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Welcome, today is our last lecture on optimization theory. In this lecture I will cover the

last important topic in the basic theory of constrained optimization that is duality and

then we will discuss a general overview of and classification of a methods of constraint

optimization and then if time permits, then we will quickly have a brief discussion on 2

specific  type  of  constraint  optimization  problems  which  are  linear  optimization  and

quadratic optimization problems.
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First  for  discussion  on  duality  let  us  consider  this  general  non-linear  optimization

problem in which we want to minimize the function f with constraints gx less than equal

to 0 and hx equal to 0.
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Suppose we get a solution of this problem and that solution is x star, corresponding to

Lagrangian  multipliers  which  are  lambda  star  and  mu  star.  Now  note  that  these

Lagrangian multipliers which we called as lambda and mu earlier.

Now, we are giving it giving them the name lambda star and mu star because further

discussion on duality in which lambdas and mu’s will be taken as full variables, we need

the notation lambda and mu for those variables and therefore,  the specific values for

those variables at the solution point we are going to call as lambda star and mu star. Now,

if x star is a feasible point which is the solution of this non-linear optimization problem

constraint optimization problem then we know that the Lagrangian of the problem at the

solution can be developed as f  of x  plus lambda star  transpose h of x  plus mu star

transpose g of  x  and then the  first  order  necessary  condition  for  this  function  to  be

stationary is grad l equal to 0 which is grad f plus lamb plus grad h into lambda star plus

grad g into mu star equal to 0 which we have seen earlier in the KKT conditions. Apart

from that we will also find the optimization conditions as that mu star should be all non

negative and 0 corresponding to the inactive inequality constraints right this much we

have seen. Now, note that that is the condition is the first order condition.

Now, note that  if  we get this  as the solution and then we try to vary these numbers

whatever is the Lagrangian multiplier value lambdas star and mu’s stars at the solution

point around that point, if we try to vary these numbers and the general values of this



number this multipliers we treat as lambda and mu with the values specific values of

those variables lambda and mu at the solution point being taken as lambda star and mu

star. And then the general function in terms of general x general lambda and general mu

will be constructed like this and this turns out to be a function of x lambda and mu that is

the original variables of the problem and the Lagrangian multipliers taken as variables.

(Refer Slide Time: 04:44)

If we define like that then we say that for some given values of lambda and mu.

We can consider the minimization problem and consider this as the Lagrangian and then

through that  is  after  giving  some values  of  lambda and mu we try to  minimize  this

function with respect to x. Now, the minimum point x star in that case will depend upon

the lambda and mu values that we give that is if we end up giving the correct values of

lambda and mu that is lambda star and mu star, then we will get the correct x stars which

is  the  solution  of  the  original  optimization  problem.  On  the  other  hand  if  we  give

somewhat different values of lambda and mu, then as the solution process as the as the at

the end of the solution process as a solution of minimization of this function we will get

a point x star which is not correct x stars; therefore, we can call that x star which is the

minimum of this function for general values of lambda and mu not necessarily lambda

star mu star as the x star that we obtain as a result of specifying those lambda mu values

and correspondingly we will get the function value at this x star.



So, that value at the x star dependent on these can be constructed like this. Now, note that

with respect to for every prescribed set of values lambdas and mu we get some point of

this function and the corresponding minimum value. Now, this minimum value then can

be taken as a function lambda and mu and therefore,  this the minimum value of this

minimum with respect  to  x variables  as  a  function  of  lambda mu is  called  the  dual

function that is a function of lambda and mu.

(Refer Slide Time: 07:14)

And so  we can  define  this  new function  as  a  function  of  lambda  mu which  is  the

minimum of this Lagrangian function with respect to x note that since the minimization

is carried out with respect to x the resulting minimum value is no more a function of x,

but it is a function of lambda and mu. So, these variables lambdas and mu’s turn out to

be the variables of this particular function and this function is called the dual function.

Now, the original function was with respect to x original function as a function of x and

this mu function that we have now defined is a function of the Lagrangian multipliers,

right.

