the integration the exact integration of that quadratic

model function note that in the single point formula we use the constant value in the 2

point  formula  that  is  trapezoidal  rule  we used a  linear  approximation  in  the 3 point

formula in the same manner we will use a quadratic approximation.



So, now this is one way to arrive at Simpson’s; one-third rule there is fit a quadratic

through  this  3  point;  points  through  this  3  function  values  and  consider  the  exact

integration of that quadratic function this is one way another way to do the same thing is

at suppose these are x 1, x 0, x 1, x 2 and the corresponding function values are say f 0, f

1 and f 2. You can also say that till now, we have seen that the integral estimate that we

get integral value that we get is a weighted some over weighted some of the function

values in the trapezoidal rule we found that for every sub interval the weights where half

half right of the both the function values.

Similarly, here we can say that we will consider some weight value this and then try to

determines w 0, w 1, w 2. So, there are several ways of a having a Simpson’s one-third

rule first is that through these 3 function values try to feed a quadratic and integrate that

quadratic expression analytically you get Simpson’s one-third rule formula the second

possible way is to assume it in this manner. And then claim that the result of this sum

must be correct with respect to the Taylor series up to such an such order that is first

order second order third order errors should be 0. That means, you conduct the Taylor

series approximation and integrate that and with that the error of this you subtract that

with that with that you consider the error of this that is from that you subtract this you

get the error estimate in terms of h and from that say that the h term h square term and h

cube terms. These 3 terms must be 0 and from that equations on w 0, w 1, w 2 and then

get the correct values of w 0, w 1 and w 2 and you will get the correct values this will be

1; 1 by 3 this will be 4 by 3 this will be 1 by 3. So, that will be another way to arrive at

Simpson’s one-third rule.

These  2  independent  ways  of  arriving  at  Simpson’s  one-third  rule  you  find  in  the

exercises in the text book and here we try to find a third way to arrive at  the same

formula and that is based on what we were discussing just now; how to use both the

merits. So, using this kind of a pair of sub intervals you say that over this double interval

of size 2 h we can use midpoint  rule  to find out an integral  estimate or we can use

trapezoidal rule over 2 of this and try to evaluate the integral like that.

So, over this entire interval 2 h of 2 h size if we use only trapezoidal rule over the entire

interval together then we get this trapezoidal area right and that is this; so, trapezoidal

rule over this entire double interval we will give us this that is half into 2 h into some of f

0 and f 2, right that is this. Similarly, if you use midpoint rule over this entire interval



then will  find the value of this  into 2 h that  will  be this.  So,  estimate based on the

midpoint rule is this estimate based on the trapezoidal rule is this and error estimates we

have found earlier already in that same error estimate formulas if we put 2 h in place of h

because now the interval size is twice h then we will get these, then we say can we find

out a linear combination of these 2. So, as to get a better estimate of j; that means, so as

to eliminate the leading error from here.

As you can see twice the first equation plus once the second expression if we add then

you will get 2 h cube by 3 positive and 2 h cube by 3 negative and they will cancel out.

So, twice this will be 2 j and ones this will be 1 j some of that will be 3 j, right. So, in

that this will be missing and that expression then if you can divide by 3 you get another

value of j which is a better value in the sense that the cubic error term will be missing.

So, what we do? We multiply this with 2 this with one add up and then divide by 3. So,

thereby you will get divide by 3. So, one-third of twice this plus this if we do that then

you will get this which is the Simpson’s one-third rule, one-third rule it is called because

of this one-third factor coming here and the leading the error term is fifth order.

Now, notice that we expected up to fourth order error, but because of the symmetry we

certainly find that we have got an advantage. So, these a fifth order formula and over a

complete domain you will find that a corresponding error will be only fourth order now

if we use 3 n number of intervals like this rather than 2 n and then we fit a cubic through

4 points x 0, x 1, x 2, x 3 over the 3 intervals and then conduct the integral then similarly

we get another rule which will be a 4 point rule and that is Simpson’s 3 8 rule.

But beyond this and in the case of Simpson’s 3 8 rule also, we will find that the error will

be only fifth order fifth order fourth order only just like Simpson’s one-third rule because

does not have the use of midpoint that does not have that advantage of the midpoint still

higher order rules. I am not very advisable because they tend to give high oscillation

binomials which are not true representations of the function rather in such situations we

tend to use the trapezoidal rule or Simpson’s rule themselves in 2 different strategies

whereas, to improve the integral estimate rather than going for rules with more number

of points.

One very good method for finding very accurate integral with very less computational

cost is through Richardson extrapolation. Now note that Richardson extrapolation is a



methodology which is applicable not only for the numerical integration problem, but for

any problem in which we try to determine a quantity f through computations over a step

size h now if using a step size h, we make as estimate h f of h. So, depending upon the

step size the estimate will depend.

