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In the last 2 lectures, we discussed unconstrained optimization.

(Refer Slide Time: 00:22)

Now, in this lecture, we will discuss the basic frame work of constrained optimization

first we discuss constraints.
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As I told you earlier the typical form of an optimization problem is like this in which you

want  to  minimized  a  function  of  several  variables  in  the  vector  x  subject  to  certain

inequality conditions and certain equality conditions.

Conceptually you can say that the statement of the problem is minimized function of x in

which x must belong to a given domain omega now the description of the domain can be

made in terms of these constraints equality constraints constraint the feasible space to a

lower dimensional set of the original solution space as if you can talk of it as a surface 3

dimensional  space.  So,  in  the;  if  the  space  of  x  is  3  dimensional  the  one  equality

constraints like this we will define a surface and any point outside that surface will be

deemed as in infeasible inequality constraints do not reduce the dimension of the solution

space, but they restrict certain regions of the solution space as invisible.

So, out of the 3 dimensional space expressing inequality constraint as on this side of that

wall of the room on this side of this wall of the room like that we can restrain the feasible

domain  to  this  room  rather  than  the  entire  infinite  space.  So,  when  we  have  such

constraints you can talk of that a tangent plane at every point on the surface describing

the equality constraint. So, for equality constraint if you have a surface then at that point

at that surface every point is feasible and at that point you can talk of a tangent plane.

So, how would you describe the tangent plane? So, for the vector function h in which the

components are in h 1, h 2, h 3, etcetera, if you put their gradients like this grad h 1 grad



h 2 grad h 3 and so on and construct this entire matrix which turns out to be basically the

transpose of the Jacobean of h which respect to x then you can say you can see that grad

h 1 will be the normal to the surface describing hx equal to h 1 x equal to 0. Similarly

grad h 2 will give you a normal to the surface h 2 x equal to 0 and so on.

What remain as the tangent plane will have directions which are perpendicular to all

these  gradient  vectors,  right.  So,  then  before  proceeding  towards  the  theory  of

constrained optimization, we need to keep in mind one important point is that.
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In entire discussion that we make subsequently it will be understood that grad h 1 grad h

2 all these are linearly independent. So, these columns are linearly independent a point x

which satisfies that condition is called a regular point that is and this condition the linear.

 independence of the gradients of the functions h 1, h 2, etcetera that the property the

quality  of  linear  independence  that  is  called  the  that  condition  is  called  constraint

qualification the idea of naming it as constraint qualification condition is that if  at  a

particular point there are 2 constraints, but both of them have the same gradient or the

gradients in the same direction and that will mean that the tangent plane that is allowed

by one of them is exactly the same as what is allowed by the other similarly for the case

of more than 2 such constraints and more than 2 such gradients if it happens that they are

linearly dependent then that will mean that all the normals are not independence all the

normal to the surface is not independent.



So, for that local neighborhood the immediate first order region around that point for that

region for that small region one of the constraints would be dropped out; so, because

they are not locally all independent. So, that is why when we say that all of these are

linearly independent then we mean that in the neighborhood in the vicinity of that point

all these constraints really qualify as independent constraints. So, it make sense to retrain

all of them otherwise we could have dropped one of them for the local neighborhood. So,

in all our theoretical discussion that will make subsequently it will be understood that we

are talking about regular points where the constraint qualification condition is satisfied

now at such a point at such a feasible point which is regular we have already discussed

that in the tangent plane any direction is a direction which is perpendicular to orthogonal

to all the grad h 1, grad h 2, grad h 3, etcetera, right.