So, these are called the dual variables the original variables x is call the primal variable

and therefore, the original problem is called sometimes the primer problem which has

been stated here and this from here with the dual function we will divine define a dual

problem now considered. Now, in this case we know that the optimality condition of the

original problem or the primer problem is gradient of this equal to 0 that is one thing and



mu is non negative the entire mu are non negative. Now, considered the same function,

but then maximization of this function with respect to lambda and mu and see what we

get and in that we will consider mu to be non negative.

(Refer Slide Time: 09:16)

Now, here we consider this problem maximize the Lagrangian function with respect to

lambda mu subject to mu greater than equal to 0 suppose we considered this problem.

Now, this problem gives a something interesting. Now, note that for when we maximize

when we try to maximize this function which respect to lambda and mu for a given set

values for x that is for given x, we try to maximize it with respect to lambda and mu.

Now, if the given x is such that at that value of x, one of these inequality constraints

turns out to be positive.

Now, for that gi; if that that is positive then what value of the corresponding mu we

should take to maximize these functions we are trying to maximize it if a particle gi is

positive then the corresponding mu i, we can take extremely positive that is we can go on

increasing that value of mu which is corresponding to the functions gi which is positive.

That means, that on the upward side this function of lambda and mu is unbounded that is

maximum do not exists that is if some gi is positive, then we can go on increasing mu we

can give a positive value mu enormously the large positive value of mu which will make

this function as large as you want.



So; that means, there will be no maximum value it will be unbounded; that means, for a

maximum value for this function to exists it is necessary that no gi is positive. So, we get

one requirement for the existence of maximum of these we need this.

(Refer Slide Time: 11:55)

Now, see that if a gi is negative then giving value mu equal to positive will reduce this

function value which we do not want this is the maximization problem since we have

solving a maximization problem. Then for every g i which is negative take this for every

g i which is negative we would like to keep mu 0 because if mu is positive and g i is

negative then the corresponding product mu i g i that you will get here will be negative

and we all; we are maximizing this function.

So,  the  negative  value  of  this  we would  like  to  reduce  as  much  as  possible  that  is

compare to minus 5 minus 4 will be the considered better compare which minus 2 will be

considered batter and so on and best will be if this is 0. Now, if g i is negative then above

0 it cannot go because mu is non negative so; that means, that for every g i which is

negative we need mu i 0 that set as well with our condition earlier the complimentary

condition in the KKT conditions that corresponding to inactive inequality constraints the

mu should be 0 and those g is which are active at that x; that means, those g i which

evaluate to 0 for them mu i can be positive this is one thing.
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But as the requirement, we need all these to be 0; that means, a value of x at which any

of these turns out to be positive at that x this maximization problem the solution of this

maximization problem will fail maximum will not exists. So, for the maximum to exists

it is a necessary condition that this is less than equal to 0. Now, tell us come here and that

value  of  x  if  a  particular  h  is  positive  this  is  positive  then  on  lambda,  there  is  no

restriction lambdas can be positive as well as negative. So, if a particular h is positive

then corresponding lambda lambda j, we can make positive and give it as large value as

we want and therefore, the product lambda j h j will be enormously large as we can want.

So; that means, on the upper side this function will be unbounded and we will not find

any maximum we can go on increasing it as much as we want.
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Similarly, if a particular h turns out to be negative then the corresponding lambda j we

can give negative here there is no sign in restriction. So, again as low as possible minus

10 thousand minus twenty thousand minus forty thousand value we can go and giving to

lambda j and make the corresponding product lambda j h j here as large as possible

because this  is  also negative this  also we give negative as negative as we want and

therefore, we can go on increasing this function again the function will be unbounded.

So, there will be no maximum.

(Refer Slide Time: 15:44)



So, for the maximum of this function to exists is also necessary that h j is neither positive

nor negative; that means, h j should be all 0. Now, note something interesting here base

on the Lagrangian when we wanted to minimize this which respect to x we got this this

function which we call the dual function and at the same time we found this because one

of the minimum conditions is this and of course, the Lagrangian derivative should be 0

that condition we got.