(Refer Slide Time: 36:33)

Estimate will vary now finer and finer step that we take better and better estimate that

will get and if the error terms are h to the power p h to the power q h to the power r

etcetera with this arrangement and if p q r have significant gaps then if we have way to

improve the estimates by leaps and bounds through every next calculation.

For  example  suppose  F  is  a  quantity  to  which  we  are  trying  to  estimate  with  the

computation being carried out with the step size h now with the step size h suppose this

is the value of Fh with.
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A half size of the step size suppose this is the evaluation this is the estimate one fourth

size this is the estimate one 8 this is the estimate one 16, this is the estimate and can we

what say that with very small step size the result should be something like this that is the

extrapolated results based on the estimates which have been made over various different

step size h. So, this is the idea of Richardson estimation.

So, if the correct value of f is the limit of f of delta as delta tends to 0, then plotting this

with  the  plot  extrapolating  to  h equal  to  0 will  get  the  correct  value  and very very

accurate estimate. Now this will work when the leading errors have certain gaps now for

example, suppose the in the evaluation of f of h through the numerical process here the

leading error term is h to the power p. And next is h to the power q next the h to the

power r and so on with gap then with alpha h alpha less than one in this example i have

mention taken alpha equal to half which will be using in the f of numerical integration

also.

Now, with alpha h step size the estimate is this similarly for f a square h estimate is this

now if you take the 2 higher equations from here and multiply the upper one with alpha

to the power p and subtract then this c unknown, c will get cancelled and you will get 1

minus alpha to the power p into f right. And from there in between these 2 we will get a

better estimate that is between these 2 this minus alpha to the power p times this will be

this minus alpha to the power p times this right that is here and this one get cancelled and



1 minus alpha to the power p with that we divide and we get a better estimate of f that is

f 1 in that the leading term of error h to the power p will be missing. Now the leading

term will be h to the power q.

Similarly, if you use these 2, then in a similar manner we will get this minus alpha to the

power p into this part will be cancelled and then 1 minus alpha to the power p with that

we divide and get another better estimate there is even better that this within these 2 now

consider in these 2 the evaluation has been done at one more steps further in which the

leading error is now of qth ordered. Here again you can see that if we subtract alpha to

the power q times this from the lower one then suddenly yet another better estimate we

will get in which the q ordered error term also will get cancelled and that we get like this

that is even better estimate.

So, now between 1 and 2 we will get this estimate between 2 and 4 we get this estimate

and then between 3 and 5 we get yet another estimate which is even better. This is one

way of improving the estimate of a true way limited number of actual evaluation and

when we apply this Richardson extrapolation through the numerical integration problem

with trapezoidal rule itself we get what is called the Romberg integral.

(Refer Slide Time: 41:07)

That is we take the trapezoidal rule which is like this over finer interval from a to b and

then here pqr are 2 4 6 called even term which are to half we have the advantage that in

the first round we evaluated at these 2 point in the second round when we subdivided the



interval by 2 sub interval. Then we need evaluate here, here, here, but in these location is

the function values are already there only the here we have to evaluate first and then next

round at these 3 point we already have the function value at  these 2 point,  we have

evaluate and so on.

So, if we use the same formula then trapezoidal rule will with h equal to capital H, we

find you have estimate, then which h equal to capital H by 2 we find another estimate

between these 2 estimates we will get a much better estimate. Similarly, which h equal to

capital H by 4 will get another estimate 1 3; now between 1 2 1 1 3, we will get another

much better estimate and between these 2 better estimates j 2 2 and j 2 3 we will get yet

another estimate which will be extremely good.

Now, at every step we can check whether the difference between last 2 best estimates is

extremely  small  if.  So,  then  we  can  stop  or  we  can  continue.  So,  this  process  of

integration is called Romberg integration and these gives very accurate results in a very

efficient manner another way of using efficient means is through adoptive steps size,

now why that is important because it may happen that there is a function with over a

complete interval changes like this. Now, you will find that in this part of the domain

large step sizes will give quite accurate results on the other hand here or here you will

need small step sizes right. So, in that kind of a situation adoptive step size helps you to

get a very accurate re estimate of the integral with less number of function evaluations.

So, what you can do is that in the beginning you have a tolerance value epsilon which is

your statement about accuracy then you can say that for every sub interval of size xi

minus xi minus 1 you can assign a quota of error epsilon divided by b minus a into this

sub intervals size. So, every sub interval we will have this much quota called error right.

Then what you do for each interval find 2 estimates of the integral 1 over the full and 1

over the half now if the difference you find between the 2 estimates and from that you

estimate the error. Now, if this error estimate is within this quota then you accept it or

you sub divide the interval further this is the process of adoptive quadrature or adoptive

step size in numerical integration this is quite often found very effective.