So, these are the directions which are feasible directions that is along the direction you

can make an inf- decimal moment without violating any of the constraints if your room

ent has a component along the gradient of h; that means, you are moving out of that

surface out of that tangent plane. So, that will be infeasible. So, this tangent plane this

sub space m consisting of those ys; those vector those directions which are orthogonal to

all the grad h 1, grad h 2 vectors; they are the correction of feasible directions so far as

the equality constraints are concerned.
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So, we find that if in a n variable problem in which at any point in the solution space

there are n linearly independent directions possible if there are k constraints say if there

are k constraints then and all of them are locally independent that is they satisfy the

constraint qualification condition then on the vector y on the feasible direction y there

will  be  k  such  conditions  that  is  that  y  must  be  orthogonal  to  k  different  linearly

independent  vectors.  So,  if  there  are  k  such  conditions  then  the  number  of  linearly

independent vectors that can be taken as y will be n minus y n minus k.

So, n minus k linearly independent vectors can be there in the tangent plane that way you

will find that from that point if we want to conduct a search we do not really need to

conduct  a search in the n dimensional  space because the tangent  plane is n minus k

dimensional and in fact, all the k equally constraint together will define a manifold of

dimension  n  minus  k.  So,  that  way  you  need  to  conduct  the  search  on  n  minus  k

dimensional manifold and that tangent plane is a planar entity of that many dimension.

So, that way you find that equality constraints reduce the dimension of the problem.

So, that maybe positive thing that may be something which is actually which in a way

reducing our job but since in general the surfaces h x equal to 0; so, those surfaces are

non-linear they are not all planar surfaces. So, that is how that is why we will not be a

good passion to take advantage of this reduction of dimension because the satisfaction of

the constraints itself will be to remain on the feasible domain; however, there is a method

called  variable  elimination  method  which  tries  to  use  this  fact  and  solve  k  of  the

variables in terms of the other n minus k variables and then conduct the optimization

process in that n minus k variables that is possible only in case of very simple constraint

surfaces very simple constraint functions.

However;  so  for  as  the  tangent  plane  is  concerned  and  that  is  analysis  of  feasible

direction in the tangent plane are concerned effectively we keep in mind the concept of

this elimination of certain direction and the restriction of the feasible direction set to a

sub-face or to a tangent  plane now what about  inequality  condition a constraints  for

inequality constraints all  of the inequality  constraints  need not be active where a the

point for example, if this is an inequality constraint say g 1 x is less than equal to 0. So,

this is the feasible side this is the infeasible side that is g 1 x is positive here negative

here and g 1 the boundary similarly g 2 x, similarly g 3 x.



So, you will find that at this point at this point none of the constraints is active in what

sense that is in the immediate neighborhood of this point whichever way we move in

whichever way we try to displace the points these constraints will not play a role on the

other hand at this point g 1 is called an active constraint because from here there are

some  directions  in  which  g  1  is  not  highlighted  on  the  other  hand  there  are  some

directions on along which g 1 will be highlighted. So, g 1 is an active constraint g 2, g 3

are same in active at this point g 1 g 2 both are active constraints g 3 in active and so on.

So, when a particular constraint is active; that means, the value of the corresponding

constraint function is 0; that means. So, as for that constraint is concerned the point is on

the boundary of the feasible domain; so, for the description of the tangent plane.
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We include the active inequality constraints in the list of the equality constraints of this

because here if you try to work out the tangent plane you will need to be consider this

that is excluding this normal direction because this will be the gradient direction this will

be the actually gradient direction gradient of g 1.

So, whatever we do for grad h 1 grad h 2 grad h 3 same thing, we will do for grad grad g

1 here, but we will not do that for grad g 2 grad g 3 because they are inactive constraints

at this point this constraint are inactive. So, active equal inequality constraints get added

get included among the equality constraints for the description of the tangent plane; that

means,  if  an  inequality  constraint  is  active;  that  means,  the  tangent  plane  gets  its



dimension  reduce  by  one  for  the  value  one  for  the  dimension  apart  from  that  for

inequality constraints there is a concept of cone of feasible direction.

In the case of an equality constraint a point which is feasible from that you cannot move

along grad h you cannot move along minus grad h both ways, you will be leaving that

constraint manifold constraint surface and going out of the feasible domain on the other

hand for an inequality constraint you cannot move along grad g, but you can move along

negative grad g because that you will be coming to the interior of the domain you will

not leave the domain for example, at this point it is possible to move in all this directions.