So, while minimizing this with respect to x we got this function the reduce function of

lambda mu only and mu gather than equal to 0 the gradient of this with respect to x

vanishes. Now, when you took the same function and try to maximize it with respect to

lambda mu, then we got the condition like this which are the feasibility requirement for

this.  So,  the  duality  is  here  that  is  the  definition  of  the  dual  function  requires  a

minimization with respect to the primal variables. So, definition itself means the dual

function  dual  problem is  feasible  only  at  those  points  where  the  primal  function  is

minimum.

Now, here you find that the primal problem is feasible only at those points where the

dual turns out to be maximum. So, if these are 0 then here in the contribution this whole

thing  will  be  0  and  if  these  are  all  non  negatives  and  for  negatives  values  of  g  i

corresponding mu’s are positive mu’s are 0, then this also will be 0. So, at the solution

point we will  be left  with only f x with the conditions which is which are this;  that

means,  you will  be left  with the function f  x with these conditions;  that  means,  the

feasibility of the primal problem.

So, that shows that when you minimize the Lagrangian, you get the dual to be feasible

that is optimality of the primal problem is linked to is connected with the feasibility or

the definition of the dual problem similarly optimality. Now, in the maximization sense

of the dual problem is linked to or connected with the feasibility of the primal problem.

So, this is the idea of the duality. Now, if you considered lambda and mu as variables and

then you define this function of the Lagrangian multipliers and then say this is a dual

function we try to maximize this dual function with respect to lambda mu you should get

under a suitable conditions the same lambda star mu star with which we started and you

should get the maximum value of this phi which is the same as the Lagrangian value at x

star lambda star mu star and also the same as optimal function value f of x star similarly

if  you take the Lagrangian and from there you first  maximize that  and get  back the



original primal problem and then conduct the minimization of that then also you will

lead you reach the same point.

So, with this much background; now let me summarize the overall results of locality

duality or convex duality without getting into complicated proof.

(Refer Slide Time: 19:37)

This is just for an over view if we assume local convexity that is near the solution point

the function is convex in the x variables in the primal variables then the dual function is

defined in this manner and constraints on the dual that is for the definition of the dual

problem you will need this that is optimality of the primal.

And similarly you will find that at the same time apart from this gradient condition you

will find the corresponding to the inequality constraints. So, the primal problem we will

find non negative variables mu in the dual problems that is constraint corresponding to

the  inequality  constraints  whatever  is  the  optimality  condition  on  the  mu’s that  will

appear in the dual problem as constraints on the bounds on the non negativity constraint

on the dual  variables  mu’s and mould.  If  you work out  in  detail  that  is  what  is  the

condition of first order optimality first order condition for maximum of this then you will

be taking the gradient of pi with respect to the lambda mu and setting that equal to 0 that

will  actually  give  you  these  conditions  which  are  which  is  equal  equivalent  to  the

feasibility of the primal problem.



We will find that first order necessary conditions for the dual optimality turn out to be

equivalent to the feasibility of the primal problem and the way near the solution point the

primal function is convex on the other side the dual function is concave it is this; this is a

concave function  that  is  its  second derivative  will  be a  negative  definite  matrix  and

another suitable convexity conditions this will be satisfied.

Now, if those if this condition is not satisfied; that means, that the problem does not have

those conditions, but even there what will be satisfied will be that the maximum of the

dual function is less than equal to the Lagrangian value at x star lambda star which is

again less than equal to the minimum value of the primal function. So, in the case of

convex problems you will find that the inequalities are replaced by equalities and then

what is the characteristic of this large function this Lagrangian function the Lagrangian

function as a saddle point and that at x star lambda star mu star because in the x variables

that is a minimum point so; that means, the in turns if you try to see the scene in the x

subspace in the complete space of x lambda mu.