Another situation that arises is if you have the function as tabulated data and tabulated

data  is  not  necessarily  over  equal  number of  intervals  for  example,  for this  function

suppose you have got the tabulated data at these x value then all at you can do is use



these function values only you cannot evaluate the function anywhere else suppose these

are the function values and from that  you have to integrate.  Now, for this  kind of a

situation you can do 2 things one over every interval with unequal sizes now you use

trapezoidal rule and sum of 1, 2, 3, 4, 5, 6, 7; 7. Such integrals you just take the sum this

is one way to do it the other way to do it is through these function values to these data

points you fit a spline the way we discuss in the previous lesson if it a spline and then

conduct  the integral  of that  plain this  is  another  way either  spline or any such other

continuous representation of the function.

So, these are 2 different ways of handling the integral problem when all that you can use

is function values given at certain data points and you cannot evaluate the function at any

other point. So, they are either you use trapezoidal rule over single sub interval and at or

you fit a continuous representation through function interpolation methods and then use

that composite function to evaluate the integral.

Now, sometimes you find that the integral when you try to develop then the function

value at the end of the interval is not appropriately define such integrals are improper

integral and in that case these rules trapezoidal rule or Simpson’s one-third rules etcetera.

You cannot use and these formulas which are called Newton quotes close formulas they

are not  applicable in such situations  where the end point of the interval  is  improper

where the at the end point of the interval function is not defined.

For example for this point of a function where the end points of the interval have do not

have the function define at those points. So, in such situations these rules these close

formulae which will required you to provide the end point function values will failed in

such cases you can reserved to similar open Newton quotes formulas which do not need

the end point value or you can use Gaussian quadrature. Now, in the next chapter of the

book we discuss Gaussian quadrature, but for the purpose of the course, we will omit

that,  but from the next;  next lesson, next chapter of the book, we will take one very

simple, but very powerful formulation and that is in multiple integral.
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Now, just  like  ordinary  single  integral  you  have  such  Simpson’s  rules  etcetera  for

multiple integrals also and for examples over a rectangular domain square domain minus

1 to 1 minus 1 to 1 over xy you get this as the 2 dimension version of the Simpson’s one-

third rule which will be accurate for a bicubic up to a bicubic function the way a single

variable  function  f  x  for  that  the  Simpson’s one-third  rule  is  correct  up  to  a  cubic

function. So, this will be exact up to bicubic, but this is not what we want to discuss, I

will  discuss  here  quickly  a  very  powerful  integration  method  called  Monte  Carlo

integration which is a stochastic method and it is very useful for evaluating multiple;

multiple integrals over very complicated domains.

For example over these domain a function is defined and this is the domain of integration

and you want  to  integrate  function f  x over  this  domain  now the description  on the

domain itself makes the thing quite complicated and over that the development of the

integral is difficult. Now, in such situations Monte Carlo method of integration gives you

a very quick and handy way to get the integral and for that requirements are very simple

you want a simple volume in the case of a 2 variable problem, it is an area a simple

volume enclosing the domain omega that is suppose this is the domain omega and what

you need is a straight forward simple volume simple region geometrically simple region

which encloses this completely for our purposes this rectangle can be that domain this is

easy.



Now, suppose this is xi this is xf that is initial f final f similarly this is yi and this is yf

initial y final y. So, this is the selected domain now it is very easy to find points which

are in this rectangular domain it was extremely difficult to find points which are there in

the domain omega because of the shape of the domain, but it is extremely easy to find

points which are inside this. Now, this is one requirement you have to have a description

of a straight forward geometrically simple region which completely encloses the domain

and you must have a point classification scheme that is after a point has been through

inside this rectangular domain you should be able to tell whether that point is also inside

the domain omega or not whether it is here or here.

With these 2 things in hand we can generate random points in this big volume v in the

domain V and then if the point is within omega also then we count f x and if it is not

within omega, then we count 0 and then.
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We go on adding and as we add up all these capital f x values taking the actual function

value if it fall within our domain 0 otherwise, then the sum of all these function values

divided by n into the volume of these gives as the Monte Carlo indication value now you

know that larger capital N more accurate will be the result.

Now, the practical implementation practical use of this Monte Carlo method Monte Carlo

integration will require you to first make an estimate based on sum value of n say n equal

to 100 make that estimate then in a fresh mid make the same estimate with n equal to 500



and then n equal to 1000, then n equal to 5000 and as you increase n after the point, you

will find that this estimate does not change much; that means, that number of points that

number of random points is enough for this problem and this gives you a very good

estimate of the integral.

So, other issues in the chapter are related to Gauss quadrature and that you can covered

at your lecture for the purposes of our course we are omitting that and in the next lecture

we will go into the very important topic of numerical solution of ordinary differential

equations.

Thank you.