So, at in this point if you try to do draw 2 tangents like this and like this; this is tangent 2

g 1; g 1 equal to 0 surface this is tangent to their boundary of g 2; now in this entire zone

all the directions are feasible right.

So, you find here that a cone like structure appears in to pictures in which the directions

are feasible the opposite directions will not be feasible. So, these direction will not be

feasible  this  will  be feasible  those directions  which  goes  towards  the  interior  of  the

domain leaving constraint boundary, they will be feasible and opposite once will not be

feasible. So, you define the cone of feasible direction in this manner at that boundary

point the value of g is 0 and any direction that takes the x point towards a direction in

which g transport d is negative will be all right because g will become negative.

So, now when we have to algorithmically handle the constraints inequality constraints

which are active and which are inactive there are 2 possibilities of handling 2 ways of 2

strategy to handle inequality constraint the they are being active or inactive one is active

state strategy in which at every retraction as we move from one point to another a list of

active  constraints  is  maintained and after  every iteration we make a check regarding

which of the active constraints as become inactive due to this particular step and which

other constraints which were earlier inactive we have become active.

So, this is called the active set strategy at every retraction we make this update of active

set active set update is basically in the form of a list a set in which we enter the indices of

the active constraints  there is another strategy called stack variable strategy in which

every inequality constraint like this is replaced with a corresponding equality constraint

by addition of another variable which we call as the stack variable with the condition that

the stack variable sorry this is equal equality with the condition that the stack variable



must be non negative. So, we put a non negative number here. So, if it is its value is

positive; that means, this constraint is inactive if its value is 0 then this constraint is

active in negative value for the stack variable is not allowed because that will make this

constraint violated that will violate this constraint.

So, this is another strategy to inequality constraints that is which of them have to be

taken in the active set and which are not. So, for that you do not need to maintain a list

the value of this will signify whether it is inactive or active now with this understanding

we  go  to  find  out  we  proceed  to  find  out  the  optimize  criteria  for  a  non-linear

optimization problem in which there are constraint. So, for example, as we have been

discussing that for this corner point these directions are feasible and any direction in that

tangent plane is feasible in a tangent plane is feasible.

Now if these are feasible directions, then what is the necessary condition for this point to

be a local minimum point the condition should be that along the feasible directions if we

make a move, then the function value should not decrease because if along a feasible

direction the function value can decrease that will mean that the current point cannot be a

local minimum. So, a direction along which the function decreases is a is in direction and

the direction along which we can move without violating any constraint is a feasible

direction. So, for the point to be a local minimum point it is necessary that there is no

direction which is at a same time a feasible direction as well as a descent direction.

So, if we can check that all the feasible directions are such that along that the function

increases function do not decrease then we will be satisfying the necessary condition for

the point to be a local minimum.
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So, suppose x star is a regular point in which there are a few active inequality constraints

and some inactive inequality constraints and of course, equality constraints are always

active. So, we collect the all the active constraints grad h full and grad g only the active

part and then we say that grad h 1, grad h 2, grad h 3 and out of these also gradients of

the active inequality constraint function we collect.

Now, these gradients together which are all  linearly independent  because they satisfy

their  constraint qualification condition;  so,  all  these together  will  be those vectors to

which a tangent plane vector must be orthogonal right. So, these collection this collection

of  gradient  vector  is  the  full  set  up  linearly  independent  vectors  which  must  be

orthogonal to any vector in a tangent plane.