(Refer Slide Time: 22:44)

If you try to visualize the shape of the Lagrangian function in the x subspace, then at x

star you will find then it has a minimum like this on the hand in lambda mu subspace it

will have a maximum at that point that is means like this.

So; that means, that in the lambda mu subspace when you give a value to lambda mu;

that means, in the lambda mu subspace you are assigning a value; that means, you are



telling that we are going to cut here or here and that is in the lambda mu subspace that is

this variation this direction. So, suppose you are giving this value of lambda mu. So, then

at that value of lambda mu in the x subspace you will get this curve in which this is the

minimum and. So, on and among such minima if you try to then maxi find the maximum,

then you will get this and there is a solution.

So, in the lambda mu subspace the solution point is a local minimum local maximum in

the lambda mu space this is a local maximum in the x space it is a local minimum. So, if

you give a slightly different lambda mu then rather than this curve you will get another

curve and so on. So, those will not be feasible for the original problem for the primal

problem, but the corresponding minimum you will get here right similar similarly if you

first freeze the x variable then you will get not this curve, but something like this curve

in which this will be the maximum. So, the locus of all the maxima of the dual problem

will be this and similarly the locus of all the minima of the primal problem will be this.

Now, out of the locus of all the maxima of the dual problem if you minimize you get this

point, similarly out of the locus of all the minima of the primal problem for different

lambda mu if you maximize there is maximize a dual you get this point.

So, same point you get from all directions. Now, this duality as an advantage in a sense

that there may be a problems in which the primal problem is difficult to solve, but then if

we recast the problem in to the dual variables and then many times the dual problem

turns out to be simpler to solve and in that case we try to solve the dual problem and

there by develop the solution for the primal problem some of the optimization methods

some of the algorithms are based on this duality.

Now, with this much of theoretical back ground of constrain optimization theory let us

quickly  have  a  have  an  over  view of  the  type  of  methods  that  we  use  for  solving

constraint problems typically for a problem of n variable with m active constraints.
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You can classify the different optimization algorithms different non-linear optimization

algorithms into several classes into 4 classes depending upon the dimension of the space

in which they conduct the search the simplest is the family of penalty methods in which

the search is conducted in the same space in which the search would be conducted if it

where unconstraint problems and constraints are included in the discussion in the search

process through a penalty term like this.

So, what we do in the case of constraint of optimization in penalty methods is that rather

than trying to minimize the original function fx we try to minimize a penalized function

which is f x plus c into px where p x is a well designed penalty function which is 0 or

insignificant at those points where the constraints are satisfied. And they become positive

at those points where the constraints are not satisfied and more the constraint valuation

higher is the value of p x with a large number c sitting as the penalty parameter.

Now, how does this work in the normal search process for any unconstrained method this

function will tend to be large tend to have large values in those localities in those point at

those  points  where  the  consideration  violation  is  more  therefore,  any  optimization

method due to the very nature of its working will avoid those zones where constraints are

violated. So, for example, you can considered this as a penalty function right this is one

of the very often used penalty function half h x non square plus half maximum of 0 and g



x non g x square; that means, if g x is negative then it is not penalized 0 is taken if g x is

positive; that means, it is violated then the corresponding violation we will get analysed.

Now, whatever is the amount of violation the values of h and whatever is the amount of

violation here positive value of g according to that the violation will be more i mean

according to that the violation will vary. So, this is this way what happens that if the

value of the penalty parameter is extremely small then the constraint will not have much

effect on it on the other hand if the constraints are if the penalty parameter c is very large

if we give a very large value to the penalty parameter then the constraint satisfaction will

takes such a prominent role that the original function will be lost in it and the profile the

contours  of  the penalized  function turn out  to  be extremely  sque because of  a  large

penalty value.

So,  these  are  the  typical  difficulty  with  penalty  methods  that  is  why  to  handle  this

typicality  in penalty method typically  when we apply penalty method we apply it  in

several stages for example, first round we can put c equal to 0 and then we will get the

unconstraint  minimum  of  the  function  then  we  give  equal  to  1,  then  the  constraint

function will put some amount of effect and the minimum point of the sprightly shift

possibly and then we give c equal to 10 c equal to hundred and so on.