So, therefore, these together these columns together give us a bases for the orthogonal

compliment of the tangent plane if tangent plane is this then whichever subspace which

is  orthogonal  to  it  and  completes  the  R  n  full  vector  space  then  that  is  the  also

complement of the tangent plane for which these gradient vectors together offer a basis

for the tangent plane also we can work out the basis suppose that basis is d having these

many vectors i which I; this case we described n minus k as dimension a tangent plane,

but in this notation here actually the number of constraints n minus k.
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And dimension of that tangent manifold tangent plane is k. So, if we think of a basis for

the  tangent  plane  itself,  then  this  basis  for  the  tangent  plane  and  this  basis  for  the

orthogonal compliment of it that is what is perpendicular to the tangent plane together

gives us a basis for r n that is full n dimensional space.

Now, x is an n dimension vectors. So, when the space of x any vector is in n dimension

vector in particular gradient of f is also an n dimension vector. So, it can be expressed in

this basis. So, if you try to do that the negative gradient is a vector in r n. So, we try to

express that in this basis one part of it describes the tangent plane and the other part

describes all orthogonal vectors.

Now, we say that d z is the component of negative gradient in the tangent plane and these

2 together is component of the negative gradient orthogonal to the tangent plane.
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So, if this is the tangent plane then at this point if this is negative gradients then you

would say that this vector is d z that is component of the negative gradient in the tangent

plane  and this  vector  is  the rest  of  it,  right;  now if  this  is  non zero  say positive  or

negative  this  way. So,  along all  the directions  d 1 d 2 d 3 d 4 positive  or negative

whatever if it is non zero non-zero component then you see that this is tangent plane in

which every direction is feasible in the tangent plane every direction is feasible now if

negative gradient has a non zero component in this tangent plane then moving in that

direction we should able to reduce the value of the function right.

So, then this point cannot be a local minimum point because along this direction which is

feasible we can have a positive component of negative gradients and we can reduce the

function value along this direction. So, that is why for this point to be a local minimum

point it is necessary that the negative gradient vector has no non zero component in the

tangent plane; that means z work with 0.

So, this is what we can say if x star this current point is a solution to the non-linear

programming  problem the  non-linear  optimization  problem minimize  their  subject  to

those constraints. So, this is what we can say about the components z lambda mu out of

that we can say that z cannot be non zero if x star is a solution to the problem solution to

the minimization problem.
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So, components of gradient of f in the tangent plane must be 0 z is 0 so; that means, this

negative  gradient  cannot  have  a  component  in  the  tangent  plane  and  it  must  be

orthogonal to the tangent plane; that means, the negative gradients should be completely

describable in terms of the normal vectors gradient vectors of h 1, h 2, h 3, etcetera and

active fellows from here active members from here. Now what else we can say; now this

is going to be a little complicated keeping track of active constraint because suppose in a

particular problem there are 7 constraints.

So, at a particular point suppose this is active this is active and this is active. So, at that

particular point you will be taking g 1, g 2, g 4 and assembling them in this vectors g

active and g 3, g 5, g 6, g 7; you will be assembling in g active at another point when you

analyze; suppose there g 4 is not active, but g 7 and g 6 are active. So, then again you

will be re assembling this. So, this problem is typically handled by saying that we will

keep all the gradients here and all the gs we will consider together except that and that

way if we keep rather than 3 if we keep 7 columns here than 7 values, we will say that let

it  has  7  values,  but  we  will  insist  that  if  a  particular  constraint  is  inactive  the

corresponding mu should be 0.

So, if g 1, g 2, g 6, g 7 are active then mu 1 mu 2 mu 6 mu 7 can be non zero g 3, g 4, g 5

must be 0 mu, 1 mu, 2 mu, mu 3, mu 4, mu 5 must be 0 that is corresponding to those

constraints which are inactive let the columns stay in their place what mu’s will be insist



on being 0, if we follow that kind of an understanding that is called inactive constraints

the corresponding mu’s should be 0 then rather than having only active constraints here

we can put active in active constraints in any order for that matter and say that inactive

constraints in a we will have with corresponding mu’s which are 0 anyway.

So,  that  they  do  affect  this  expression.  So,  extra  columns  will  be  there,  but  there

corresponding multipliers will be 0. So, that way we can keep the entire g together and

this  long  thing  we  can  concisely  write  as  grad  h  lambda  plus  grad  g  mu  with

understanding those mu’s which correspond to inactive constraints will be 0 anyway and

that  gives  us  this  requirement  that  is  if  a  particular  constraint  is  inactive  then  the

corresponding g i is not 0. So, the mu i has to be 0 on the other hand for an active

constraints g i itself is 0. So, mu i can be allowed to be non 0.

So, mu i g i the product is always 0. So, that is called the complementarity conditions

that is between mu and g each in for each i the pair mu i and g i are complementary with

each other if one of them is non zero the other one must be 0. So, together you can write

like this also that is the sum of mu i g i is also 0 now this condition we arrived at from

here in which we say that the negative gradient is a combination of grad h lambda and

grad g mu only d z part is 0.

So, based on that we are arrived at this condition just take this negative gradient on the

other side it goes as positive and this is the first order necessary condition arrived from

the requirement that along the feasible directions in the tangent plane there should be no

scope of improvement of the function value what about the directions in the cone of

feasible directions when you explore that we say that now take this itself now take this

itself in schematic diagram now that you have already decided that grad f will have no

component in the tangent plane then that as expand.
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This part itself which is the direction which is the component in the direction normal to

the  tangent  plane  and resolve  these  2  parts  for  this  subspace  only;  now if  we draw

directions and this is the direction of grad h and this is the direction of grad g h and we

are currently at this point; now in this along this and this directions the negative gradient

can have a component.

So, if the negative gradient is this way now; that means that with the negative gradient

will have one component along this.
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Which is grad h into lambda and another component along this which is grad g a into mu

now let us remove everything else to make this thing clearly feasible.

Now, note that grad h is a direction along which if you move then you will be leaving the

constraint manifold and constraint surface you will be leaving and going out similarly if

you try to move in this directions rather than this way this way and this way either way

you move out of the constraint manifold in the direction of grad h or in the direction

minus grad h; that means, that constraint manifold you are going to leave you are leaving

tangent plane and going out of the surface this way or going out surface this way. So,

therefore, minus grad f having a component along gradient of h or its negative will not be

a problem because this direction is anyway infeasible.

So,  the  condition  for  this  point  for  to  be  a  local  minimum  is  that  along  a  feasible

direction we should not be able to reduce the function value in this direction function

value does reduce, but that is not feasible similarly along this direction if the grad f had

component in this direction that is if grad f were like this then it would have a component

along this direction in that case the function would be reducing this direction, but this

direction is the not feasible. So, this is the space with lambda h therefore, the grad h.

So, therefore, lambda could be positive or negative. So, negative gradient can have a

positive component along grad h or a negative component grad h does not mater, but

consider the situation is grad g at this point since g is at active constraint; that means, the

value of g is 0 here this is the direction of grad h grad g; that means, here it is positive

here it is negative now if the negative gradient has a component along this direction. 

That  means,  along this  direction  it  is  possible  to  reduce  the  function  value  because

negative gradient has a component along this direction, but that does not harm that does

not stop this point from being a local minimum because this is direction in which even if

the function value does decrease it does not matter because that direction is not feasible

in this direction g will become positive grad g in this direction g is 0 here g is positive

here on the other hand if minus grad f like this having a component along negative grad g

that is in the grad direction if it as a negative components; that means, it is feasible this at

this point g is 0 in this direction g will become negative; that means, the point will be

feasible the constraint will be satisfied. So, this point is feasible.



So, if negative grad g negative gradient of the function minus grad f as a component in

this direction that is as an negative component along grad g then this point cannot be

local minimum because since it is a component of minus gradient negative gradient of

the function along this direction function could be decrease and if this is a direction

which is in the direction of negative gradient of g as well; that means, it is feasible that

mean this direction will be feasible direction and this an direction at the same time a

feasible direction in which the function value can be decreased. 