If the constraints are active of course, equality constraints are always active and if the

unconstraint minimum point is not feasible then as we go on increasing c as 1, 10, 100,

1000, 10000 and so on. Then the constraint violation will have more and more of a cost

and therefore, the step wise the minimum point will go on shifting and then by the time

we take very high values of p for example, 10 to the power 8 or 10 to the power 9 by that

time the constraints will be satisfied properly and at every stage of this minimization

process we will considered the previous value reach as the starting point for the current

iteration.

So,  this  is  one  way  of  handling  the  constraints  in  the  setup  of  an  unconstraint

optimization solution methodology itself and this search is made in r n the space the

same space of the primal  variables  the original variables  x variables  of the problem.

Now, there are some methods which operate only on the feasible space and they are

called  the  primal  methods  they  do not  give  any chance  to  constraint  violation;  that

means, that they star from a point which is feasible and then at every step they continue



into  the  feasible  space  itself  and that  way if  there  are  m active  constraints  then  the

dimension of the space in which they operate is n minus m because they operate on the

tangent plane of active constraints and for inequality constraints they will work in the

cone of feasible directions.

Now, these methods have one advantage over penalty methods and that is that in the case

of penalty method in the case of a premature termination the result is no way use full

because  the  result  maybe  point  which  is  yet  not  feasible  primal  methods  have  an

advantage that even if there was an termination which is premature that is even before

convergence that point, even if not optimal is still  a feasible point and perhaps say a

reasonably good solution to the original practical problem.

So,  there  are  quite  a  few primal  methods  one  example  is  gradient  position  method

another family of optimization methods considered the Lagrangian multipliers as very

fundamental variables affecting the nature of the function in the function space in the

design space and they say that if you can get hold of the correct values of the Lagrangian

multipliers  at  the solution point.  Then the rest  of the job is  easy and that  helps you

particularly if the number of Lagrangian multipliers turns out to be quite less compare to

the number of variables or recasting the problem in terms of Lagrangian multipliers give

certain advantages in the sense that the scape of the function turns out to be much similar

or some such thing.

So, in such methods we considered the dual function the way we just now discussed. So,

in that case we transform the original problem into the space of Lagrangian multipliers

define the dual problem and make a make an attempt to solve the dual problem. And as

we solve the dual problem on the way we develop the knowledge of the solution of the

primal problem. Also one very good example of this method of this family of methods is

the augmented Lagrangian method there is yet another class of methods in which we

operate on the entire space of x lambda mu together that is primal variables and the dual

variables all together and that is why they operate in a space of dimension m plus n.

These are the method a family of method these constitute the family of method for the

Lagrangian methods in that what we do we take the equation from the KKT conditions

directly and try to solve those equations we try to find out the solution of those equations

and also the corresponding equalities together.



So, those equalities inequalities and equations from the KKT conditions we try to solve

directly through different steps there by converging to the minimum of the problem. Now

one  example  of  this  family  of  methods  is  the  famous  algorithm  called  sequential

quadratic programming.
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Now, this much is on the general theory of constraint optimization and in rest of this

lecture we will consider 2 particular types of non-linear optimization problems which are

linear optimizations problem linear programming problems and quadratic programming

and problem, LP problem and QP problems you must be already conversion with the

linear programming problem and the famous simplest method to solve it.

So,  here  we will  not  go  into  detail  of  the  linear  programming  and simplest  method

aspects expect that we will make a quick overview of the linear programming problem

and the simplest method. And then have a look at the general perspective of a linear

programming  problem in  terms  of  all  the  theoretical  aspects  that  we  discuss  in  the

context of a general non-linear problem.
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As you know a typical standard form of an LP problem is this minimize f x equal to c

transpose x a  linear  function  subject  to  a  number  of  linear  equality  constraints  with

nonnegative variables x and nonnegative b. Now, if the original problem does not appear

in this manner.