So, if that happens then this point a local minimum so; that means, for this point to be a

local  minimum the  components  along the  negative  gradient  of  inequality  constraints

must be positive that is this is allowed bu; this is not allowed. So, mu cannot be negative

this is what we get when we consider the feasible directions in the cone.
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Describe  by  the  active  inequality  constraint.  So,  negative  gradient  can  have  no

component towards decreasing g; that means, mu should be all non negative ok.

So, corresponding to active constraints mu should be non negative and the in act for the

inactive constraint we already know that there are all 0. So, together we can write this.

So, all the conditions that we have collected till now if we summarized then we get what

is called the first order necessary conditions or KKT conditions Karusch Kuhn Tucker

conditions and the summary is this if x star is a regular point of the constraints and a

solution to the optimization problem minimize f subject to g less than equal to 0 and h



equal to 0 then there exist lambdas and mu’s that is Lagrange multiplier vectors such that

this and this that is grad f plus grad h lambda plus grad g mu is 0 with mu non negative

which is which comes from optimality; optimality requirement and from the feasibility

requirement which is part of the problem statement itself that is h x star 0 g x star is

negative or 0 and complimentary condition is this.

This condition could as i well be written as that is for all i mu i g i that x star should be

no sorry 0 that is complimentary condition that is mu’s and g’s are complimentary to

each other that is if g is on 0, then mu must 0 that is for inactive constraints and if mu is

non zero then g must be 0 that is mu can be non zero only for active constraints.

So, that is why this is called complimentary conditions. So, you find that here you have

got n equations number of variables here you have got another bunch of equation number

of equality constraints and here you have got another bunch of equation which are the

which is the number of inequality constraints same number of unknown you have in x

you have the number of ray unknown which is equal to n the dimension of the problem

and you have got that many lambdas as many equitation’s here and you have got that

many  mus  as  many equations  here.  So,  the  number  of  equations  this,  this,  this  and

number of unknowns x lambda mu is same apart from that there are a few inequalities

mu’s are greater than 0 g are less than equal to 0.

So, any point x star with suitable lambdas and mu’s that satisfy all these inequality and

equality  requirements  they  are  said  to  be  those  point  are  said  to  be  KKT points  or

corresponding  to  third  points  so;  that  means,  they  satisfy  the  first  order  necessary

conditions that does not means that they are local minima that only means that if a point

is local minimum then that satisfies all these conditions which some suitable lambda mu

values there is one class of problems called convex programming problems in which the

objective function is convex and the domain is also convex characterized by convex g i

and linear h x that is equality constraint functions are linear and inequality constraint

function are all convex.

So, that describe a convex domain. So, if you are trying to minimize a convex function in

a convex domain then that is if your problem is a convex programming problem then this

KKT conditions are not only necessary, but also sufficient,  but for a general problem

these are not sufficient  for a general problem you need to consider the second order



conditions also to be certain that a point satisfying this constrained conditions is a local

minimum point.

So, the second order condition is a little complicated we will just make a brief over view

of it and try to understand what it means rather than going in to the detailed derivation

and before that we defined what is called the Lagrangian function.
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This function describe in with the help of the objective function the constraint functions

from equality constraints and inequality constraints along with their Lagrange multipliers

lambdas and mu’s this function is called the Lagrangian of the problem and this is why

these  lambdas  and mu’s are  called  Lagrangian  multipliers  corresponding  to  equality

constraints  and inequality constraints.  So, you will find that the first order optimality

conditions that we worked out this; this equal to 0 this is essentially the gradient of this

which respect to x this is gradient of x plus grad h lambda plus grad g mu that is what we

had here.

So, gradient of lambda equal to 0 is the optimality condition. So, necessary condition for

a stationary point of the Lagrangian also would be the same that is this and derivative

with respect lambda will be actually given like this which will be nothing, but h x equal

to 0 that is the feasibility condition equality condition equality constraint itself. Now the

idea of the second order necessary and insufficient conditions is essentially the analysis

of the second order change in the tangent plane.
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So, we again re correct the tangent plane discussion that we had earlier it is the tangent

plane then our previous discussion tell us that minus grad f must be perpendicular to it

must be orthogonal to it because a component of negative gradient along the tangent

plane would give us a first order change along the tangent plane which means that we

could decrease function along the tangent plane along the feasible direction. So, since

that is not allowed we are already sure that negative gradient of the function must be

orthogonal to the tangent plane so; that means, along the tangent plane from this point

there will be no possibility of a first order decrease no first order change because first

order change of the function value in the tangent plane is 0 around this point what about

the second order change.

So, as you know the second order change is given by this. So, when we try to analyze the

second order change we say that we do not care if there is a second order change which

is  in  this  direction  or  in  this  direction  because  in  this  direction  we  have  already

completed the first  order  analyzes  and this  points  are  this  directions  are anyway not

feasible. So, for grad h say; this as this can have a component along grad h and a grad g

for a matter. So, along grad h this movement itself is not feasible. So, we do not bother

about that along grad g movement is feasible in one direction, but along that direction

since mu itself is positive; that means, the first order change itself is positive so; that

means, the first order done dominating the tailor series will not live any scope for the

second order to be perceptible in the immediate neighborhood.



So, the second order analysis we need to conduct only on the tangent plane then we say

that if we take a small movement small move if we make a small move along a tangent

plane then how the function value is going to change up to second order level first order

change along tangent plane is 0 anyway. So, what is the second order change if that

second order change is nonnegative then we say that is the condition that is the necessary

condition for the current point to be a local minimum point on the other hand if the

second order change is positive then we would say that it is sufficient to ensure along

with the KKT conditions if would be sufficient to ensure that is the current point is a

local minimum point.

So, the necessary condition sufficient condition will be the same as the positive semi

definite and positive define nature of this hessian matrix, but not in all directions only on

that tangent plane; that means, the hessian should be in now here hessian that would be

involved and that  actually  is  the result  of a little  complicated analysis  which we are

omitting the hessian that we will get involve and that actually is the result of a little

complicated analysis because which we are omitting the hessian that will get in involve

here is actually not the hessian of the original function the objective function, but hessian

of the Lagrangian.

So, we say that the effect of the hessian of the Lagrangian on the tangent plane should be

like a positive definite matrix the outside the tangent plane that is normal to the tangent

plane even if it displaced a negative Eigenvalue that does not harm.
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So; that means, the condition is that the hessian matrix of the Lagrangian function is

positive semi-definite on the tangent plane m orthogonal to the tangent plane even if it do

not behave in a positive semi definite fashion even if it behaves with an indefiniteness, it

does  not  matter  the  only  requirement  is  on  the  tangent  plane.  So,  this  is  necessary

conditions positive semi definiteness of the restriction of hessian on the tangent plane

sufficient condition is that it is positive definite. So, if we want to analyze that a hessian

matrix is positive definite on a particular subspace then for that.
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We can construct  this  matrix  that  is  if  d  is  an  orthogonal;  orthonormal  basis  of  the

tangent plane and h l is the hessian of the Lagrangian function then d transpose HLD will

be a mapping will be a symmetric mapping within the tangent plane that is it maps the

tangent plane to itself and we can examine the positive definiteness of this matrix which

is smaller n minus m by n minus m the other subspace the orthogonal complimentary

subspace of m dimensions is removed out of it. So, we can consider positive definition of

this.