Then we conduct a little pre processing to cast a problem to the standard from form; now

for example, if the original problem is to maximize then we minimize the negative of it

similarly if there is a variable which can take positive as well as negative values then we

give 2 variables for that variable  that  is variable  x which can be positive as well  as

negative that we can put as x p minus x q and say that both of these x p and x q should be

non  negative.  So,  the  difference  can  be  anything.  So,  variables  of  unrestrictive

unrestricted sign we replaced by using 2 variables each of them being sign unrestricted if

there are inequality constraint then we use slack or surplus variables to get them into

equality constraints if there is a right hand side value which is negative not satisfying this

then we multiple that constraint with minus 1 which means that this multiplication with

minus 1 as to be done flier to using slack or surplus variables.

Now, these pre processing steps we conduct in order to put the solution problem in this

standard form now why do we do all this. Now to get into that you need to thing you

need to visualise the geometry of an LP problems; for example, for a linear programming

problems if the domain is infinite then the question arises does a minimum exit. Now, if



the domain is completely open if it is completely unconstrained then there is no question

of minimum existing because corresponding to any c which is  negative  if  we go on

giving a large value to the corresponding x, then we can make it equal to minus infinity

which means on the other side it will be unbounded.

So, we are not talk about infinite domain of that kind if the domain is close from one side

and open from the other side then the question arises there is a minimum exists. Now, if

the function decreases in this direction towards this close side then the minimum will

exists. On the other hand if there is any opening in a direction in which the function

decreases then the fun function will have will have no minimum in the domain you can

go in that direction and indefinitely reduced the function value. On the other hand if the

domain is a finite convex poly tope it has to be a polytope it has to be a convex polytope

because of the nature of the constraint that you can have non-linear constraints.

So, it has to be a convex polytope if it is finite. So, if it is close finite polytope close from

all side then existence of the minimum point is guaranties because you cannot go on

indefinitely in any direction now; that means, what; that means, the minimum will exits,

but that will exists only in the boundary; that means, the linear programming problem

cannot have an internal minimum points because the derivatives are constraints. So, now,

considered this situation that we have got a domain in which we are trying to solve a

linear programming problem.

Now, if we start anywhere at a feasible points and the work out the negative gradient for

example, suppose this is the direction in which the native gradient works and we are at

the interior of this particular domain in which we are going to minimize. So, if this is the

direction or the negative gradient then in that direction we would go on moving till we

reach a boundary right suppose black this board is a boundary.

So, then at this point we will see what is the gradient; now as I have pointed this you will

notice that the gradient here has a component which is tangential to this board; so, then

since the board is the boundary. So, we will consider that we cannot go bound it, but on

the board we can move. So, we work out this direction in that we will go on moving till

we hit this top of the board which is also another boundary then we will go on moving in

this direction because that way also we find a component.



So, then we move in this direction and find that we hit another boundary note that is this

three dimensional space we had to hit three boundaries in order to reach vertex in the

three dimension space we had to hit three boundaries. First going like this we hit at this

boundary board then we took the component of the negative gradient along the board we

started moving along the board like this we hit the top of the board second constraint and

then we took again a tangential step and started moving in this way and got hit by a

vertex. Now, at a word x of the convex positive of three spaces met and that goes our

direction completely.

So, in n dimensional space that way n boundaries have to inter take and reach a vertex to

finally, stop over movement and therefore, we find that for solving linear programming

problems rather than travelling all the way like this we could have say at the being that

we will operate only with vertices. So, operating with vertexes as alone is a sufficient

strategy and then we will find that if we work with vertices only then since we are adding

we are introducing slack and surplus variables. So, that mean till we hit constraint for

example, this is constraint inequality constraint that is on this side of the board is the

domain.

So, till we reach here the corresponding surplus variable a x plus b a x equal to b a x plus

is surplus variable equal to be that surplus variables was non zero the surplus started

decreasing as we move like this and that surplus variable; variable became 0 on at this

point right. So, we find that the surplus variables slack stack and surplus variable has the

natural  values  of 0  at  the boundaries  and on this  side on the  feasible  side there are

positive.

Now, if we are going to introduce additional slack surplus variables which are 0 at the

boundary non zero in the interiors then it would help it would be easy it convenient if our

original variables also where like that that is in the domain there are positive interior of

the domain there are positive on the boundary of the domain. There are 0 and negative

nowhere negative in the infeasible domain zone and that is why to treat all variables at

par it become easy in the book keeping way to keep all variables as non negative and that

way the original setup variables become a subset of the complete setup variable and then

all of them we put these and then all variable together we can considered.
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Now, in the simplest method what we do at every step we keep a set of basic variables

that  is  equal  to  the  number  of  linear  constraints  that  we  have  and  the  other  set  of

variables is taken as a non basic variables. Now, at every step we considered the variable

having  we  considered  only  vertices  to  begin  with  and  at  every  vertex  quite  if  you

constraints  are  on  the  active  point  right.  So,  those  constraints  which  are  active

corresponding slag variable will be 0.

So, the non basic variables we will have a 0 value and therefore, the basic variables will

have this is identity basic variables will have the same value as on the right side and at

every step we try to replace the current vertex in favour another vertex which is better

that is where the function value is better. So, at one vertex we considered all the edges

along which we would like to move because from one vertex to another we would move

along an edge.

So, at that vertex whichever edges are meeting out of those edges we select an edge the

moment we select and edge one of the constraint boundaries will leave; that means, one

of the 0 variable is becoming non zero; that means, one basic one non basic variable 0

value variable will get a non zero value now and then we go along that edge and stop at

somewhere whichever other constraint boundary cut it. That means, at another vertex at

the being of the edge we have the current vertex at the end of that same edge we will

have another vertex, where another constraint will become active.



So, the slack variable whether our introduced slack variable original variable of problem

that will become 0 so; that means, a basic variable now becomes non basic. So, one non

basic variable becomes basic and one basic variable becomes non basic. So, this is the

idea. So, at every iteration from the current vertex we select a non basic variable to enter

the basic; that means, we select that constraint which is going to become inactive now.

If there is no qualifier; if no direction no edge we can find that is leaving no none of the

current active constraint boundaries is going to be an advantage then that will mean that

we have  converge  the  current  vertex  is  optimal.  On the  other  hand if  several  edges

qualify along which there is an advantage then we chose that direction along which the

advantage is maximum that is the fastest rate of distant. So, that we select one non basic

variables to enter into the basis from this set and then at the same time we see that along

that edge how far we can go; where do we set the first boundary corresponding to that

one currently 0 variable non zero variable currently basic variable will become 0 because

we hit that boundary. So, we select a basic variable to leave the basic and get included in

this list.

So, based on the first constraint becoming active along that edge, we choose that if no

constraint become active in that direction; that means, in the direction the domain is open

and we can go up to infinite distant and that mean no constraint ahead along a addition

direction and the function is unbounded after these 2 selections if both result in certain

use full selections then basically we conduct another around of elementary operations to

change to transfer one variables to this side to this side and this side to this side. So, that

this remains square and then corresponding elementary operations we conduct to make it

that entity, right. So, this goes on till one of these 2 things happen. So, this is a typical

way the simplest method operates.
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Now, let us have a quick look at the general perspective of an LP problem. Now in this

we will not considered this non negativity necessity because currently we are basically

looking at the theoretical aspects rather than trying to solve it to an algorithm. Now, for

example, suppose the LP problem is minimize this function.

Now, here I have put 2 sets of variables the entire set of primal variable entire set of

variables, I have partitioned into 2 x and y the vector x contains those variables which

are unrestricted in sign and the vector y constituted those variables which are which have

a have an original negativity restriction that is like a constraint and these are equality

constraints  these  are  inequality  constraints.  Now,  in  the  general  style  of  a  general

constraint optimizations problem if you try to work out the Lagrangian of this problem

then what  will  that  be that  will  include the original  variables  Lagrangian  multipliers

lambda  corresponding  to  these  equality  constraint  and  Lagrangian  multiplier  mu’s

corresponding to these inequality constraints and another set of Lagrangian multiplier

mu’s corresponding to these inequality constraints these are also inequality constraint.