So, this is the second order condition. So, along with KKT condition this being positive

definite is sufficient for the current point to be a local minimum for all problems even for

non convex problems now long back in the first lecture of optimization on optimization I

mention to you that at the beginning of the optimization process some of the variables of

the problem can be considered constraint for the analysis and frozen those are called the

parameters  after  the  solution  is  found  typically  we  would  like  to  examine  whether

freezing their value was a good idea that is we would like to examine the sensitivity of

the solution to those parameters.  So, how do you how do we analyze the sensitivity

consider.
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Considered this  NLP problem non-linear  programming problem for simplicity  I  have

kept only equality constraints  and not inequality constraints,  but the them applies for

inequality  constraints  also again for simplicity  I  have considered only one parameter



which is kept fixed now suppose for solving this problem in the beginning we assigned a

value 2 p and hence solve the problem and then we got the solution as x star a point in

the solution space and the corresponding function value.

Now, note this when we find the function value we find it at that x stars which means

that with that constraint value p in the beginning consider another important issue that as

we gave a particular value as we assigned a particular value to p, we got this optimal

point we got this minimum point if we had given another value of p, we would have got

a different minimum point, if we had continuously varied p that is p equal to 1 p equal to

1.01 p equal to 1.02 p equal to 1.03, then continuously we would get some x star some

other x star some other x star some other x star that way, we can considered that this x

star is actually a function of the p that we give right here as variables of the problem x

and p are independent variable, but x star is the optimum point which has been arrived at

through a long process of optimization after assigning the value of p. So, as we keep on

changing the value of p the resulting optimal point will keep on changing. So, that way x

star is actually a function of p and therefore, when we finally, evaluate the function we

will be actually evaluating this right.

Now, we want to find out if we change the little bit then how this would change a more

importantly how the corresponding function value would be change which we want to

minimize that is we want to find out d f by d p at what rate the change of p affect the

change of f you know how to find the total derivatives of this kind of function f will

depend on p in 2 ways one directly and the other through x star p. So, the total derivative

would be this partially derivative plus a derivative reflecting the dependence through x

star dependence on p through x star.

So, that will be grad f that is derivative with respect to x multiplied with how x star itself

changes with p right. Now given the function here it would not be difficult for you to

find out this, but then how to find out this yes you could solve the same optimization

problem for another p and then get this, but there is a simpler way to solve for it and for

that you note this h x p equal to 0 at the solution point x star p, this is satisfied right if

you make a small difference small change in p and then for the entire problem then you

will get another x star p, which is also satisfied the new h corresponding to the new value

of p; that means, whatever changes in p you made h of x p still remain 0 because it will



be the mu x stars will be feasible which respect to the h x to the mu h define with the

help of the mu p right.

So, this will still satisfied; that means, as you change p h remains 0; that means, d h by

dp of this is 0 always. So, that will mean 0 equal to derivative of this we construct in this

same manner  and now what  you can  do is  that  multiplied  this  lower  equation  with

lambda and add to the upper equation on this side 0 will be multiplied with lambda and

add to this; that means, on the left side there will be no change on the right side, there

will be some change what will that change lambda into this will be added here and here

what will be added d x star by d p is constraint is common here will be added grad f plus

lambda grad h. So, grad h plus lambda grad h is the first order necessary condition for

the point x star to be minimum.
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That equal to 0 is the condition; that means, lambda times this added to this we will

make it 0 and lambda times this added to this will make it grad f plus lambda grad h that

is  del  f  by  del  p  plus  lambda  del  h  by  del  p.  So,  here  you find  that  analyzing  the

sensitivity is actually not that difficult.

So, you can construct this partial derivatives from the given functions and analyze the

sensitivity of the problem of the solution to the parameter p.
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These things when formulized in terms of large number constraints and large number of

parameters give these long conditions similarly you can check the sensitivity you can

assuming the sensitivity with respect to constraints also.
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And if you do that then you find the sensitivity of the functions of the solutions to the

constraint is just given by lambda mu and that way you can say Lagrange multiplier

lambda  and  mu  signify  costs  of  pulling  the  minimum  point  in  order  to  satisfy  the

constraints  that  is  lambda  and  mu  Lagrange  multiplier  are  cost  for  satisfying  the



constraint  beyond this  we will  discuss in  the next  lecture in which we will  consider

duality and study the structure of non-linear optimization method.

Thank you.