If you try to write them in the standard form you write as minus y less than equal to 0

right if you want to put in the less than equal to style similarly this will be written as a to

1 x plus a 2 to y minus b 2 is less than equal to 0 similarly this is a 1 1 x plus a 1 2 y

minus b 1 equal to 0 equality constraints. So, Lagrangian multiplier lambda mu nu will

enter into the Lagrangian function that is f plus lambda transpose h from here plus mu



transpose g from here plus nu transpose minus y from here that you get this. So, this is

the expression for the Lagrangian and first order conditions for the minimality you will

get as derivative of this with respect to x equal to 0 that is this and derivative of this with

respect to y if you try to considered then you will get a term from here a terms from here

and the term from here and this.

So, that will show the this equality that is nu is equal to these right and then apart from

that you will find that the nu should be non negative and mu’s are also non negative and

if you substituted back you will get this as optimal function value from which it is easy

to see that the sensitivity is given by lambda and b sensitivity to the values b 1 and b 2

will be given by this lambda and mu’s if you. Now, try to construct the dual out of it you

will find the dual to be this which is the optimal function value in terms of lambda and

mu this is the dual and what are the constraints of the dual problem; you will get from

here that is this and from here that is this right. So, and mu is greater than equal to 0. So,

these are the constraints of the dual which are the optimality conditions of the primal

problem. So, this shows you the symmetric between the primal and dual problems.
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Now, what is the quadric programming problem a quadratic objective function and linear

constraints, define what is called a quadratic programming problem why is that special

because  if  you try  to  write  the  KKT conditions  which  include  the  derivative  of  the



objective function and then if the objective function is quadratic then its derivatives will

be linear functions and constraints are already linear.

So, equations that get you get out of the KKT condition they are all linear functions and;

that  means,  when  you  write  the  first  order  necessary  conditions  KKT  conditions

whatever  equation  they  involve  they  will  all  be  linear  equations.  And  therefore,

Lagrangian methods which try to directly solve the KKT conditions they are the natural

choice for a quadratic programming problem a very simple example shows that with

equality constraint only a quadratic programming problem is very obvious to solve if you

have this as the objective function and this as the constraints only equality constraint

then direct KKT. KKT conditions will give you this which is a system of linear equations

and in one step without an iteration you can solve it and get the x star and lambda and if

the non-linear programming problem has if the quadratic programming problem has a

solution then this immediately will give that solution and for that of course, what you

required is the positive definiteness of q and so on.

Now, this  is  if  you  have  only  equality  conditions  equality  constraints  if  you  have

inequality constraints also then the process becomes iterative.
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And you can consider an active set method in which you keep track of active constraints

from iteration reiteration or you can considered a slack variable strategy which gives you



a  linear  complimentary  problem  and  you  can  solve  that  problem  that  also  as  a

methodology of its own.
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So, we will not get into the detail of this methods expect to point out that the active set

and  slack  variables  strategies  turn  out  to  be  quite  competitive  for  a  quadratic

programming problems which is somewhere in between linear  programming problem

and general non-linear optimization problems.

For linear programming problem typically we adhere to slack variable strategy only in

the case of typically non generally highly non-linear problems with typically take active

set strategy for a quadratic programming problem both are competitive. So, if you follow

these slides or the text book you will find by the feel examples of quadratic programming

problems.
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And  some  of  the  exercises  you  can  try  to  be  at  home  with  general  non-linear

programming non-linear problems.
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So, quadratic problems or quadratic problems open the gates and give you some of the

seeds for the general methods of non-linear optimization which we have been talking

about the structure of the methods which we have been talking about some of the some

of these methods have their roots in the typical quadratic problems.

Thank you.


